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Abstract—Distributed applications use predictions of net-
work traffic to sustain their performance by adapting their
behavior. The timescale of interest is application-dependent
and thus it is natural to ask how predictability depends on
the resolution, or degree of smoothing, of the network traf-
fic signal. To help answer this question we empirically study
the one-step-ahead predictability, measured by the ratio of
mean squared error to signal variance, of network traffic at
different resolutions. A one-step-ahead prediction at a low
resolution is a prediction of the average behavior over a long
interval. We apply a wide range of linear time series mod-
els to a large number of packet traces, generating different
resolution views of the traces through two methods: the sim-
ple binning approach used by several extant network mea-
surement tools, and by wavelet-based approximations. The
wavelet-based approach is a natural way to provide multi-
scale prediction to applications. We find that predictability
seems to be highly situational in practice—it varies widely
from trace to trace. Unexpectedly, predictability does not
always increase as the signal is smoothed. Half of the time
there is a “sweet spot” at which the ratio is minimized and
predictability is clearly best. We conclude by describing
plans for an online wavelet-based prediction system.

I. INTRODUCTION

The predictability of network traffic is of significant
interest in many domains, including adaptive applica-
tions [6], [33], congestion control [22], [8], admission
control [23], [11], [10], wireless [24], and network man-
agement [9]. Our own focus is on providing application-
level performance queries to adaptive applications. For ex-
ample, an application can ask the Running Time Advisor
(RTA) system to predict, as a confidence interval, the run-
ning time of a given size task on a particular host [14].
We are trying to develop an analogous Message Transfer
Time Advisor (MTTA) that, given two endpoints on an IP
network, a message size, and a transport protocol, will re-

Effort sponsored by the National Science Foundation under Grants
ANI-0093221, ACI-0112891, and EIA-0130869. The NLANR PMA
traces are provided to the community by the National Laboratory for
Applied Network Research under NSF Cooperative Agreement ANI-
9807479. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation (NSF).

turn a confidence interval for the transfer time of the mes-
sage. A key component of such a system is predicting the
aggregate background traffic with which the message will
have to compete. We model this traffic as a discrete-time
resource signal representing bandwidth utilization. For
example, a router might periodically announce the band-
width utilization on a link.

The timescale for prediction that a tool like the MTTA is
interested in depends on the query posed to it. If the appli-
cation wants to send a small message, the MTTA requires a
short-range prediction of the signal, while for a large mes-
sage the prediction must be long-range. However, the ap-
propriate resolution of the signal varies with the query. A
short-range query demands high resolution while a long-
range query can make due with low resolution. Note that
a one-step-ahead prediction of a low resolution signal cor-
responds to a long-range prediction in time.

To easily support this need for multi-resolution views of
resource signals, we have proposed disseminating them us-
ing a wavelet domain representation [32]. A sensor would
capture a one-dimensional signal at high resolution and ap-
ply an � -level streaming wavelet transform to it, gener-
ating � signals with exponentially decreasing resolutions
and sample rates. Tools like the MTTA would then recon-
struct the signal at the resolution they require by using a
subset of the signals, consuming a minimal amount of net-
work bandwidth to get an appropriate resolution view of
the resource signal. We call this view a wavelet approxi-
mation signal.

In our scheme, the final signal an application receives is
in effect an appropriately low-pass filtered version of the
original signal. How close the filter is to an ideal low-pass
depends on the nature of the wavelet basis function that is
used. Interestingly, in currently available network moni-
toring systems like Remos [13] and the Network Weather
Service [36] an analogous filtering step occurs in the form
of binning. The signal is smoothed by reducing it to aver-
ages over non-overlapping bins, producing what we refer
to as a binning approximation signal. For example, Re-
mos’s SNMP collector periodically queries a router about
the number of bytes transfered on an interface and uses
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the difference between consecutive queries divided by the
period as a measurement of the consumed bandwidth.

Given the context of the MTTA and these two meth-
ods, binning and wavelets, for producing approximations
to resource signals that represent network traffic, what is
the nature of the predictability of the signals and how
does it depend on the degree of approximation? This pa-
per reports on an empirical study that provides answers
to these questions. The study is based on 180 short (90
second) and 34 long (one day) packet traces collected by
the NLANR PMA system on WANs, and the well known
Bellcore packet traces (2 hour-long LAN traces and 2 day-
long WAN traces). In our presentation, we focus primarily
on the 34 long NLANR traces, which we refer to as the
AUCKLAND traces. Generally, the short NLANR traces
tend to be difficult to predict, and, because they are short,
the range of approximations we can make using binning
and wavelets is very limited. The Bellcore traces, espe-
cially for the WAN, show a fair bit of predictability at dif-
ferent approximations.

Our methodology is simple. We generate a very high
resolution view of a trace by binning the packets into very
small bins. Then we produce an approximation using ei-
ther the binning approach or the wavelet approach. We fit
a linear time series model to the first half of the approxi-
mated trace and use it to produce one-step-ahead predic-
tions for the second half. As we noted earlier, one-step-
ahead predictions are sufficient in the context of the MTTA
because as the timescale of prediction increases, the reso-
lution can decrease. Our measure of predictability is the
ratio of the mean squared error for the predictions to the
variance of the second half of the signal. This is basically
the “noise to signal” ratio of the predictor. The smaller the
ratio, the better the predictability. We use a wide range
of models, including the classical AR, MA, ARMA, and
ARIMA models [7], fractional ARIMAs [20], [18] and
simple models such as LAST and a windowed average.
Our prediction tools are currently available as part of our
RPS Toolbox [15]. 1. Our Tsunami wavelet toolbox, which
we describe further in Sections IV and V, will also soon be
released.

The earliest work in predicting network traffic of which
we are aware is that of Groschwitz and Polyzos who ap-
plied ARIMA models to predict the long-term (years)
growth of traffic on the NSFNET backbone [19]. Basu,
et al produced the first in-depth study of modeling FDDI,
Ethernet LAN, and NSFNET entry/exit point traffic using
ARIMA models [4]. As in our binning study, they binned
packet traces into non-overlapping bins in order to pro-

�http://www.cs.northwestern.edu/�RPS

duce a periodic time series to study. Our trace sets over-
lap slightly in that they also studied the Bellcore LAN
traces. Leland, et al demonstrated that Ethernet traffic is
self-similar [25], while Willinger, et al suggested a mech-
anism for this phenomenon [34]. The long-range depen-
dence suggested by self-similarity suggests that fractional
ARIMA models might be appropriate. On the other hand,
You and Chandra found that traffic collected from a cam-
pus sight exhibited non-stationary and non-linear proper-
ties and studied modeling it using threshold autoregressive
(TAR) models [37]. Wolski developed the first network
measurement system that integrated prediction and found
that running multiple predictors (mean, median, and AR
models) simultaneously and forecasting with the one cur-
rently exhibiting the smallest prediction error produced the
best results on his measurements [35].

Closest to the work described in this paper is that
of Sang and Li [31], who analyzed the prospects for
multi-step prediction of network traffic using ARMA and
MMPP models. Their analysis is based on continuous
time ARMA and MMPP models driven by Gaussian noise
sources. Making the assumption that such models are
appropriate, they then developed analytic expressions for
how far into the future prediction was possible before er-
rors would exceed a bound, and for how this limit was af-
fected by traffic aggregation and smoothing of measure-
ments. They found that both aggregation and smoothing
monotonically increased predictability. They then fit such
models to several traces and evaluated the resulting mod-
els’ parameters and noise variances to determine the max-
imum prediction interval for the traces. Only their WAN
traces could be predicted significantly into the future and
then only after considerable smoothing.

We have reached the following conclusions from our
study.
� Generalizations about the predictability of network traf-
fic are very difficult to make. Network behavior can
change considerably over time and space. Prediction
should ideally be adaptive and it must present confidence
information to the user.
� Aggregation appears to improve predictability. WAN
traffic is generally more predictable than LAN traffic. In
this we agree with the work of Sang and Li and with the
results of the earlier studies.
� Smoothing often does not monotonically increase pre-
dictability. About 50% of the long traces in our study ex-
hibit a “sweet spot,” a degree of smoothing at which pre-
dictability is maximized, contradicting the work of Sang
and Li. However, most of the remainder of the long traces
show the monotonic increase with smoothing that Sang
and Li claim.
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� There are some differences in the predictability of
wavelet-approximated and binning-approximated traces,
although they are not large. Both approximation ap-
proaches are effective.
� There are clearly differences in the performance of dif-
ferent predictive models. An autoregressive component is
clearly indicated, although it often is helpful to also have a
moving average component and an integration. Fractional
ARIMA models are effective, but do not warrant their high
cost for prediction.

In the following, we first describe the traces on which
our study is based. Next, we describe our results for pre-
dicting binning approximation signals. This is followed by
a parallel presentation of our results for predicting wavelet
approximation signals. Finally, we describe the structure
of a multi-resolution prediction system and conclude.

II. TRACES

Our study is based on the three sets of traces shown in
Figure 1. The NLANR set consists of short period packet
header traces chosen at random from among those col-
lected by the Passive Measurement and Analysis (PMA)
project at the National Laboratory for Applied Network
Research (NLANR) [27]. The PMA project consists of a
growing number of monitors located at aggregation points
within high performance networks such as vBNS and Abi-
lene. Each of the traces is approximately 90 seconds long
and consists of WAN traffic packet headers from a particu-
lar interface at a particular PMA site. We randomly chose
180 NLANR traces provided by 13 different PMA sites.
The traces were collected in the period April 02, 2002 to
April 08, 2002. We have developed a hierarchical classifi-
cation scheme for the traces based on their first and second
order statistics. 2 In summary, we identified 12 classes. For
the present study, we worked with 39 of the traces, cover-
ing each of the classes we identified.

The AUCKLAND set, which we focus on in detail
in this paper, also comes from NLANR’s PMA project.
These traces are GPS-synchronized IP packet header
traces captured with a DAG3 system at the University of
Auckland’s Internet uplink by the WAND research group
between February and April 2001. These also represent
aggregated WAN traffic, but here the durations for most of
the traces are on the order of a whole day (86400 seconds).
Our classification approach netted 8 classes here. For the
present study, we chose 34 traces, collected from Febru-
ary 20, 2001 to March 10, 2001, which cover the different
classes.

�A technical report on our classification scheme and classifications
for all of the traces of Figure 1 will be forthcoming.
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Fig. 2. Signal variance as a function of bin size for the AUCK-
LAND traces.

The BC set consists of the well known Bellcore packet
traces [25] which are available from the Internet Traffic
Archive [3]. There are four traces. Two of them are hour-
long captures of packets on a LAN on August 29, 1989 and
October 5, 1989, while the other two are day-long captures
of WAN traffic to/from Bellcore on October 3, 1989 and
October 10, 1989.

While the packet traces represent “ground truth” for pre-
diction, the predictors that we study require discrete-time
signals. To produce such a signal, we bin the packets into
non-overlapping bins of a small size and average the sizes
of the packets in a particular bin by the bin size. This result
is an estimate of the instantaneous bandwidth usage that
becomes more accurate as the bin size declines. It is im-
portant to note that as the bin size decreases the variance of
the resulting signal increases. It is this variance that we are
trying to model with a predictor. Figure 2 shows this ef-
fect for the 34 AUCKLAND traces. Notice that the graph
is in on a log-log scale. The linear relationship and grad-
ual slope we can see on the xgraph for bin sizes greater
than 125 ms indicate that the traces are likely long-range
dependent with a Hurst parameter near one 3 The more
abrupt slope for smaller binsizes indicates that H declines
in that region.

The linear time series models that we evaluate attempt
to model the autocorrelation function (ACF) of a discrete-
time signal in a small number of parameters. If there is no
autocorrelation function, there is nothing to model and a
linear approach is bound to fail. For this reason, we stud-
ied the autocorrelation functions of our traces in consider-
able detail at different bin sizes. For space reasons, we can
not go into detail about this study here. Instead, we shall
show representative ACFs from our three different trace
sets to explain our choice of presenting detailed results for
the AUCKLAND set. We show ACFs at a bin size of 125

�We will report in more detail in the future.
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Number of Range of
Name Raw Traces Classes Studied Duration Resolutions
NLANR 180 12 39 90 s 1,2,4,...,1024 ms
AUCKLAND 34 8 34 1 d 0.125, 0.25, 0.5,..., 1024 s
BC 4 n/a 4 1 h, 1 d 7.8125 ms to 16 s

Fig. 1. Summary of the trace sets used in the study.
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Fig. 3. Autocorrelation structure of an NLANR trace that is not
predictable using linear models.

ms for each trace.
Figure 3 shows the ACF of a representative NLANR

trace. For any lag greater than zero, the ACF effectively
disappears. This signal is clearly white noise and the
prospects for predicting it using linear models are very
dim. Only 2% of the autocorrelation coefficients rise to
significance at a significance level (�-value) of 0.05. 80%
of our NLANR traces exhibit this sort of behavior. For
the other 20%, more than 5% of the autocorrelation coef-
ficients are significant, but none are very strong. In these
cases we can not claim that the signals are white noise, but
it is likely that linear models will not do very well.

Figure 4 shows the ACF of a typical AUCKLAND trace.
Obviously, the plot is quite different from what we have
seen in the previous figure. Over 97% of the autocorrela-
tion coefficients are not only significant, but quite strong.
We can also see a low frequency oscillation, which is likely
the diurnal pattern. We expect that such a trace will be
quite predictable using linear models. 80% of the AUCK-
LAND traces have similar strong ACFs.

Figure 5 shows the ACF of a BC LAN trace. It is clearly
not white noise, and yet it does not have the strong behav-
ior of the AUCKLAND traces. We would expect that such
a trace is predictable using linear models to some extent.
All of the BC traces have similar ACFs that are suggestive
of predictability.

Subsequent sections of the paper will mainly discuss the
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Fig. 4. Autocorrelation structure of an AUCKLAND trace that
is likely to be very predictable using linear models.
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Fig. 5. Autocorrelation structure of a BC LAN trace.

prediction of the AUCKLAND traces using linear time se-
ries models. We focus on these traces for three reasons.
First, there is little hope for predicting the vast majority of
the NLANR traces because of their disappearing ACFs.
Second, the strength of the ACFs in the AUCKLAND
traces allow us to focus on how predictability is affected
by the resolution of the signal. Third, unlike the BC traces,
the AUCKLAND traces are very long and we have many
of them. This lets us consider a wide range of resolutions.
We will, however, provide examples of the predictability
of the NLANR and AUCKLAND traces for comparison.
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III. PREDICTABILITY OF BINNING APPROXIMATIONS

To create binning approximation signals in general, we
simply bin the packet traces according to the chosen bin
size. If we want to support a variety of bin sizes that are
integer multiples, we can simply start with the smallest bin
size and produce coarser approximations recursively.

Figure 6 illustrates our methodology for evaluating the
predictability of a given packet trace at a given bin size.
We slice the discrete-time signal produced from binning
(��) in half. We fit a predictive model to the first half and
create a prediction filter from it. We stream the data from
the second half of the trace through the prediction filter to
generate one-step-ahead predictions. We difference these
predictions and the values they predict to produce an error
signal. We then compute the ratio of the variance of this
error signal (the MSE, ���) to the variance of the second
half of the binning approximation signal (��). The smaller
this ratio, the better the predictability.

We evaluated the performance of the following
models: MEAN, LAST, BM(32), MA(8), AR(8),
AR(32), ARMA(4,4), ARIMA(4,1,4), ARIMA(4,2,4), and
ARFIMA(4,-1,4). MEAN uses the long-term mean of the
signal as a prediction. Its predictability ratio is typically
1.0 for obvious reasons. LAST simply uses the last ob-
served value as the prediction for the next value. BM(32)
predicts that the next value will be the average of some
window of up to the 32 previous values. The size of the
window is chosen to provide the best fit to the first half
of the signal. MA(8) is a moving average model of or-
der 8. AR(8) and AR(32) are autoregressive models of or-
der 8 and 32, respectively. ARMA(4,4) is a model with 4
autoregressive parameters and 4 moving average param-
eters. ARIMA(4,1,4) and ARIMA(4,2,4) are once and

twice integrated ARMA(4,4) models. Unlike the other
models, they can capture a simple form of non-stationarity.
The ARFIMA(4,-1,4) model is a “fractionally integrated”
ARMA model that can capture the long-range dependence
of self-similar signals. AR, MA, ARMA, and ARIMA
models are classical time series models well covered by
Box, et al [7]. ARFIMA models are well covered in more
recent literature [20], [18], [5]. The RPS technical re-
port [15] also provides an explanation of these models as
well as a detailed description of the implementations we
use here. The same implementations are used for offline
and online analysis in RPS.

A. AUCKLAND traces

For each of the 34 AUCKLAND traces, we performed
the analysis described above with each of the different pre-
dictors. We studied 14 different bin sizes: 0.125 s, 0.25 s,
0.5 s, 1 s, 2 s, 4 s, 8 s, 16 s, 32 s, 64 s, 128 s, 256 s, 512 s,
and 1024 seconds. In the discussion that follows, we plot
the predictability ratio versus bin size for all the predic-
tors except MEAN. We have elided MEAN since the other
predictors typically do much better and including MEAN
makes it difficult to see how the other predictors stack up.

It is also important to note that some data points in the
graphs are missing. Given enough data it is always pos-
sible to fit a model to a trace and glean an estimate of its
predictive power from the quality of the fit. However, pro-
ducing a predictor from the model and sending new data
through it as we do often reveals that the model is not as
good as the fit might imply. We have elided points in two
cases. The first case is when the predictor became unsta-
ble as evidenced by a gigantic prediction error. This is
sometimes the case with the ARIMA models, which are
inherently unstable because they include integration. The
second case is when there are insufficient points available
to fit the model. This happens at large bin sizes for large
models like the AR(32) and the ARFIMA(4,-1,4). Fewer
than 5% of points have been elided and we have tried to
make it obvious where this happens.

The characteristics of prediction on the AUCKLAND
traces falls into three classes, representatives of which are
shown in Figures 7 through 9.

The behavior of Figure 7 occurs in 15 of the 34 traces.
The most interesting feature here is that the graph shows
concavity for all predictors: we can clearly see a “sweet
spot” for the traffic prediction. In other words, there is
an optimal bin size around 32 seconds at which the trace
is most predictable. As we noted in the introduction, this
contradicts the conclusions of earlier papers. Because it
occurs in half of the AUCKLAND traces, we do not be-
lieve that it is a coincidence. The location of the sweet
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spot varies from trace to trace. In some traces it occurs at
quite small bin sizes, which suggests that it is not an arti-
fact of the fact that we are fitting and predicting on smaller
amounts of data as we increase bin size. It is clearly an
artifact of the data itself.

The behavior of Figure 8 occurs in 14 of the 34 AUCK-
LAND traces and is commensurate with conclusions from
earlier papers. There is no “sweet spot” here and it is clear
that predictability converges to a high level with increasing
bin size.

Both of these figures also show significant differences
between the performance of the predictors. In general, it
is important to have an autoregressive component to the
prediction. Fractional models do quite well, but the per-
formance of classical models such as large ARs is close
enough to suggest that the extra costs of the fractional
models are probably not warranted.

Figure 9 shows an uncommon behavior, seen on 5 of
the 34 AUCKLAND traces. Unlike the two previous kinds
of traces, here we have a strong impression of disorder:
there are multiple peaks and valleys at different bin sizes.
The relative performance of the different predictive models
remains much the same, however.

Our general conclusions about the 34 AUCKLAND
traces are the following:
� All of the traces are predictable in the sense that their
predictability ratio is less than one. Furthermore, 80% of
the traces show strong divergences from one, indicating
high predictability. Figures 8 and 9 are examples of traces
that are highly predictable. In each of these examples, the
predictability ratios are less than 0.4 for all of the predic-
tors at all of the bin sizes. In many cases the ratios are less
than 0.1, meaning that the predictor explains 90% of the
variation of the signal. This confirms our initial judgment
of the predictability of the AUCKLAND traces based on
the ACFs from Section II.
� There is considerable variation among the predictors. In
almost in all cases, LAST, BM, and MA predictors will
perform considerably worse. The other six predictors have
similar performance except with very large bin sizes where
LAST or MA often gives the best results. This is proba-
bly due to the fact that there are insufficient data points to
produce good fits for some of the predictors at such bin
sizes.
� The predictability of a trace varies considerably with bin
size. There is often a “sweet spot” at which predictabil-
ity is maximized. The location of the “sweet spot” varies
from trace to trace and so is most likely a property of the
data. We are trying to understand the origins of this phe-
nomenon. Equally often, predictability increases with bin
size, approaching a limit.
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B. NLANR traces

Because the NLANR traces are only 90 seconds long,
we can not use the same range of bin sizes as we did for
the AUCKLAND traces. Instead, we chose the following
bin sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024
ms. Figure 10 shows the predictability ratio for a repre-
sentative NLANR trace. As we might expect given the
ACF behavior described in Section II, this trace is basi-
cally unpredictable, turning in predictability ratios around
1.0 or worse for most of the predictors at all the different
bin sizes. About 80% of the NLANR traces display sim-
ilar unpredictability. For the 20% of the traces with non-
vanishing ACFs, we see some modicum of predictability,
but it is very weak.

C. BC traces

In Figure 11 we show the performance of the predic-
tors on a BC LAN trace. As the trace is only 1700 sec-
onds long, we have chosen 12 different bin sizes, ranging
from 0.0078125 second to 16 seconds, doubling at each
step. The predictability here is not as good as for the
AUCKLAND traces, although it is much better than for
the NLANR traces. All of the BC traces behave similarly.
ARIMA models are the clear winner for these traces.

IV. PREDICTABILITY OF WAVELET APPROXIMATIONS

Binning is an intuitive mechanism for producing multi-
resolution views of network behavior. Wavelet-based
mechanisms provide a more powerful approach to pro-
viding such views because they are parameterized by a
wavelet basis function which can be chosen appropriately
to optimize for different properties. In fact, the wavelet
approach we describe here, when parameterized with the
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Fig. 11. Predictability ratio versus bin size of a representative
BC trace (BC-pOct89).

simplest wavelet basis function, the Haar wavelet, is equiv-
alent to the binning approach of the last section. Abry, et
al provide a very nice discussion of this equivalence [2].
In the following, we use a D8 wavelet [12], which pro-
vides a much smoother multi-resolution analysis than bin-
ning/Haar.

Researchers have applied wavelet-based techniques to
understand network traffic and packet traces for some time.
As we noted earlier, the self-similar nature of network traf-
fic was an important discovery in the early 90s. Abry, et al,
have developed wavelet-based techniques to estimate the
Hurst parameter, the degree of self-similarity [1]. Feld-
mann, et al have extensively used wavelets to characterize
network traffic as multi-fractal [16] and to study the im-
pact of this property on control mechanisms such as TCP
congestion control [17]. Riedi, et al have shown how to
use wavelets to synthesize network traffic [29], comput-
ing results in an efficient manner that appear to match real
Ethernet traces visually and statistically. Our work is the
first of which we are aware that empirically studies the
predictability of wavelet approximations of real network
traffic.

Before discussing our predictability results, it is impor-
tant to describe to the reader what is meant by a wavelet-
based multi-resolution analysis. Figure 12 shows this qual-
itatively. The figure shows an input signal ��, repre-
senting an appropriately sampled, fine-grain binning of a
network bandwidth trace. The input signal is being de-
composed into three resolutions composed of approxima-
tions and details. By traversing the approximation tree
(������� , 	 increasing), we observe that each of the plots
not only have fewer points, but describe a coarser ap-
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Fig. 12. Multi-resolution analysis of three scales.

proximation of the underlying input signal. Each suc-
cessive approximation contains half the number of points
and captures half of the frequency content of the previ-
ous approximation. Even though as 	 increases each ap-
proximation has fewer points, each graph is still covering
the same period of time. The ������� are the wavelet
approximation signals described in the introduction. By
observing the details, we can qualitatively see that the
amount of information taken away from each approxima-
tion at subsequent levels is the detail. That is, ������� �
����������
���
�� . The filters � and � are derived from
the wavelet basis function, in this case the D8 wavelet.

The following discussion is informed by the work of
Mallat [26], Daubechies [12], and Abry, et al [2]. The
structure shown in the figure is the discrete wavelet trans-
form (DWT), a mathematical transformation for repre-
senting a 1-dimensional discrete time signal ��. Intu-
itively, the DWT splits a 1-dimensional signal into a 2-
dimensional signal representing time and scale (like fre-
quency) information. The input signal is represented in
terms of shifted and dilated versions of a prototype band-
pass wavelet function ���� and shifted versions of a low
pass scaling function ����, based on the scaling function,
�� and the mother wavelet basis function, ��. The rela-
tionship between these functions are

�������� � ���������
���� ��� � � ��

and

�������� � ���������
���� ��� � � ���

To generate an accurate multi-resolution view of the in-
put signal, the functions �� and �� are chosen so that they
are of sufficiently high order (typically determined empir-
ically) and constitute an unconditional Riesz basis. More
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Fig. 13. The test methodology.

details on the properties of the wavelet and scaling func-
tions can be found in Daubechies [12] and Newland [28,
Chapter 17]. Multi-resolution analysis (MRA) first coined
by Mallat [26], consists of a collection of nested subspaces
������� such that:

�� � �����

Multi-Resolution analysis projects the signal �� into each
of the approximation subspaces �� . The approximation
signal is then given by the following relationship:

���������� � ����	��
������ �

�

�

���	� ����������

The coefficients ���	� �� are defined through the inner
product of the input signal �� with ����,

���	� �� � ���� ������

Similarly, the detail signal is given by the following rela-
tionship:


���
����� � ����		�
������ �

�

�


��	� ����������

where the coefficients 
��	� �� are defined through the in-
ner product of the input signal with ����,


��	� �� � ���� ������

Based on the above, a resource signal can be represented
without loss of information using the coarsest grain ap-
proximation signal and the underlying details. This is
shown in the following relationship:

���������
������� � ������
��� �

�

���


���
�����

To evaluate the predictability of wavelet approximation
signals, we use the methodology shown in Figure 13. As
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Binsize Approximation Number of Bandlimit
in seconds scale points frequency

0.125 Input = 0.125 binsize � ����
0.25 0 ��� ����
0.5 1 ��� ����
1 2 ��� �����
2 3 ���� �����
4 4 ���� �����
8 5 ���� ������

16 6 ����� ������
32 7 ����� ������
64 8 ����� �������
128 9 ������ �������
256 10 ������ �����	�
512 11 ����	� �����	�

1024 12 ����	� ��������

Fig. 14. Scale comparison between binning and multi-
resolution analysis based on the number of bins and scales
used in the AUCKLAND study (� 
 number of points at
0.125 second binning).

with the binning study, we begin with the packet header
trace. We perform a fine-grain binning that produces a
highly dynamic discrete time signal, which we denote ��.
We can think of this signal as sampled at a rate �� and ban-
dlimited to a frequency of ����. This signal is sent through
a multi-resolution analysis using D8 wavelets, only using
the approximations (�������) for analysis. The analysis
is implemented using our Tsunami Wavelet Toolbox, dis-
cussed further in the next section. For each approxima-
tion, 	 � � , we run a prediction test that is comparable
to that for binning. We fit a predictive model to the first
half of the approximation signal, and then perform one-
step-ahead predictions on the second half. The prediction
models are the same as those used in Section III. The
one-step-ahead predictions are differenced from the cor-
responding test interval, and an error signal is generated.
We then measure predictability as the ratio of the variance
of the error signal (the MSE, ��� ), to the variance of the test
interval (��). As before, the smaller this ratio is, the more
predictable the trace is.

As we noted earlier, a D8-based analysis produces
different, smoother approximations than the binning ap-
proach. For this reason, we reasonably expect (and see)
different predictability from the traces. In most cases the
behavior is similar, but there are some clear distinctions
that we will call out. In our analysis, we have matched
the time scale of binsize to that of the approximation sub-
space. In other words, there are the same number of points
in a wavelet approximation signal as in its corresponding
binning approximation signal. This is shown in Figure 14.
The figure also indicates the bandlimited frequency at each
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Fig. 15. Predictability ratio versus approximation scale AUCK-
LAND trace 31 (20010309-020000-0).

scale. In addition, we plot the predictability of the input
signal to match with the binning study. Our input signal is
equivalent to the smallest binsize from the binning study.

A. AUCKLAND traces

For each of the 34 AUCKLAND traces, we studied the
predictability of 13 scales of wavelet approximations. As
with the binning study we have elided the MEAN predic-
tor and data points that resulted from unstable predictors
or having insufficient data to fit a model. There are two
principle differences between the wavelet and binning re-
sults. The first is that we found four classes of behavior
instead of three. The second is that monotonically increas-
ing predictability with increasing approximation is much
less common with the wavelet-based approach. We are ex-
ploring reasons for this difference.

The behavior of Figure 15 occurs in 13 of the 34 AUCK-
LAND traces. The figure uses the same trace as Figure 7
from the binning study. As before, we can clearly see that
there is a “sweet spot”, the approximation scale at which
predictability is maximized—there is concavity in the fig-
ure for all predictors. As before, this behavior does not
appear to be a coincidence since it shows up in a number
of traces at different levels of approximation. As with bin-
ning, this behavior contradicts the earlier results of Sang
and Li.

Figure 16 shows behavior that occurs in 11 of the 34
AUCKLAND traces. It is similar to the behavior we saw
in five traces in the binning study and represented in Fig-
ure 9. However, here it is far more common. Again, there
is a non-monotonic relationship between the approxima-
tion scale and the predictability.

Figure 17 shows behavior that occurs in 7 of the 34
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Fig. 16. Predictability ratio versus approximation scale for
AUCKLAND trace 11 (20010225-020000-0).
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Fig. 17. Predictability ratio versus approximation scale for
AUCKLAND trace 32 (20010309-020000-1).

AUCKLAND traces. Except for the outliers, this shows
the monotonic relationship that was conjectured in earlier
work. Note that it is an uncommon behavior in our study.

Figure 18 shows the final class of behavior in the
AUCKLAND traces, which occurs in 3 of the 34. Here
the predictability ratio reaches a plateau and then becomes
even more predictable at the coarsest resolutions. Interest-
ingly, this is a kind of behavior that we did not see in the
binning study.

The generalizations we draw are much the same as for
the binning study:
� Most of the traces show a high degree of predictability,
which confirms what we concluded from the ACFs of Sec-
tion II. On a trace-by-trace basis, the predictability ratio
of the binning study is similar to that of the wavelet study
when we have similar classes of behavior.
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Fig. 18. Predictability ratio versus approximation scale for
AUCKLAND trace 4 (20010221-020000-1).
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Fig. 19. Predictability ratio versus approximation scale of a
representative NLANR trace (ANL-1018064471-1-1).

� While there is considerable variation in the performance
of the predictors, it is clearly a good idea to have an autore-
gressive component to the prediction filter. An integrative
component is also useful.
� There is often a “sweet spot”, the approximation scale at
which predictability is maximized.
� There is an additional class of behavior with wavelets
compared to binning.

B. NLANR traces

As we noted earlier, most of the the NLANR traces typ-
ically have an empty autocorrelation structure, which sug-
gest that there is little predictability. As we might expect,
wavelet approximations do not change this. Figure 19
shows typical results using the same trace as Figure 10.
As before, the prediction error variance is essentially the
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Fig. 20. Predictability ratio versus approximation scale of a
representative BC trace (BC-pOct89).

same as the signal variance.

C. BC traces

Figure 20 shows prediction results for wavelet approx-
imations of the same BC LAN trace studied using bin-
ning in Figure 11. We see very similar performance using
wavelet approximation signals and binning approximation
signals.

V. SYSTEM

Several groups have developed online wavelet systems
for purposes other than resource signal dissemination and
prediction. One such system, WIND, uses wavelet-based
scaling analysis to detect network performance prob-
lems [21]. Another online system performs online esti-
mates of the Hurst parameter (a measure of self-similarity)
at the router in order to make adaptive changes in conges-
tion control, or to provide up to date information about
traffic dynamics without storing all of the data for offline
analysis [30].

We are incorporating multi-resolution analysis using
wavelets (and binning, using Haar wavelets) into our tool-
box for building resource measurement and prediction sys-
tems, RPS. Initially, we see it serving two purposes. The
first is to decouple sensors of resource signals (such as host
load, network bandwidth, and disk bandwidth), and the ap-
plications and tools that are interested in their outputs. We
would run the sensor at a natural and appropriate rate, do
an online multi-resolution decomposition, and stream the
approximations and details into separate multicast chan-
nels. An application would subscribe to only the approx-
imations and details necessary to reconstruct the sensor’s
output to the resolution it requires, using just the band-

width necessary for that resolution. Other applications
could subscribe to other subsets of the approximations and
details. An initial study on the prospects for this are given
in an earlier paper [32]. Other techniques, such as wavelet
denoising, for further compression of the signal could be
applied before it is sent over the network. Our second pur-
pose is to support predictions of sensor output at many dif-
ferent timescales, such as was described in the introduc-
tion’s discussion of the Message Transfer Time Advisor.

The basis of these efforts is our Tsunami toolbox,
which we have used in the wavelet study of Section IV.
Tsunami is a C++ implementation of forward and reverse
wavelet transforms, delay blocks, and other relevant DSP
blocks that are parameterizable by underlying datatypes
and wavelet basis functions. In addition, it can support
arbitrary decompositions of the frequency spectrum (i.e.,
wavelet packets) beyond “traditional” octave decomposi-
tions. Furthermore, Tsunami is designed to be incorpo-
rated into distributed monitoring systems and thus sup-
ports both offline and online operation. In particular, it
supports block, streaming, and dynamic transforms. Dy-
namic transforms can increase the number of approxima-
tion scales in the decomposition, adaptively, according to
the amount of data acquired, or under application con-
trol. We are currently integrating Tsunami into RPS and
building online and offline wavelet-based resource sig-
nal dissemination and prediction tools as described above.
Tsunami will be publicly released with the next version
of RPS. We are also in the process of writing a technical
report on Tsunami.

VI. CONCLUSIONS

We have presented an empirical study of the predictabil-
ity of network traffic at different resolutions using linear
models. Our results are similar for two methods of pro-
ducing different resolutions: binning and wavelet approxi-
mations. We found that making generalizations about pre-
dictability is very difficult in practice because networks
tend to vary in behavior considerably over time and space.
The behavior at many aggregation points appears to have
little predictability using linear models. On the other
hand, in situations where predictability exists, it is the
case that increased traffic aggregation is correlated with
enhanced predictability. This agrees with earlier results.
Our study contradicts earlier work in that we find that
predictability does not necessarily monotonically increase
with smoothing. About half of the predictable traces we
studied have degrees of smoothing at which predictabil-
ity is maximized. We found that having an autoregressive
component to the predictive models is important.

We are currently working on building online resource
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signal dissemination and prediction systems based on the
Tsunami wavelet toolbox and the RPS system. Tsunami
will be incorporated into the next public release of RPS.
Once we have a functioning online prediction system, we
expect to study the effects of using adaptive prediction fil-
ters, such as Kalman filters, in multi-resolution prediction.
This work will be the next step toward the Message Trans-
fer Time Advisor.
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