

Computer Science Department

Technical Report

Number: NU-CS-2025-27

July, 2025

Architecture-independent Floating Point Spying and an

Architecture for Floating Point Spying

Karl Hallsby, Liam Strand, Nick Wanninger,
Nadharm Dhiantravan, Peter Dinda

Abstract
Floating point instructions in existing, unmodified application binaries can be monitored, at the
hardware level, for signs of trouble. Events such as NaNs, overflows, underflows, denorms and
unexpected rounding can be readily detected, and when they do not occur, there is no overhead.
We describe how we have extended the open source FPSpy tool, which provides such
monitoring on x64 hardware, to be architecture-independent, with support extended to the ARM
and RISC-V architectures. We also extend the open RISC-V architecture and its SonicBOOM
implementation to be particularly conducive to monitoring. First, we introduce floating point
traps as an architectural extension, making it possible to do monitoring in the first place. By
default, this delivers signals via the kernel as is common on other architectures. Second, we
introduce precise pipelined exceptions (PPEs), which allow the RISC-V architecture to deliver
instruction exceptions, such as floating point traps, directly to user-space handlers, greatly
reducing their overhead (by a factor of 30) by bypassing the kernel. This reduces the cost of
detecting and logging an event-causing instruction in FPSpy by a factor of 3. We present detailed
performance results of the architecture-independent FPSpy on our augmented RISC-V platform.

This effort was partially supported by the United States National Science
Foundation (NSF) under awards CNS-2211315, CCF-2119069, and CNS-2211508.

Keywords

IEEE 754, RISC-V, floating point arithmetic, floating point hardware,
computer architecture, correctness, software development

Architecture-independent Floating Point Spying and an
Architecture for Floating Point Spying

Karl Hallsby
Northwestern University

Evanston, IL, USA
kgh@u.northwestern.edu

Liam Strand
Northwestern University

Evanston, IL, USA
ltrs@u.northwestern.edu

Nick Wanninger
Northwestern University

Evanston, IL, USA
ncw@u.northwestern.edu

Nadharm Dhiantravan
Northwestern University

Evanston, IL, USA

Peter Dinda
Northwestern University

Evanston, IL, USA
pdinda@northwestern.edu

Abstract
Floating point instructions in existing, unmodified application bi-
naries can be monitored at the hardware level for signs of trouble.
Events such as NaNs, overflows, underflows, denorms and unex-
pected rounding can be readily detected, and when they do not
occur, there is no overhead. We describe how we have extended
the open source FPSpy tool, which provides such monitoring on
x64 hardware, to be architecture-independent, with support ex-
tended to the ARM and RISC-V architectures. We also extend the
open RISC-V architecture and its SonicBOOM implementation to
be particularly conducive to monitoring. First, we introduce float-
ing point traps as an architectural extension, making it possible
to do monitoring in the first place. By default, this delivers sig-
nals via the kernel as is common on other architectures. Second,
we introduce precise pipelined exceptions (PPEs), which allow the
RISC-V architecture to deliver instruction exceptions, such as float-
ing point traps, directly to user-space handlers, greatly reducing
their overhead (by a factor of 30) by bypassing the kernel. This
reduces the cost of detecting and logging an event-causing instruc-
tion in FPSpy by a factor of 3. We present detailed performance
results of the architecture-independent FPSpy on our augmented
RISC-V platform.

Keywords
IEEE 754, RISC-V, floating point arithmetic, floating point hard-

ware, computer architecture, correctness, software development

1 Introduction
There is an exploding interest in correctness in scientific applica-
tions, exemplified by the NSF and DOE’s cross-cutting CS2 funding
program. The correctness of floating point arithmetic is an impor-
tant part of this interest, at levels ranging from numeric methods
and algorithms, through languages, libraries and compilation, all
the way down to hardware. In this work, we are focused on the
architectural instructions executed by any existing, unmodified
scientific application binary that implements the IEEE 754 stan-
dard [15, 16], which is is almost always what is meant when we
use the word “floating point arithmetic” in scientific computing.

This effort was partially supported by the United States National Science Foundation
(NSF) under awards CNS-2211315, CCF-2119069, and CNS-2211508.

Due to a required feature of the IEEE 754 standard, floating point
exceptions,1 it is possible to build tools that use the hardware to
detect when a window of instructions2 has resulted in a small set
of unusual events occurring, with virtually zero overhead. These
include overflow (Infinity production), underflow (zero and/or sub-
normal production), NaN (non-number production or consumption),
divide-by-zero, and an imprecise result (due to rounding). Some
hardware adds additional events, for example to make it possible
to differentiate subnormals and zeros. Such events can correlate
with correctness issues, some more than others. An additional op-
tional feature, floating point traps,3 allows us to trace individual
instructions, which can be very useful when deciphering the ori-
gin of the event. Floating point traps also enable other tools that
modify the floating point behavior of a program, for example to
execute instructions at a different precision. Tools such as these are
very closely coupled with hardware and the kernel, particularly if
performant results are required. This makes portability a challenge.

There are two thrusts to the work described in this paper. In
the first thrust, we describe our experience with extending one
such tool, the open source FPSpy system, from being x64-only, to
being architecture-independent, with current support on x64, ARM,
and RISC-V. As part of that effort, we also describe kernel module
support that reduces the overhead of using floating point traps.

Some architectures do not support floating point traps, which
renders tools of interest unable to detect events at instruction gran-
ularity unless we are willing to modify the scientific application
binary, either by recompilation, or static or dynamic rewriting.
While floating point traps are a mandatory part of the x64 floating
point specification, they are optional on ARM,4 and deliberately not
included in the various RISC-V specifications (i.e., F, D, Q, ...) for
floating point instructions. Beyond simply having floating point

1Confusingly, “exception” in this standard simply means that the event is recorded,
not that exceptional control flow occurs. Floating point exceptions are implemented in
most hardware, including the architectures described here, as sticky condition codes
in a user-visible control/status register.
2For example, those executing over an interval of time as marked out by timer events.
3“Trap” here means that exceptional control flow occurs. A typical implementation
will cause the instruction to fault into the kernel, similar to an instruction causing a
page fault.
4It may be surprising to learn that various implementations, including server-level
chips like ThunderX2 and Neoverse-N1, do not support floating point traps, while
even the lowest-end Apple M1 does.

traps at all, what architectural features would be desirable to make
our tools of interest more useful and performant?

In the second thrust of work described in this paper, we explore
how to make an architecture more amenable to tools such as FPSpy
by extending the open RISC-V architecture and its SonicBOOM
implementation. We introduce floating point traps into the RISC-V
architecture, then explore how to deliver them as precise instruc-
tion exceptions directly to user-level code, bypassing the kernel
altogether. This lowers the cost of trap delivery to the tool to be on
par with that of a function call.

Our contributions are as follows:

• We describe the design and implementation of
architectural-independence in the open source FPSpy system,
including support for the x64, ARM, and RISC-V architectures.
We believe our experiences can generalize to other such tools.

• We describe a Linux kernel module for x64 (and, in principle,
other architectures) that allows much faster and lower overhead
dispatch of floating point traps to user-level tools. The module is
not FPSpy-specific.

• We describe how we extended the RISC-V architecture and
SonicBOOM’s [2, 36] implementation of the floating point
F (Float), D (Double-Precision Float), and Q (Quad-Precision
Float) extensions on RISC-V to support floating point traps,
including controlling them as needed for FPSpy-like tools.

• We describe how we extended RISC-V firmware and Linux to
support our new floating point traps, including delivery of them
as SIGFPEs, similar to the x64 and ARM architectures.

• We describe precise pipelined exceptions (PPEs), an approach for
fast dispatch of precise instruction exceptions to user-level
handlers, bypassing the kernel. We implement PPEs in
SonicBOOM and use them as an alternative delivery mechanism
for floating point traps and breakpoint traps. Firmware and
Linux support allows a user-level process to optionally request
delivery in this manner.

• We integrate floating point trap and PPE support into FPSpy and
describe the challenges of this integration.

• We evaluate the performance PPEs and their use in FPSpy on our
augmented RISC-V platform running on FPGA-accelerated
Firesim. We find that PPEs reduce event overheads by a factor of
30 and allow FPSpy to handle each event-generating floating
point instruction about 3 times faster than using conventional
kernel-level traps and signals.

The architecture-independent FPSpy and our RISC-V extensions for
floating point traps and PPEs will be made available on publication.

2 FPSpy
FPSpy [11] is an example of the kind of tool that relies heavily on
the hardware floating point implementation in order to achieve
its ends with minimal overhead. In its current state, it is highly-
specialized to the Intel/AMD x64 architecture, the Linux process
environment, and the ELF dynamic linking model.

2.1 x64 hardware support
FPSpy and tools like it build on two specific forms of hardware
support, floating point condition codes (“exceptions” in IEEE 754
terminology), and floating point traps, which both exist on x64.

Floating point exceptions: The IEEE 754 standard requires
that the hardware track the following exceptions for each floating
point operation:

• Inexact. The result could not be exactly represented and thus
was rounded.

• Underflow. The result was “too small” and thus became a
denormalized number or a zero.

• Overflow. The result was “too large” and thus became an infinity.
• DivideByZero. The operation attempted division by zero.
• Invalid. An input or the result was not a number (NaN).
An implementation can provide additional exceptions. x64 also
detects Denorm, which can be used to differentiate between an
underflow that resulted in a denormalized number from one that
resulted in a zero. The presence of exceptions such as Overflow,
DivideByZero, or Invalid are highly problematic in a computation.
Underflow or Denormmay be a sign of a problem. Because rounding
is necessarily commonplace in floating point arithmetic, Inexact
is usually not a sign of a problem, although the user may want to
observe these events nonetheless, or to modify instruction behavior.

According to the standard, floating point exceptions must be
tracked in a “sticky” manner. On x64, these events map to condition
code bits on the %mxcsr register. User-level code can both reset and
read them. When an exception occurs, the corresponding bit is set.
It then remains set (it is “sticky”) until the user resets it.

Floating point traps: The standard also optionally provides
for creating a CPU-level trap when one of these sticky condition
code bits transitions from a 0 to a 1. x64 implements this through
a set of user-configurable bits on %mxcsr that allow the user to
mask such traps. If the user unmasks the Invalid trap, for example,
and zeros the Invalid condition code, then the next instruction that
produces or consumes a NaNwill cause a CPU-level exception (#XF)
which is delivered to the kernel much like any other exception. The
kernel then translates this into a SIGFPE signal that it delivers to
the thread that was executing the problematic instruction.

FPSpy avoids decoding or emulating any instruction by using
x64’s single-step operation, called “trap mode”, which is available
to user-level code. When the CPU is in trap mode, each instruction
generates a hardware trap (just as a breakpoint would) once it
has finished executing, which the kernel translates into a SIGTRAP
signal delivered to the thread executing the instruction.

2.2 General description
The goal of FPSpy is to “slide under” an existing, unmodified ap-
plication binary of any kind and collect trace information without
interfering with the binary. If the running application binary itself
uses some hardware or kernel feature that FPSpy needs, FPSpy
gracefully stops collecting trace information, disables itself, and
“steps aside” to allow the application binary to continue. The intent
behind such a graceful shutdown is to allow FPSpy to potentially be
used in production environments to monitor applications as they
do real work, not just during development. Many of the design
choices of FPSpy are made to be able to “step aside”.

Implementation: FPSpy is implemented as an LD_PRELOAD
shared library with link-time functions that are called using dy-
namic linker constructor/destructor support. Constructors are used
on every process creation. The constructor code overrides not only

2

process and thread creation functionality (i.e., FPSpy traces through
/ “follows” fork(), exec(), pthread_create(), clone(), etc),. but
also inserts itself into a wide variety of other library functions that
manipulate floating point state, signal handler introduction, etc. It
does the latter to catch cases for which it should “step aside”. It also
installs signal handlers for a range of signals, including SIGFPE and
SIGTRAP, which drive execution as described below.

Overhead/detail tradeoff: An important aspect of the design
is to allow the deployer to decide on the tradeoff between over-
head and trace detail. In effect, the x64 hardware support described
above is always detecting the events FPSpy consumes. In trading
off between overhead and detail, we are simply deciding which
events the hardware will forward to FPSpy via the kernel.

At one extreme, the aggregate mode of operation, the overhead
is effectively zero. In aggregate mode, the system simply manages
the floating point condition codes in such a way that it can deter-
mine which conditions (floating point exceptions) occurred during
the entire lifetime of a thread. Regardless of which exceptions are
tracked and how many times they occurred, this is a constant cost
of ∼1 ms.

The individual mode of operation is where most of the tradeoff
space is. Here, the system detects individual instruction executions
that cause exceptions of interest. The user specifies which excep-
tions to track. FPSpy unmasks the traps for these in every thread’s
%mxcsr. When an instruction executing in a thread traps, FPSpy
records a timestamp, the conditions that lead to the trap, address
of the trapping instruction, the stack pointer (optionally providing
information to backtrace after the fact), and an optional snapshot
of the (undecoded) instruction, all in a per-thread trace.

The overhead of FPSpy when running in individual mode de-
pends on which exceptions are being tracked and how many of
those exceptions actually occur during execution. If the deployer
selects only a small set of exceptions that indicate severe problems
(e.g., setting just Overflow, DivideByZero, and NaN), then we would
expect virtually no overhead when running an unproblematic ap-
plication binary. If those severe problems are commonplace, the
overhead is much higher, but perhaps understandably so. If, for
example, the binary “generates a NaN” and that NaN propagates,
many Invalid exceptions will occur, and FPSpy will record them all.

Generally, as the deployer chooses to track more exceptions, the
overhead gets higher. At the other extreme, if the deployer chooses
to track Inexact, the volume of traps and thus the overhead will
be maximized since rounding is common in floating point code
even when it is working correctly. To better support use cases
that observe rounding and similar high volume exceptions, FPSpy
includes numerous sampling options which allow a further tradeoff
to be made between the overhead and the probability of detecting
an exception. All of these are already architecturally independent.

Manipulation: FPSpy has limited support for manipulating
the floating point state to try to uncover problematic application
behavior. These include the ability to force the hardware to use
specific rounding modes, and to manipulate the denorm behavior.
Rounding modes and the ability to manipulate them are specified
in the standard. FPSpy implements this support by forcing %mxcsr
manipulations. Non-standard, but increasingly common is the abil-
ity to force the hardware to increase performance by converting
denormalized results to zero (FlushToZero (FTZ)) and/or treating

denormalized inputs as zero (DenormsAreZero (DAZ)). FPSpy can
retroactively change this behavior, simulating how well the code
might work on an environment in which denorms and thus “gradual
underflow” are not implemented (e.g., GPUs).

2.3 Individual mode engine
Most of the challenges involved in making FPSpy architecture-
independent (and in providing necessary architectural support for
FPSpy) lie in the requirements of the individual mode of operation.
Making aggregate mode architecture-independent is essentially just
an afterthought. Hence, it is worth understanding how individual
mode works in more detail.

For each thread, FPSpy implements a four-state state machine.
Two of these states, INIT and ABORT, exist only to simply startup
and graceful “stepping aside”. For the most part, we will alternate
between the AWAIT_FPE and AWAIT_TRAP states, and FPSpy will
be triggered by the SIGFPE and SIGTRAP signals.

When AWAIT_FPE is entered, the tracked floating point excep-
tions have been zeroed, and the tracked floating point traps will
have been unmasked. The application thread is now executing as
normal. Eventually, it will hit a floating point instruction that raises
a tracked exception, and thus causes the corresponding floating
point trap, which is delivered to the kernel as a #XF exception.
The kernel will translate this into a SIGFPE and deliver it to FP-
Spy’s signal handler. FPSpy will then record the errant instruction
execution.

At this point, FPSpy has a problem: it needs the errant instruction
to actually be executed.Wewant to do this without any emulation or
even understanding of the size of the instruction. To accomplish this,
the handler now masks the floating point traps, and returns. This
will cause the instruction to execute to completion. Unfortunately,
so will all subsequent instructions, including the floating-point
instructions we want to track. To avoid this, just before it returns
from the signal handler, FPSpy also switches the CPU into single-
step mode (“trap mode”), by setting the TF bit on the %rflags
register. It also sets the state machine to AWAIT_TRAP. The result
of this is that the errant instruction executes to completion, and then
the CPU raises a trap exception when fetching the next instruction.
The kernel maps this to a SIGTRAP and delivers it to the thread.

FPSpy’s SIGTRAP handler notes that the system is inAWAIT_TRAP
mode. Getting a SIGTRAP in this mode indicates we are done with
handling the errant instruction. The handler disables the CPU
single-step, zeros the floating point exceptions, and unmasks the
floating point traps. On returning from the handler, it sets the state
machine to AWAIT_FPE. We are now executing the instruction
after the errant one, looking for the next floating point trap.

3 Architectural independence
Designing an appropriate set of abstractions for the hardware fea-
tures FPSpy depends on is subtle for several reasons:

• The IEEE 754 standard does not mandate how features will be
exposed at the architectural level; it does not require the
existence of specific registers, for example.

• The IEEE 754 standard does not require that floating point traps
be implemented. In the absence of floating point traps, FPSpy
should still be able to run, albeit restricted to aggregate mode.

3

Existing, Unmodified Application Binary
and Application Libraries

Architecture Independent Core

Opaquely
Abstracted

Hardware and
Ucontext
Registers

(FPCSR, PC, SP)

FP Trap
Configuration
and Delivery
Mechanism

Single-
Stepping

Mechanism

State Machine-Specific Manipulators

FPSpy

Architecture
x64, ARM64, RISCV+FPE, RISCV+FPE+PPE, …

Architecture Abstraction Layer

Figure 1: Overview of architectural independence.

• Various architectures may stray from or expand on the IEEE 754
spec. For example, an architecture may not support
denormalized numbers at all, support the DAZ/FTZ features
mentioned above, or add additional exception types.

• A tool like FPSpy needs to be able manipulate the machine state
directly (i.e., read/write specific registers), and indirectly
(reading and writing stored state that the kernel will restore,
such as a monitored thread’s register values in a ucontext_t
passed to a signal handler.5

• While the baseline mode of operation in individual mode is
driven by signals, we want to enable faster delivery mechanisms
as well, such as specialized kernel support (elaborated on in
Section 3.7) or specialized hardware support (Section 4).

• As a tracing tool, FPSpy needs to record machine-specific state,
but we want to avoid baking any of this into its recording
mechanisms and formats.
Figure 1 gives a high-level view of the abstraction design, which

we elaborate upon in this section. Our design was also informed
specifically by the x64, ARM64, and RISC-V architectures, and we
have implemented the abstractions for those three.

3.1 Interrogation
A small set of functions allow the FPSpy core to determine if the
architecture supports floating point traps, DAZ/FTZ, extended float-
ing point exceptions beyond those mandated by the standard. These
are aligned with the current needs and features of FPSpy.

3.2 Per-process and per-thread initialization
We assume that some implementations will have to maintain their
own internal state for either processes or threads or configure the
machine appropriately when these are created. Therefore, we call
back to the implementation on a thread or process creation. For our
current architectures, this is only really necessary per process, and
only for ARM64 and RISC-V, as we describe in Section 3.6.

3.3 Opaquely abstracted registers
All of the architectures we studied provide a user readable and
writable floating point control and status register, although the

5More generally, a ucontext_t contains the kernel-specific state of an interrupted
thread, plus a pointer to the architecture-specific state, usually called the mcontext_t.

register contents varies considerably. ARM64 is easily the most
complex of these with many more options than are needed to im-
plement FPSpy, and even splits the control and status into multiple
registers in some cases.

Our abstraction requires the implementer to define a singular
opaque 64 bit floating point command/status register (FPCSR) type,
as well as functions to get and set it from either the actual machine
register(s) or from a ucontext_t. This allows FPSpy to record this
value in a trace without being able to understand it. Architecture-
specific post-processing tools can decode its meaning later. Our
abstraction has a similar model for the general purpose command/s-
tatus register (GPCSR). This is included because some architectures
use the GPCSR as a portion of the floating point state or to store
results. For example, on x64, some floating point comparison in-
structions actually set %rflags, the integer condition code flags,
similar to integer comparison instructions.

There are some cases in which the FPCSR, whether the actual
machine register, or the one captured in a ucontext_t, cannot be
entirely opaque to the core of FPSpy. The most important of these
has to do with manipulating the rounding mode and DAZ/FTZ
status (Section 2.2). To handle this case, we provide a manipulation
API for rounding that includes the union of all rounding features
we have found on our target architectures. An easier case is in
manipulating the machine floating point state so that it is safe to
run floating point code within FPSpy itself.

The abstraction also requires that we be able to extract universal
registers, specifically the instruction pointer and stack pointer, from
a ucontext_t. We also require access to a cycle counter.

3.4 State machine-specific manipulation

Because the range of features supported on a typical floating point
implementation tends to considerably exceed what is needed for
FPSpy, we have designed most of the interface around the specific
needs of FPSpy and its execution model.

One function allows FPSpy to inform the implementation of the
specific traps that will be enabled in AWAIT_FPE and disabled in
AWAIT_TRAP. These are given using the standard libm macros.
Similarly, the rounding scheme that should hold is set using another
function, using the standard macros. Internally, the implementation
translates these to masks that will be used on the actual control/s-
tatus registers, which is where these are typically set.

The abstraction then also includes specific functions where FP-
Spy can set or reset the previously selected floating point traps,
set or reset single-stepping traps for the current instruction, set or
reset the previously configured rounding mode, and capture the
extant exceptions (translated to standard names).

3.5 x64, ARM64, and RISC-V implementations

We factored the existing x64 implementation according to the ab-
straction design given above, reusing virtually all of the x64-specific
code under the new abstraction layer.

We next implemented the abstraction from scratch for theARM64
architecture. The ARM64 implementation supports all the same
functionality as the x64 implementation. Testing this was not easy,
however, as many of the ARM64 processors we have access to

4

simply do not support the floating point traps necessary to use indi-
vidual mode, the key challenge in FPSpy portability. After exhaust-
ing multiple options, we resorted to using Apple Silicon hardware,
which does have full support. To test, we ran Ubuntu in virtual
machines under UTM.

For RISC-V, we added support for the F, D, and Q floating point
extensions. The RISC-V standard explicitly does not support float-
ing point traps, arguing that adding test instructions is a good
substitute.6 Consequently, the “baseline” RISC-V implementation is
straightforward, as it only supports aggregate mode. In Section 4,
we will describe our extensions to RISC-V to support individual
mode and to enhance its performance.

3.6 Per-thread single-stepping challenge
On x64, our implementation still makes use of x64’s “trap mode”
operation to cleanly execute instructions we are tracing without
needing to decode them in any way. Flipping a bit on %rflags
simply causes a breakpoint trap (#BP) before each instruction.

While ARM64 and RISC-V do also have hardware single-step
modes, they are not available when running in user-mode, making
them useless for FPSpy. As a result, we implement the behavior
of trapping on the the next instruction in a considerably more
complicated way.

Similar to implementing a breakpoint in a debugger without
hardware support, we patch out the next instruction with a break-
point instruction. We could do this using the ptrace infrastructure
of the kernel, but this is slow and complex, and would mean that
we could not support running under a program that was already
being debugged using ptrace (e.g., using gdb). Instead, we have per-
process initialization visit the entire memory map of the process
and mark all executable regions as being writable. This is neces-
sary to allow us to directly introduce the breakpoint instruction
wherever it might be needed.

An even uglier problem shows up if the program being tested is
multithreaded, because now it is possible for us to be in the middle
of processing an instruction for thread 1, insert a breakpoint, and
then have thread 2 hit that breakpoint before thread 1 does. This
race condition would cause a nasty surprise. We have two options
to mitigate this. First, we could do a world stop (pause all threads
when we start to handling a faulting floating point instruction
on the SIGFPE) and then world resume when we finish handling
it (i.e., during the SIGTRAP). A second option would be to avoid
the world stop, but tag the breakpoint instruction as being for a
specific thread. Then, if a SIGTRAP occurred on the breakpoint in-
struction for a different thread, we would pause the thread, wait on
the breakpoint instruction to be reverted, and only then resume the
thread. Essentially, threads only need to synchronize on these in-
troduced/reverted breakpoint instructions. Achieving that is subtle,
however. We use the second approach in this paper.

6We argue that in a scenario like FPSpy’s, where a production binary is being used, this
is non-starter. Additionally, if a user is looking for an uncommon event, an Invalid for
example, the runtime cost of the test instructions will be born all the time, not just on
the rare times that a NaN actually occurs. Additionally, if these “ifs” were introduced
at compile-time, they could, arguably, serve as an optimization blocker.

3.7 Trap short-circuiting
In the above, SIGFPE drives individual mode, and is delivered using
standard Linux signal delivery. Because of signal delivery generality,
the number of cycles to go from a #XF to the first instruction of
the SIGFPE handler in FPSpy can be substantial. Additionally, the
return from the SIGFPE handler also involves the kernel. On our x64
testbed7, the time from a faulting instruction (one causing a #XF)
to the first instruction of the SIGFPE handler is about 4180 cycles,
while the time from the last instruction of the SIGFPE handler back
to the faulting instruction is about 1800 cycles, for a total overhead
of about 5980 cycles. These times include both kernel and hardware
times. The hardware time to get the fault into the kernel is about 380
cycles. Hence, the vast majority of the time on this and similar x64
platforms involves the kernel↔user transition of general purpose
signals.

Trap short-circuiting is a kernel-level specialization we have
developed that delivers the #XF into a user-level handler in FPSpy
as quickly as possible by replacing the general-purpose Linux signal
mechanism with a bespoke design. This is implemented as a kernel
module that processes can subscribe to. The kernel module forcibly
modifies the error_entry() stub in the kernel, which is the en-
try point for instruction exceptions. It provides a /dev ioctl()
interface that a cognizant user-level application, like FPSpy, can
use to register its own callback function for #XF. If this is not done,
the modified stub simply uses the standard math_error() handler.
Otherwise, the stub invokes a function in the kernel module. This
function in turn causes the return from exception to vector directly
to the user’s registered user-level, bypassing the normal signal de-
livery. The return from exception places enough information on
the stack so that the user’s handler can figure out what is going on
for this specific case. From here, our handler in FPSpy constructs
enough of a fake ucontext_t so that the remainder of the system
is unchanged.

The x64 version of single-stepping (§3.6) is based on being able
to place the CPU into trap mode. This makes returning from the
handler particularly challenging since once trap mode is set, the
very next instruction executed will fault. This might appear to
necessitate an expensive return through the kernel, but we have en-
gineered the return logic to execute a same privilege-level transfer
instead. This operation hinges on the iret instruction, much like it
does in the kernel. The iret instruction pops an interrupt frame off
the stack and simultaneously changes the instruction pointer, the
stack pointer, associated code and stack segments and the %rflags
register (which includes the trap mode bit). Usually, iret is used
to return from privileged operation (kernel mode) to unprivileged
operation (user mode). We instead manufacture an interrupt frame
and an iret that results in a return from unprivileged operation
(user mode) to unprivileged operation (user mode). Since trap mode
is a user mode bit on the flags register, the manufactured interrupt

7Our x64 testbed consists of a Dell R6515 with a 2.85 GHz AMD EPYC 7443P 24 core/48
thread processor and 512 GB RAM. It is running Ubuntu 22.04.4 LTS (Jammy) with
the stock 5.15.0-91-generic Linux kernel. For compilers, the stock gcc 11.4.0 and clang
14.0.0 compilers were used.

5

Component LOC
Changes to core ∼1000
x64 support 564
ARM64 support 929
RISC-V support (FPE) 260
RISC-V support (PPE) 237
RISC-V support (ESTEP) 63
x64 kernel module 458 (C), 96 (asm)
FPSpy kernel module support 60 (C), 121 (asm)

Figure 2: Scale of changes to FPSpy required to achieve architectural
independence with support for three architectures. The total code-
base size is about 5000 lines of code (almost entirely C).

frame can include it without a privilege error.8 Through this tech-
nique, we are able to return to the faulting instruction with trap
mode on without involving the kernel at all, unlike a sigreturn.

Using this approach, which is currently only available on x64,
the time (and overhead) from the faulting floating point instruction
to the first instruction of handler is reduced from 4180 cycles to
730 cycles (5.7x faster), and the time from the last instruction of the
handler to the restart of the faulting instruction is reduced from
1800 cycles to 100 cycles (18x faster), for an overall reduction from
5980 cycles to 830 cycles (7.2x faster). Our kernel module does not
include trap short-circuiting for the breakpoint trap (#BP), but the
performance differences would be just as stark.9

When FPSpy is being used to track commonly occurring events,
such as (particularly) Inexact, Underflow, or Denorm, trap short-
circuiting considerably reduces the application overhead, up to the
reductions noted above for the core mechanism. When FPSpy is
used to track (hopefully) rare events, such as Invalid or Overflow,
the application overhead is already close to nil.

Note that our RISC-V implementation can completely avoid the
kernel altogether, which results in an even more dramatic reduction
when handling commonly occurring events.

3.8 Scale of changes
The abstraction layer comprises 4 types and 29 functions. Figure 2
illustrates the scale of changes to the previous x64-specific FPSpy
implementation, as well as the lines of code needed to implement
the abstraction for the x64, ARM64, and several variants of the
RISC-V architecture (the FPE and pipelined FPE variants are the
subject of later sections of the paper).

4 RISC-V
A background on RISC-V, its implementations, and the Firesim
FPGA-accelerated simulator is needed to understand our floating
point trap and PPE extensions to RISC-V and their evaluation.

RISC-V is an open-source instruction set architecture (ISA) [32]
that is receiving increasing interest from all directions, including

8Note that this is not an vulnerability. The iretwill fault if the interrupt frame changes
parts of the %rflags register that are not accessible in the initial mode, or if an attempt
is made to load a segment with higher privilege than the initial mode.
9A subtlety in implementing trap short circuiting in the way we do, which works
on an out of the box, unmodified kernel binary, is that the kernel module needs to
surgically live-patch the normal entry point for the trap/exception of interest. This is
not in principle difficult to do, but in practice requires a deep dive into the core kernel
to find that entry point.

high-performance computing. One of RISC-V’s key features is that it
has customization built into the specification, allowing researchers
to develop new ideas without creating a whole new specification.

4.1 Exceptions and delegation
RISC-V’s privileged specification [34] defines multiple privilege
levels and how to handle changing between them. A RISC-V CPU
intended to run a classic multi-user operating system, i.e. Linux,
will support three privilege modes: Machine (M), Supervisor (S),
and User (U). The boot-code and platform-specific firmware will
run in Machine-mode while Linux runs in Supervisor-mode, and
the user’s programs will run in User-mode.

Instruction exceptions and classic CLINT (Core-Local INTerrupts)-
based interrupts are defined by the specification to always jump to
the highest privilege mode (Machine-mode). The code operating at
a higher privilege mode can choose to send the event to a lower priv-
ilege mode. Delegation is an optimization over this default behavior
where the higher-privileged mode specifies to the hardware that
the event should be delivered to a lower-privileged mode directly.
Delegating exceptions and core-local interrupts means redundant
privilege jumps and code are never executed, which is critical to
high performance on RISC-V cores with multiple privilege levels.

For example, if a user program experienced a page fault, the de-
fault behavior would have the core jump to firmware, the firmware
would determine that this was a page fault, and then jump to su-
pervisor (the kernel), which again determines that this was a page
fault and handle it. If machine-mode opts to delegate page faults,
then the processor will immediately jump to supervisor mode (the
kernel), completely skipping machine-mode and firmware.

For a time, RISC-V included the N-extension [33], which allowed
for delegation of interrupts (not exceptions) all the way to User
mode. This has since been removed, although it is not clear why.
Our PPE extension is influenced by the N-extension, but is focused
solely on instruction exceptions.10

4.2 Elements of our implementation
We leverage Chipyard [1] to build complete RISC-V System-on-
Chip (SoC) designs, allowing us to quickly iterate on architectural
modifications while producing fully-functional SoCs. Chipyard al-
lows the developer to experiment with each part of the SoC in a
drag-and-drop fashion, including CPUs and their microarchitec-
ture. Chipyard also provides the Berkeley Hardfloat [31] library to
support IEEE-754 floating-point. Our work requires modifications
to both Rocket-Core [2] and SonicBOOM [36], but did not require
modifications to Hardfloat.

Rocket-Core and BOOM both use the Berkeley Hardfloat [31]
library to provide a suitable IEEE-754 floating point implementa-
tion. As a library, Hardfloat sets the floating-point event flags as
required by IEEE-754, but the design using Hardfloat is responsible
for trapping. In the core, the floating-point unit (FPU) is connected

10Intel Sapphire Rapids and later microarchitectures support the UIPI extension, which
allows interprocessor interrupts (IPIs) to be initiated and terminate directly from/to
user space. To the best of our knowledge this feature does not extend to external
interrupts or exceptions. The recent xUI proposal [3] proposes to extend UIPI to
handle external interrupts and other capabilities needed for user-level networking
and evaluates a design in Gem5 simulation. This proposal does not include instruction
exceptions. A PPE extension for x64 would allow us to improve further on the trap
short circuiting kernel module introduced in §3.7.

6

to the core’s CSRs, so that floating-point events can be detected by
the wider core and software.

The RISC-V floating-point extensions (F-, D-, and Q-extensions)
all define that exceptional floating-point events, such as a NaN or
rounding, do not trap. Instead, software is expected tomanually
check the floating-point Control and Status Registers (CSRs) to
determine if an exceptional event occurred. Our understanding
of the design is that execute stages and their functional units are
expected to never produce exceptions. This gives the potential for
very simple as well as very high performance implementations.

Our implementation is two-fold: already-existing CSRs need
to be taught that floating-point exceptions can happen and the
core’s microarchitecture needs to raise this exception when running.
Floating-point events trigger an exception when a floating-point
instruction changes the flags and matches the enable mask.

Rocket-Chip and Rocket-Core: Rocket-Chip [2] is a complete
tile-based SoC with a Rocket-Core at its heart. Rocket-Core is a
single-issue five-stage in-order pipelined implementation of RISC-V
GCB ISA and RISC-V’s privileged architecture, supporting all four
privilege modes (M, H (Hypervisor), S, and U). We modified Rocket-
Core’s CSR module to create the interface necessary for floating
point traps and PPEs. This and several other ancillary components
were later reused in our SonicBOOM implementation.

We initially built a version of floating point traps and PPEs for
Rocket-Core but eventually abandoned it due to incompatibilities
with Rocket-Core’s pipeline design. The FPU is pipelined in parallel
with the main core, with the effects of a floating-point instruction
only committing to the core’s global state in the main core’s write-
back stage. As a result, an integer or load/store instruction that
follows a trapping floating point instruction is effectively racing
with the newly introduced exception. Consequently, it is possible
for the integer or memory instruction to complete, even though it
should not have due to the exception in the previous floating point
instruction.

A solution is to have the FPU raise the exception in the execute
stage, but this means the FPU must entirely block the main core’s
pipeline. This would prevent all instructions from flowing further
down the pipeline until the FPU completes. Rocket-Core is not
designed for that to be done easily. This issue does notmean floating-
point traps cannot be implemented in Rocket-Core, but that the
core would need to be heavily re-architected to support this feature.
Instead, we rebased our work on the SonicBOOM out-of-order
core, since such a core must already have the machinery required
to handle variable-duration instructions and rolling-back already-
executed but uncommitted instructions.

We also modified Rocket-Core’s CSR module to implement PPEs
by extending the delegation model to allow delegation of exceptions
directly to user-space. Delegation can be configured only from S-
mode, which means the kernel can select which exceptions it will
allow to be delegated to user mode. The U-mode code can only
request delegations from the kernel. Note that a floating point
trap is trivially delegatable since a typical kernel (e.g., Linux) itself
contains no floating point code, and already simply turns the trap
into a signal injection to the user process.

SonicBOOM: SonicBOOM [36] (often shortened to just BOOM)
is a high-performance micro-coded Out-Of-Order (OOO) RISC-
V CPU that plugs into Chipyard’s SoC framework; allowing the

hardware designer to “drag-and-drop” an out-of-order core into
already-existing designs. Unlike Rocket-Core, BOOM cannot be
used stand alone; it relies on Rocket-Chip to provide key compo-
nents, such as supported instructions, CSR management, privilege
switching, caches, TLBs, and more. BOOM decomposes each RISC-
V instruction into one or more micro-ops (µops) and uses those to
complete the provided instruction. BOOM, like every out-of-order
core, uses a Re-Order Buffer (ROB) to allow in-flight micro-ops to be
executed out-of-order and their results made visible in-order. This
centralized management of µops makes handling data or exception
dependencies between variable-duration instructions trivial.

The majority of our changes involve teaching the Re-Order
Buffer (ROB) that floating-point instructions are also now a source
of traps. First, each µop maintains a copy of the floating-point trap
enable mask at the time it is dispatched to the ROB. After the µop
completes its execution on the FPU, if the result has altered its
FP flags in a way that matches the mask, the µop is marked as
exceptional in the ROB. When the µop reaches the head of the ROB
and is about to be committed, the ROB raises the fact an excep-
tion occurred, which passes information to the CSR file, causing a
trap. Since the ROB commits instructions in program order, the fact
that the trapping floating point instruction races with subsequent
instructions becomes a non-issue.

Our PPE implementation was trivially rebaseable onto BOOM,
since all of the logic for PPEs is contained in the CSR file shared with
Rocket in any case. The only micro-architecture-specific change
we made was to teach BOOM how to decode two new instructions
into µops: The URET instruction returns from a PPE and is nearly
identical to existing system-return instructions, while the ESTEP in-
struction is a variant of the existing EBREAK breakpoint instruction
that delivers its exception via PPE.

4.3 Verilator, FPGAs, and FireSim
We debugged our designs largely using the pure software, cycle-
accurate Verilator simulation framework [30]. This has the advan-
tage of presenting a copious amount of data down to the wire-level,
but it is extremely slow and so instruction sequences must be care-
fully constructed for testing.

For the evaluation results in this paper, we employ the widely-
used and well-validated FireSim tool [18], which is a framework
for FPGA-accelerated high-speed cycle-accurate simulation. Perfor-
mance critical parts of the design are put through the Vivado syn-
thesis toolchain, which targets an AMD Virtex UltraScale+ VCU118
Evaluation Kit [35], which has an XCVU9P-LGA2104E FPGA at its
heart, with the FPGA fabric targeting a 90 MHz clock frequency. We
used the most recent tagged release of Firesim, 1.20.1, with minor
updates to synthesis-related components. This version of Firesim
uses GCC 13.2.0 and Buildroot Linux 6.6.0. We did notmodify GCC,
instead we used inline assembly to access the additional CSRs and
instructions that we added.

While the synthesis process involved in targeting FPGA-accelerated
simulation may take hours to complete, the end result is a cycle-
accurate simulated system that operates at real-time speeds suf-
ficient for human interaction. Importantly, the RISC-V processor,
including its DDR controllers are implemented directly on the FPGA
fabric, and tie to the DRAM surrounding the FPGA on the board.
Uncore components were allowed to be simulated at different clock

7

...

...

FP? XCPT? μopFFlags
Mask

N

N N

N

Y Y

0x00

0x00

N N

0x1F

0x1F

CSRW

FDIV

ROB

FPU
FP Data

FFlags=0x08

FFlags
Mask ← 0x1F

CSR
File

Commit
Exception

Wider
Core

1

2
3

4

Figure 3: Changes to BOOM needed to support FP Traps.

frequencies, and aspects of the design irrelevant to understand-
ing floating point trap and PPE performance (e.g., disks, UARTs,
NICs) are implemented in software. Consequently, our design is fast
enough to quickly boot a normal Linux distribution (e.g. Fedora),
allowing the user to simply SSH into the simulated machine. This
full featured Linux environment is then sufficient for executing
complete real program binaries directly and under FPSpy.

5 Floating point traps on RISC-V
It was relatively straightforward to add floating point traps to
BOOM, but the devil was in the details, requiring extensive debug-
ging to deal with corner cases that can occur due to commit logic
and branch predictor assumptions. Additionally, because RISC-V
does not natively include floating point traps, a range of modi-
fications to the firmware and the core Linux kernel are needed.
Interestingly, such changes are simpler in the case of PPE delivery.

Hardware: Berkeley Hardfloat, on which BOOM’s floating point
is based, already computes all the necessary source and result at-
tribute information needed to achieve our goals. Indeed, these at-
tributes already feed the fcsr condition code bits.

The majority of our work of implementing floating-point traps
was done in Rocket-Chip’s CSR file, which implements all the CSRs
from the specification, and manages control- and privilege-flow
changes because of exceptional events. A new trap cause was cre-
ated in the custom space, ensuring no existing software could acci-
dentally produce our new floating-point traps. Just one new CSR
was added to the CSR file to track the floating-point trap enable
mask.11 We then enable floating-point traps delegation as normal.

Figure 3 shows the hardware changes to the cores required to
support floating-point traps. Software can update our added trap
enable mask CSRwith 1 , which propagates to later µops. From this
point, when any floating-point µop is sent to the FPU for execution
2 , its completion will return both the result of the computation
and the µop’s FFlags result 3 , which will be stored in the ROB. If
the returned FFlags matches the previously set trap enable mask
CSR, the ROB will raise an exception to the surrounding core 4 ,
making it visible to the rest of the core and quashing the instruction
and dependent instructions. We introduce a new exception number
to disambiguate it.

11We considered placing the trap enable mask on the existing fcsr, as is effectively
done on ARM and x64; there is plenty of reserved space on fcsr to do this. In the end,
we opted instead to add a new CSR to maximize orthogonality with other architectural
extensions that may touch fcsr.

Userspace

Kernel

Linux
Kernel

Signal
Delivery

FP
Exception

FP
Handler

Traditional Exceptions

Userspace

Kernel

Linux
Kernel

Signal
Delivery

FP
Exception

FP
Handler

Pipelined Exceptions

(URET)
~45 cyc.

~65 cyc.

~7700 cyc.
~3200 cyc.

(SIGFPE)
~74 cyc.

(PPE)

Deleg.
Except 1

2

34

5

Figure 4: Changes to kernel dispatch to support FP Traps via signals
and PPEs. PPEs completely bypass the kernel, effectively jumping
to a pre-registered userspace handler.

Which-ware Component LoC

Hardware

Hardfloat 0
FP Traps BOOM: 150, Rocket: 20
PPEs BOOM: 1, Rocket: 150
FP Traps via PPEs BOOM: 1, Rocket: 5

Software
OpenSBI Firmware 10
Linux kernel 200
PPE kernel module 450

Figure 5: Scale of changes to hardware float system, RISC-V, OpenSBI,
and Linux kernel to enable floating point traps and pipelined precise
exceptions. Hardware code is in Chisel. Software is in C.

Software: OpenSBI, and Linux: To support the novel floating
point trap, OpenSBI (the firmware) needed to be extended to to
always delegate floating-point traps up to the next privilege mode
(S-mode, or the kernel).

The core Linux kernel also had to be extended to understand
the new trap code, and a trap handler had to be written for it and
registered with the kernel. By default, our trap handler uses the
traditional, existing SIGFPE interface to deliver floating-point traps
to userspace, mirroring other architectures. The kernel’s trap entry
code and internal floating point barriers had to be modified to man-
age the newly introduced trap enable mask CSR correctly. Finally,
context-switching code was also extended to properly manage the
trap enable mask CSR on a per-thread basis.

The left hand side of Figure 4 illustrates how a floating point trap
due to an instruction in a user program flows via hardware to the
kernel 1 , which 2 translates it into a signal injection of SIGFPE
(with its architecture-independent semantics) 3 , which lands in
user’s installed signal handler. Eventually, the handler executes a
signal return 4 , which clears the signal in the kernel and returns
the process to normal execution. The right hand side of the figure
illustrates how traps are delivered when PPEs are used — the kernel
is simply not involved, except in managing the enable mask CSR.

Scale of changes: Figure 5 shows the total scale of all changes
to the Berkeley Hardfloat system, the RISC-V cores, the OpenSBI
firmware, and the Linux kernel needed to add FP traps and make
them deliverable by either signals or PPEs.

6 Precise Pipelined Exceptions (PPEs)
Precise Pipelined Exceptions (PPEs) allow some traps to be delivered
directly to user-mode, i.e. user applications, instead of delivering the
trap to the kernel, and the kernel signaling the user process. PPEs
were a considerably more complex addition to the RISC-V core than

8

Exception?

00

10

01

11

Next PC

medeleg

mtvec

stvec

sedeleg

starget

Figure 6: Changes to RISC-V core needed to support PPEs. Each of
the new CSRs are registered and the multiplexor gained just one
input, none of which affect the critical path.

floating point traps on BOOM, but required considerably simpler
software support because the kernel can be largely uninvolved.

Hardware: PPEs are built on top of RISC-V’s existing trap dele-
gation. We introduce five new CSRs and one instruction. The new
CSRs mirror the existing delegation CSRs and comprise a cause
register, delegation mask registers, and the exceptional-PC address.
The new URET instruction also mirrors the MRET and SRET instruc-
tions. This expanded family of system returns read andwrite several
CSRs atomically and change the privilege mode, which is different
than the normal RET instruction. URET specifically provides the ca-
pability to return from the user-level handler back to user code (i.e.,
same privilege user→user return).

Delivering traps directly to user-mode means there is no context
switch out of the user-process because the process has explicitly
opted into handling these traps, 5 in Figure 4. This has a variety
of benefits, two of the largest are that the usual hardware need to
flush the entire pipeline for security can be omitted (we are simply
entering a different part of the user program), and various caches
do not need to be flushed (there is no possibility of a side channel
between actors since there is only one actor). This means an ex-
ceptional control flow event effectively turns into an unconditional
jump, reducing stalls and improving overall performance.

Critical path unchanged: Figure 6 illustrates the central logic
involved in dispatching a PPE. In effect the multiplexer that selects
the next PC is widened, which does not affect critical path in our
synthesis of the modified core. Similarly, the implementation of
URET simply moves values between registers with some multiplex-
ers to choose what register is the target of these movements.

Floating point traps via PPE: Floating-point traps and precise
pipelined exceptions are orthogonal ideas, so supporting PPE-based
floating-point traps is quite simple to implement. On the hardware-
side, enabling floating-point traps to use PPEs amounts to allowing
the hardware to delegate FP traps to user-mode. This is a relatively
small enhancement; only a handful of lines of Chisel achieved this.

Breakpoint traps via PPE: We further extend our RISC-V plat-
formwith the ESTEP instruction, which has behavior identical to the
normal EBREAK breakpoint instruction, except that the breakpoint
exception is delivered via a PPE and it has a distinct exception code.
The distinct exception code results in it having no interaction with
ptrace() and other mechanisms reliant on the standard breakpoint
exception. The hardware-software codesign of floating point traps

0 2000 4000 6000 8000 10000
Amortized CPU Cycles

Signals

FPE-PPE

ESTEP PPEs provide 30x Overhead Reduction

Delegation
Setup C Handler

Handler Time
Cleanup C Handler

sigreturn/URET

Figure 7: PPEs drastically reduce the cost of handling an exception
by removing entrances to the kernel, both when the exception is
first found and when re-entering the kernel to clear the signal.

0 100 200 300 400
Amortized CPU Cycles

FPE-PPE

ESTEP

Delegation
Setup C Handler

Handler Time
Cleanup C Handler

sigreturn/URET

Figure 8: Breaking down the costs of a FPE-PPE and ESTEP-PPE. A
majority of the time is spent setting up for and cleaning up after C
because we save all integer registers and some CSRs to the stack.

via PPE, and ESTEP make it possible for a tool like FPSpy to bypass
the kernel entirely, other than for setup.

Software: Linux, Module, and Userland Stub: To make the
PPE changes to hardware visible to software required no core ker-
nel changes. Instead, we created a kernel module that exposes a
character device in /dev. The kernel module allows user processes
to “subscribe” to PPEs by providing a delegation mask and a tar-
get handler address via an ioctl(). The one requirement is that
the handler function must end with a URET instruction. Until this
happens, same-event PPEs are masked.

Since the PPE appears to be a surprise jump, creating a handler
can be a bit subtle. To address this challenge, we provide a default
assembly stub that allows the user to write PPE handlers in C much
like traditional signal handlers. The stub saves all integer registers
to the stack, and copies some values from PPE CSRs into the the
integer registers. This makes it easy to construct a fake ucontext_t
which allows a standard signal handler function to be invoked. In
the long-term, it would make sense to have this stub be generated
by the compiler so that it saves and restores minimal state.

Performance: PPEs reduce the overhead for dispatching to that
particular trap’s user-level handler by 30× in comparison to the use
of signals. Figure 7 compares the costs of signal-based delivery with
PPE-based delivery. Figure 8 then focuses on PPE-based delivery to
make the cost breakdown easier to see. Here, we use a null handler
that is written in C. The constituent costs of delegation, the userland
stub, and the URET are on par with the cost of the null handler.

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Period

0k

5k

10k

15k

20k

25k

30k

Am
or

tiz
ed

 L
at

en
cy

(C
yc

le
s p

er
 F

P
In

st
ru

ct
io

n)

PPEs result in
FPSpy overheads
being limited by FPSpy,
not exception dispatch costs

FPSpy Configuration
RISCV+FPE
RISCV+FPE+PPE
RISCV+FPE+PPE+ESTEP

Figure 9: Signals vs. PPE Performance Sweep for FPSpy. PPEs drive
the limit of FPSpy overheads down by a factor of three, with the
overhead dominated by FPSpy’s handling of the exception, not the
exception’s dispatch.

We expect that further optimization could effectively convert
this into a jump, almost completely eliminating the overhead of
trap-handling setup. This is particularly apparent in the case of
floating-point traps, as the Linux kernel does not use floating-point
whatsoever,12 so the only source of floating-point traps must come
from user programs.

7 FPSpy on augmented RISC-V
We compare three versions of our RISC-V machine: RISCV+FPE,
RISCV+FPE+PPE, and RISCV+FPE+PPE+ESTEP. When running on
RISCV+FPE, floating point traps are detected in hardware and de-
livered by the kernel via SIGFPE, while breakpoints are injected
using the ebreak instruction, which faults to the kernel which in
turn delivers a SIGTRAP. In RISCV+FPE+PPE, floating point traps
are delivered by PPE, and breakpoints can be delivered as before. In
RISCV+FPE+PPE+ESTEP, both floating point traps and breakpoints
are delivered using PPEs and the kernel is uninvolved.

The FPSpy implementation for RISC-V for all three versions is
described in §3.5, with a breakdown of the implementation given
in Figure 2. The implementation is slightly bigger than the ARM to
provide support for PPEs, and both are about twice as large as the
x64 implementation due to the unavailability of a single-step mode.

Functional completeness: On all three versions, FPSpy passes
its own acceptance tests for individual mode and is able to run
successfully in that mode under the NAS 3.0 benchmark suite [4].
This brings it to feature parity with the x64 and ARM platforms.

Performance: The raw numbers shown in Figures 7 and 8 make
it clear that the baseline costs of handling a floating point trap or
a breakpoint trap via PPEs improve on handling them by signals
by a factor of 30 or more. Of course, FPSpy additionally decodes
the circumstances of these events and captures this information in
a trace. FPSpy processing is about 9000 cycles per event, with the
event delivery costs added to this. With signal-based delivery, event
delivery (2× ∼12,000 cycles) dominates the overhead, while with
PPEs this drops to less than 1000 cycles and thus FPSpy processing
dominates the overhead.

The greater the rate of FP traps, the greater the benefit FPSpy
will see from PPEs. If, for example, the intent is to monitor for NaNs

12In fact, Linux goes so far as to disable floating-point support while in the kernel
(see arch/riscv/kernel/head.S and arch/riscv/kernel/entry.S).

using FPSpy, then there is little difference in the overhead between
the three versions in the expected case where NaNs are rare. On
the other hand, if the intent is to observe rounding behavior, FPSpy
will see maximum benefit from PPEs because rounding events are
common in floating point arithmetic. Figure 9 shows effect on
overhead for PPE versus signals as a function of the incidence
of traps, which we sweep. Period 𝑘 here means that every 𝑘th
floating point instruction causes a trap. In the limit, PPEs reduce
the overhead of FPSpy by a factor of three.

8 Related work
Interest in correctness in scientific computing has been growing
for years, and this has recently included a workshop [14] to advise
the DOE and NSF that resulted in the CS2 program. Floating point
arithmetic is a specific area of interest here, and there is some
evidence that even with correct numerical methods, developers may
harbor confusions about implementation in floating point [10, 12]
and compiler optimization might inflict damage [29].

There is a long history of work on tools to improve source code
that employ floating point arithmetic (e.g., [5–9, 13, 19–22, 24, 25,
27, 28]. The FPSpy system [11] we extend in this paper aligns with
such work, and was the first with the goal of leveraging the floating
point traps defined in the IEEE 754 standard and available on x64
processors to operate under unmodified binaries. Floating point
trap support is optional on ARM, and as far as we are aware, no
FPSpy-like tool currently exists for ARM processors that support
such traps. Because RISC-V is explicitly defined not to include
floating point traps, trap-driven tools like FPSpy were impossible
to build prior to the work we describe here.

A case was made for user-level interrupts as far back as 2002 [26].
The “N” extension to RISC-V [33] defined this concept, but then
was rescinded for unclear reasons and never implemented. Intel
introduced user-level interprocessor interrupts (UIPIs) with the
Sapphire Rapids microarchitecture [17, Chapter 7] and it exhibits
good performance [23]. Very recent work by Aydogmus et al [3]
shows how to extend UIPI to handle external interrupts. As far as
we are aware, however, there is no prior work on user-level delivery
of instruction exceptions, as in the PPE component of our work.

9 Conclusions
Wehave described our experience adding architecture-independence
to an x64-specific tool for hardware-based observation of floating
point events, and with adding low-overhead support for such obser-
vation to an architecture which does not include it. Both the tool
and the architecture extensions will be publicly available for x64,
ARM, RISC-V (partial functionality), and our augmented RISC-V
(full functionality with low overhead). Although our prototype is
implemented on top of FPGA-accelerated simulation, our changes
could be synthesized as part of a BOOM-based chip design, or incor-
porated into an alternative RISC-V implementation. Our next steps
are to go beyond tracing floating point events. One direction is ex-
tending our hardware to support the manipulation of floating point
instruction execution. A second is to track flows of floating point
values through memory and registers. Our key hardware mecha-
nism for achieving low overhead, the PPE, has many potential uses
beyond floating point arithmetic, which we are also exploring.

10

References
[1] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,

Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.
https://doi.org/10.1109/MM.2020.2996616

[2] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Al-
bert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg,
Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Tech-
nical Report UCB/EECS-2016-17. University of California at Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[3] Berk Aydogmus, Linsong Guo, Danial Zuberi, Tal Garfinkel, Dean Tullsen, Amy
Ousterhout, and Kazem Taram. 2025. Extended User Interrupts (xUI): Fast and
Flexible Notification without Polling. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2025). 373–389.

[4] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A.
Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakr-
ishnan, and S.K. Weeratunga. 1991. The Nas Parallel Benchmarks. International
Journal of High Performance Computing Applications 5, 3 (Sept. 1991), 63–73.

[5] Tao Bao and Xiangyu Zhang. 2013. On-the-fly Detection of Instability Problems
in Floating-point Program Execution. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA).

[6] Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong H. Ahn, Ignacio
Laguna, Gregory L. Lee, and Holger E. Jones. 2019. Multi-level Analysis of
Compiler-Induced Variability and Performance Tradeoffs. In Proceedings of the
28th ACM Symposium on High-performance Parallel and Distributed Computing
(HPDC 2019).

[7] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A Dynamic Pro-
gram Analysis to Find Floating-point Accuracy Problems. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI).

[8] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous Floating-point Mixed-
precision Tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL). 300–315.

[9] Clement Courbet. 2021. NSan: A Floating-Point Numerical Sanitizer. In Proceed-
ings of the 30th ACM SIGPLAN International Conference on Compiler Construction
(CC).

[10] Peter Dinda and Alex Bernat. 2021. Comparing the Understanding of IEEE Floating
Point Between Scientific and Non-scientific Users. Technical Report NWU-CS-2021-
07. Department of Computer Science, Northwestern University.

[11] Peter Dinda, Alex Bernat, and Conor Hetland. 2020. Spying on the Floating Point
Behavior of Existing, Unmodified Scientific Applications. In Proceedings of the
29th ACM Symposium on High-performance Parallel and Distributed Computing
(HPDC 2020). Best Paper.

[12] Peter Dinda and Conor Hetland. 2018. Do Developers Understand IEEE Floating
Point?. In Proceedings of the 32rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2018).

[13] François Févotte and Bruno Lathuilière. 2016. VERROU: Assessing Floating Point
Accuracy Without Recompiling. working paper or preprint.

[14] Maya Gokhale, Ganesh Gopalakrishnan, Jackson Mayo, Santosh Nagarakatte,
Cindy Rubio-Gonzalez, and Stephen Siegel. 2023. Report of the DOE/NSF Work-
shop on Correctness in Scientific Computing.

[15] IEEE Floating Point Working Group. 1985. IEEE Standard for Binary Floating-
Point Arithmetic. ANSI/IEEE Std 754-1985 (1985).

[16] IEEE Floating Point Working Group. 2008. IEEE Standard for Floating-Point
Arithmetic. IEEE Std 754-2008 (Aug 2008), 1–70.

[17] Intel Corporation. 2023. Intel 64 and IA-32 Architectures Software Developers
Manual, Volume 3A: System Programming Guide, Part 1.

[18] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA ’18). IEEE Press, Piscataway, NJ, USA,
29–42. https://doi.org/10.1109/ISCA.2018.00014

[19] I. Laguna. 2019. FPChecker: Detecting Floating-Point Exceptions in GPU Applica-
tions. In Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1126–1129.

[20] Ignacio Laguna and Ganesh Gopalakrishnan. 2022. Finding inputs that trigger
floating-point exceptions in GPUs via bayesian optimization. In Proceedings of

the International Conference on High Performance Computing, Networking, Storage
and Analysis (SC 2022). 14.

[21] Michael O. Lam, Jeffrey K. Hollingsworth, and G.W. Stewart. 2013. Dynamic
floating-point cancellation detection. Parallel Comput. 39, 3 (2013), 146–155.

[22] Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval Vora, and Rajiv
Gupta. 2015. RAIVE: Runtime Assessment of Floating-point Instability by Vec-
torization. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[23] Sohit Mehta. 2021. User Interrupts: A Faster Way to Signal. In Proceedings of the
Linux Plumbers Conference (LBC 2021).

[24] Daniel J. Milroy, Allison H. Baker, Dorit M. Hammerling, John M. Dennis, Sheri A.
Mickelson, and Elizabeth R. Jessup. 2016. Towards Characterizing the Variability
of Statistically Consistent Community Earth System Model Simulations. Procedia
Computer Science 80, C (June 2016), 1589–1600.

[25] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.
2015. Automatically Improving Accuracy for Floating Point Expressions. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

[26] Mike Parker. 2002. A case for user-level interrupts. SIGARCH Computer Architec-
ture News 30, 3 (June 2002), 17–18.

[27] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning assistant for floating-point precision. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Supercomputing).

[28] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018.
Finding Root Causes of Floating Point Error. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).

[29] G. Sawaya, M. Bentley, I. Briggs, G. Gopalakrishnan, and D. H. Ahn. 2017. FLiT:
Cross-platform floating-point result-consistency tester and workload. In Pro-
ceedings of the 2017 IEEE International Symposium on Workload Characterization
(IISWC). 229–238.

[30] Wilson Snyder, Paul Wasson, Duane Galbi, and et al. 2024. Verilator. https:
//github.com/verilator/verilator original-date: 2019-06-13T22:38:59Z.

[31] ucb-bar. 2024. Berkeley-Hardfloat. UCB-BAR. https://github.com/ucb-bar/
berkeley-hardfloat

[32] Andrew Waterman and Krste Asanović (Eds.). 2016. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA. RISC-V Foundation. http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-17.html

[33] Andrew Waterman and Krste Asanović (Eds.). 2016. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA. RISC-V Foundation.

[34] Andrew Waterman and Krste Asanović (Eds.). 2016. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture. RISC-V Foundation.

[35] AMD Xilinx. [n.d.]. AMD Virtex UltraScale+ FPGA VCU118 Evaluation Kit.
https://www.xilinx.com/products/boards-and-kits/vcu118.html

[36] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

11

https://doi.org/10.1109/MM.2020.2996616
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/ISCA.2018.00014
https://github.com/verilator/verilator
https://github.com/verilator/verilator
https://github.com/ucb-bar/berkeley-hardfloat
https://github.com/ucb-bar/berkeley-hardfloat
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html

