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Abstract 
 

Resource borrowing is a common underlying approach in grid computing and thin-client 
computing.  In both cases, external processes borrow resources that would otherwise be 
delivered to the interactive processes of end-users, creating contention that slows these 
processes and decreases the comfort of the end-users. How resource borrowing and user 
comfort are related is not well understood and thus resource borrowing tends to be 
extremely conservative.  To address this lack of understanding, we have developed a 
sophisticated distributed application for directly measuring user comfort with the 
borrowing of CPU time, memory space, and disk bandwidth.  Using this tool, we have 
conducted a controlled user study with qualitative and quantitative results that are of 
direct interest to the designers of grid and thin-client systems. In this report, we describe 
the system in detail and related implementation issues. We also discuss other factors 
related to the project and also details of the controlled study. A separate paper documents 
the results of this controlled study in more detail. 
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1

Introduction

Recently, many applications have emerged which employ a new method of distributed computing: utiliz-
ing the vast resources of desktop PCs around the world, taking advantage of the fact that their resources
are usually under-utilized [18, 6, 1] by borrowing them for their own computations. Examples in scien-
tific computing include Condor [17, 10], Entropia [4], SETI@Home [26], Protein Folding at Home [16],
DESChall [5], and the Google Toolbar [11]. Examples in peer-to-peer content distribution systems include
commercial tools such as Kazaa [24] and Gnutella [20], as well as academic projects [25, 21, 13, 12]. Some
of these systems are deployed on millions of Windows hosts. This model is promising because of the large
number of Desktop PCs in use.

Current systems are very conservative in how they borrow resources because if they cause the user
to feel the machine is slower than is desirable, the user is likely to disable them. For example, the default
behavior in Condor, Sprite [7], and SETI@Home is to execute only when they are quite sure the user is
away, when the screen saver has been activated. Other systems run at a very low priority, or they simply ask
the user to specify constraints on resource borrowing, something that few ordinary users understand. If less
conservative resource borrowing does not lead to significantly increased user discomfort, the performance of
systems like Condor, Sprite and SETI@Home could be increased through techniques such as linger-longer
scheduling [22].

Our work examines to what extent we can borrow a PC’s resources, even while it is in use, with-
out resulting in the slowdown we cause dramatically impacting the foreground user’s interactivity with the
system—how conservative must we be in resource borrowing? Can we borrow resources without affecting
user’s experience of the PC? If so, how much can we borrow? Which resources? Does the type of user mat-
ter? The type of PC? The application context? Surprisingly, there are few if any qualitative or quantitative
answers to these questions, or even measurements that could be used to address the questions.

1.1 Studying the user comfort-resource borrowing relationship

In response to the lack of information, we have developed a system, the Understanding User Comfort Sys-
tem (UUCS). UUCS is a distributed Windows application similar to SETI@Home in design. A UUCS client
emulates resource borrowing of CPU, memory and disk on the user’s machine in a controlled manner en-
coded in a testcase provided by a server. The user operates the machine as normal, but if his interactivity
gets affected, he may express discomfort by clicking on an icon or pressing a hot-key. Resource borrowing
stops immediately if discomfort is expressed or when the testcase is finished. The point of discomfort, if
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any, is recorded along with contextual information. By analyzing the results of applying a particular set of
testcases to a particular set of users, we can qualitatively and quantitatively characterize user comfort. The
entire process essentially consists of four steps:

1. Monitor current resource contention (Section 2.1)

2. Emulate resource borrowing (Section 2.2)

3. Get user feedback (Section 2.3)

4. Record the feedback levels along with other useful data

Repeating these experiments many times, with different users and scenarios, can give us a quan-
titative relationship between resource borrowing and user comfort. Based on this, a reliable model can be
developed to help in intelligent borrowing of resources without affecting the user’s interactivity.

A PC has multiple resources (CPU, disk, memory, network) that may be borrowed, cause slowdown,
and thus affect user interactivity. How these resources affect the user may depend on many other factors
like the application being used by the user etc. For example, a word processor application may not be
significantly affected by disk borrowing in the background, whereas some disk-intensive applications like a
backup utility may be much more sensitive. In this project we study the effects of CPU, disk, and memory
resources. These resources can also be borrowed in a combined manner, and studying the combined effects
is more challenging.

1.2 Factors affecting the results

Modeling user comfort can be complex. There is a cause–effect relationship between loss of interactivity
and user comfort. This relationship may be affected by many factors, some of which we discuss in this
section.

1. Resource : The user’s sensitivity to resource borrowing may depend on the resource that is being bor-
rowed, and it may depend on the application (or context, see below) being run. In a computationally
intensive application such as a ray tracer, borrowing more memory may not have as much impact as
borrowing CPU resources.

2. Context : The level of interactivity that we must maintain depends on the application that the user
is currently using. While using a highly interactive application, such as playing Quake, small de-
lays can contribute significantly to user discomfort. In more basic applications like word processing,
the demands on interactivity and resources are lower, and thus more resource borrowing is possible
compared to more interactive applications. While borrowing resources, one will have to keep user’s
current context in mind.

3. System : The hardware configuration details like the processor speed and amount of physical memory
could impact the permissible amount of resource borrowing.

4. User : Discomfort caused by loss of interactivity may also vary over individuals. We want to study
to what extent comfort levels vary across individuals and groups. These differences could also arise
from user’s computing experience thus shaping his expectations from a PC.
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Figure 1.1: The chain of events leading to user discomfort

5. Time dynamics : There is an interesting phenomenon called the Frog in the Pot. If a frog is put in
a pot of boiling water, it will immediately jump out. However, if we ramp up the temperature of the
water slowly, the frog just sits there, not reacting to the change. Humans may also be able to tolerate
slowly increasing resource borrowing more readily than abrupt changes. More generally, the reaction
of the user could depend based on the manner, over time, in which the resources are borrowed. We use
the concept of testcases to control resource borrowing in different ways to study time dynamics. Each
testcase corresponds to a unique resource borrowing profile. The concept of testcases is discussed in
more detail in section 2.2.1.

1.3 The chain of events leading to user discomfort

There are four steps in which changes in system resource usage propagate to user discomfort (Figure 1.1).
We are interested in studying the relationship between resource borrowing and user discomfort—the end
points of the chain. Our tools allow us to do stimulus-response studies where resource borrowing provides
the stimulus for the user’s response of discomfort. It is also feasible to develop models for other stages,
however. Another interesting area of study would be to examine the relationship between interactivity and
resource borrowing. This excludes the user from the system and would involve studying the action-response
relationship mathematically. For example, in word processing, the time delays could be monitored between
user-initiated actions and the corresponding response. Making such a monitoring and measuring system
would be a challenging task in itself.

1.4 Related work

Work in related areas has concentrated on the impact of latency on user-perceived utility of the system
[15, 8]. Computer-related frustration in humans has also been studied. A study at MIT [14] shows that
user emotional states like frustration and anxiety can be significantly affected by the computer environ-
ment and effective measures can be taken to relieve them. It further shows by controlled experiments that
effective measures do in fact change levels of user frustration. Another study at the University of Michi-
gan [19] explored the design of effective feedback mechanisms for user frustration and how this data can
be used for redesigning and adapting systems. Specifically, it discusses user interface design issues, how
poor interfaces can frustrate user and incorporating user irritation feedback for better interface design. Users
were asked to rate a variety of frustration feedback devices like squeezable mouse, web forms and a Frus-
tometer consisting of a simple on-screen slider. Frustometer was found to be most accessible, being the
most straightforward interface, and consequently seemed to require less cognitive feedback when reporting
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feedback. This indicates that the user feedback mechanism needs to be kept simple. Within the systems
community, related work has examined the performance of end-user operating systems using latency as op-
posed to throughput [9], and suggested models for interactive user workload [2]. However there exist no
quantitative, empirical measurements that could be used to answer our questions.
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2

System design

Here we describe the design and implementation of the Understanding User Comfort System. The goal of the
system is to study the relationship between borrowing various resources in different ways and user comfort.
Developing the system was a challenging task, requiring various levels of Windows systems programming
and unexpected issues. The development environment chosen for the application is Borland C++ Builder
Professional 6.0. As described in Section 1.1, the entire process involves four essential steps. To recapitulate:

1. Monitor contention and system information

2. Emulate Resource Borrowing

3. Get User Feedback

4. Record the feedback levels along with other useful data

We discuss these four steps in detail, especially the interesting portion of developing the resource borrowing
modules, as well as monitoring all kinds of data we could extract from the system.

2.1 Monitoring

In this section, we explain what is monitored, the reasons for monitoring those items, and the techniques
used to monitor them. Monitoring is important for getting a snapshot of the system when the user expresses
his feedback. The monitored information helps us to analyze the resource contention which led to the
user feedback, as well as analyze contextual information which could help us gain further insight into user
behavior. The data which we currently monitor is:

1. Utilization values of the three system resources: CPU, memory and disk

2. Current running process list and list of their parameters

3. The current application which the user is interacting with (also referred to as the context)

4. A history of user contexts: This stores the foreground process usage history of the user. The following
is an example of such a history:
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Chicago ’’L’’.org: News Briefs - Mozilla Firebird,20
The Apple Store (U.S.) - Mozilla Firebird,10
Apple - Mozilla Firebird,1
Apple - iTunes - Mozilla Firebird,10
Apple - iTunes - Overview - Mozilla Firebird,6

The user context helps us to understand how interactivity depends on the application which the user
is interacting with. In our study, we find that the acceptable level of resource borrowing greatly depends
on the current user context. The process list helps us to examine details of the applications running, which
could be helpful in some circumstances. For example, if the user is running a resource intensive application
in the background, it may also affect the levels of resource borrowing.

Monitoring is done periodically, once per second. The snapshot is appended to an internal buffer
that is later saved on to the results file when the user gives feedback.

2.1.1 The PDH library in Windows

PDH stands for Performance Data Helper and is an interface for querying performance data on Windows
NT/2000/XP machines. Windows NT collects volumes of information such as process lists and the number
of disk reads per second. PDH.DLL provides a nice API wrapper around all the work of obtaining and
interpreting performance information. Using the concept of counters, the user can request that the PDH
library monitor certain information that can be later queried. The system is described by various objects like
CPU, Memory, Disk, etc, and each object has associated counters like CPU Utilization in the last 1 second,
Disk read/write bytes in last 1 second etc.

In UUCS we monitor the counters for the CPU, disk and memory. PDH also allows us to monitor
process information, but we found this to be inefficient. Instead, we used another method to monitor all the
processes in the system.

2.1.2 Monitoring processes

We need a fast way to enumerate the entire process list, without any penalty on the system resources. We
found an undocumented system call, _ZwQuerySystemInformation() (Section 4.1). This system
call efficiently enumerates the processes along with related process parameters.

2.1.3 Recording the context and context history

We also need to acquire the current foreground application that the user is interacting with because the
interactivity of the system is likely to depend on it.

Windows provides the following API functions for getting this information:

GetForegroundWindow()
GetWindowText()
GetParent()

For an active dialog, we follow the chain of parent pointers originating from the active dialog. This gives us
a complete hierarchy of application windows that the user is interacting with.
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Name Description

step(x, t, b) contention of zero to time b, then x to time t
ramp(x, t) ramp from zero to x over times 0 to t

log(r) logarithm of linear ramp with slope of r
exp(τ) exponential with time constant τ

sin(x, f) sine wave of frequency f and amplitude x + x
saw(x, f) sawtooth wave of frequency f and amplitude x + x

expexp(µas, µar, µss, µsr) Poisson arrivals of exponential-sized jobs (M/M/1)
exppar(µas, µar, αss, αsr) Poisson arrivals of Pareto-sized jobs (M/G/1)

Figure 2.1: Testcases.

2.2 Emulating resource borrowing

Resource borrowing is emulated by separate resource “exercisers” for the CPU , disk and memory resources.
These exercisers run in the background and can borrow resources in a controlled manner. The control
information is specified in exerciser testcases which describe in detail how each resource should be borrowed
over time. In this section we describe the design of testcases, and the exercisers of CPU, memory and disk.

2.2.1 The testcase model

Testcases encode the details of resource borrowing for various resources. A testcase consists of a unique
identifier, a sample rate, and a collection of exercise functions, one for each resource that will be used during
the execution of the testcase (the run). An exercise function is a vector of values representing a time series
sampled at the specified rate. Each value indicates the level of contention (the extent of resource borrowing,
described in Sections 2.2.3, 2.2.5, and 2.6) for a resource at the corresponding time into the testcase. For
example, consider a sample rate of 1 Hz, and the vector [0, 0.5, 1.0, 1.5, 2.0] for the CPU resource. This
exercise function persists from 0 to 5 seconds from the start of the testcase. From 3 to 4 seconds into the
testcase, it indicates that contention of 1.5 should be created and subsequently 2.0 in the next second.

2.2.2 Testcase generation

Our testcase tools let us generate testcases of many different kinds, as summarized in Figure 2.1. In our
controlled study, we use a small set of step and ramp testcases with different parameters. Figure 2.2 shows
examples for step(2.0, 120, 40) and ramp(2.0, 120) respectively. We use a text database of all the testcases
which is manipulated by a set of tools we have developed in Perl. These tools enable us to create, merge,
append and plot different types of testcases. In our Internet-wide area study (Section 5.3), we currently have
over 2000 testcases. We generate a set of testcases for each type, with different parameters and resource
combinations. Multiple resources are borrowed simultaneously with different borrowing characteristics for
each resource. For example:

make_testcase.pl tracefile 125 120 0.5 "cpu=(ramp 4)" "mem=(step 60 0.5)"

will generate a testcase (number 125) of 60 samples each for the CPU and memory resources (120 seconds,
0.5 Hz). The CPU contention will rise linearly from 0 to 4 during those 120 seconds, while the memory
contention will rise to 0.5 at time 60s).

For the most past, Figure 2.1 is self explanatory, but some additional detail is necessary for the
expexp and exppar testcases. expexp simulates an M/M/1 queue of service rate 1 under processor sharing.
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Step (2.0,120,40)

40 sec 120 sec

2.0

1.0

(a) Step testcase

120 sec

2.0

1.0

Ramp (2.0,120)

(b) Ramp testcase

Figure 2.2: Step and ramp testcases.

The queue depth at the sample times is the output. This is the amount of contention that is produced at
that time. The arrival rate begins at µas and increases at a rate of µar over the duration of the testcase.
Similarly, the mean job size starts at µss and grows at a rate of µsr over the life of the testcase. exppar
follows the same idea, except here the job sizes are chosen from a Pareto distribution with α starting at αss

and increasing at a rate αsr over the life of the testcase.
Using our testcase generation tools, we created several testcase suites. Four suites consisting of

ramps, steps, and blank testcases were used in the controlled study described later. In addition, we created
a large suite consisting of all of the different kinds for our Internet-wide study. Because the expexp and
exppar generators are not ergodic, we generate over 30 different instances for each set of parameters.

2.2.3 The CPU exerciser

Windows Scheduling and notion of CPU contention

Windows 2000/XP uses a priority driven, preemptive scheduling algorithm. A running job is assigned a
time quantum, but size of the time quantum varies. Unlike Unix, what is scheduled is threads, not processes,
and in general, no consideration is given to what process the thread belongs to. This means that a process
with many runnable threads would receive much more CPU time than a process with only one runnable
thread. Threads are assigned priorities from 0 to 31. Within a priority level, the Windows scheduler follows
time-sliced, round-robin scheduling. Each thread is allocated certain time quanta for execution by the CPU.
In Windows NT, the size of the quantum is around 12 ms.

We use contention average, a measure of contention, to create CPU contention through purely
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application-level means. Under Windows, the contention average is the average of the numbers of threads
in the operation system’s ready-to-run queue. If large number of threads are contending for the CPU, the
fraction of time allocated to an individual thread will drop and the thread will perceive slowdown. Thus, in
our Understanding User Comfort Client, we load the CPU by creating additional threads for execution on
the CPU. The larger the number of threads, the less time allocated to the user applications.

Note that Windows has built-in mechanisms to boost the priority levels of interactive applications
and thus it may run at a higher priority than our threads for periods of time when its priority level is boosted.
Our aim is to study how background loads affect the interactivity of the user with these applications.

The exerciser

The CPU exerciser runs in the background exercising the CPU according to the exercise function specified in
the testcase. As noted previously, a testcase is a time series indicating the desired contention values sampled
at a given rate. Currently we use the sampling rate of 1 Hz in all of our testcases. Our exerciser supports
fractional contention as well, which is important in studying finer effects of CPU contention on interactivity
of other applications. We can then control the CPU contention precisely. This means that a contention of 4.5
translates to 4 threads executing all the time and one thread intermittently computing and sleeping for equal
amounts of time. Full threads are easier to design and are just infinite loops performing some mathematical
operations. However, creating fractional contention on the CPU is more challenging.

To create fractional contention, we need to balance the compute times and sleep times (when the
thread is not executing) precisely for a thread. Our approach to create fractional contention is to have two
functions, sleep() and work(). sleep() sleeps for a given time x and work() executes on the CPU
for the same time x. The value of x is computed by careful calibration as described below. We call these
functions randomly with a probability distribution to match the amount of CPU contention required. To
generate the contention of 0.6 we call the work() function with a probability of 0.6 and the sleep()
function with a probability of 0.4.

However, there are issues involved with the Sleep() function in the Windows API. The Sleep()
function is inaccurate for small values of time and the sleep time also depends on number of other threads
executing on the processor. Therefore to create a precise contention on the CPU requires careful calibration
of our sleep() and work() functions. We want these functions to consume equal amount of time per
call. If this is ensured, then desired fractional contention can be created by calling these functions with the
right probability values.

Calibration consists of two phases. The first phase is for sleep() and the second phase is for
work(). In the first phase, we need to first find out reliable values of sleep. The Windows API Sleep()
functions takes a parameter which indicates the time to sleep, in milliseconds. In practice, small values
of this parameter do not result in accurate sleep times. Therefore in calibration we search for a reliable
Sleep() time parameter which sleeps for the time specified. We start with a small time parameter x
and record the time taken for the Sleep(x) to return, say y. For this, we use high resolution timing functions
present in Windows API, QueryPerformanceCounter() and QueryPerformanceFrequency().
Using these functions we can get timing up to microsecond level of precision. If the difference in x and y
is large, we increment x by 1 and try again. We select a value for which the error in sleep() function is
within a small percentage of the Sleep time requested. In practice we found that this the right value of x
depends on the OS as well as the underlying machine configuration.

In the second phase, we need to find out the number of loop iterations (of a simple mathematical
computation), which will keep the CPU busy for the same time as the sleep parameter calibrated in the
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Figure 2.3: Example of working threads to produce contention

first phase. For this we use a exponential back-off technique to arrive at a precise value for the loopcount
parameter. It is important that the calibration be done when the system is idle, to get accurate values. After
calibration, we have two useful values: sleeptime and loopcount such that Sleep(sleeptime) and looping
loopcount times take equal amount of times to complete.

Finally, to create fractional contention, we simply loop for the calibrated loopcount with the required
probability and sleep for the rest of the time. This achieves the required fractional contention. Using the
above techniques, we can then produce contention by using a family of full-running thread threads with one
fractional thread (Figure 2.3). Figure 2.4 shows some exercise functions produced by the fractional thread.
We can control the CPU contention with good accuracy.

Measuring and verifying CPU contention

The PDH Library in Windows provides queue length counters that can be used to verify the CPU loads
produced by our exerciser function. We first developed a simple application QAverage that samples this
counter with exponentially distributed time intervals that are then averaged to give a time average of the
CPU Contention (PASTA principle). However, we found that these counters are not representative of the
system. Two full threads would increase the counter value by 4 or 5. The values returned by this counter
seem to be of little use. A detailed study [3] concludes that measured processor queue length counter is
of little use in understanding Windows NT system performance from an application point of view. This
paper further states that the statement in Microsoft documentation (and similarly repeated in some third
party literature) that a “processor queue” value of two threads generally indicates processor congestion is
inaccurate and misleading.

To overcome this hurdle, we decided to develop a method to measure CPU contention on our own.
The contention on the CPU is correlated with the CPU utilization of a given thread. This information can be
used to get an estimate of the CPU contention. Our application Contention Meter measures contention by
comparing the CPU allocation to a thread in idle state vs. the CPU loaded state. It first calibrates itself by
running a loop for a given number of iterations and records the time taken for the execution of the loop. Let
this time be t1. This must be then when the system is idle. Then, the program is run in a continuous loop,
in which it reruns the previously executed loop and records the new time taken by this loop. Let this time
be t2. Then the CPU utilization for the thread relative to the idle state of the CPU is t1

t2
. Assuming that t1 is

the time taken when the thread has 100% of the CPU, CPU contention is then equal to t2
t1

. The contention
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Figure 2.4: Example outputs of different CPU exerciser functions
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Figure 2.5: The Contention Meter application

meter displays this ratio as the contention of the CPU.
We then used this tool to measure and verify the contention produced by CPU exercisers. We

found close correlation between contention values reported by the Contention Meter vs. the contention
that the exercisers were attempting to produce. For example, Figure 2.5 shows the contention reported by
Contention Meter when the exercisers were told to produce a contention of 1.6. The contention measured
by the contention meter oscillates around 1.6.

Scheduling priority of the CPU exerciser

Windows does scheduling at the thread level and allows assignment of priorities to the different threads.
Lower priority threads are not executed if any higher priority thread is awaiting execution. Deciding the
priority of the CPU exerciser threads was also an issue. There are three possibilities with different conse-
quences.

1. Below Normal The CPU exercisers would run only when no other thread is running. This is similar
to running in the IDLE mode. Here the resource exercisers would not affect the application threads.
Since we want to study the interaction of resource borrowing with user interactivity, we do not use
this priority level.

2. Above Normal The CPU exerciser threads would be given higher priority than the application threads
which mostly run under the Normal priority. If a CPU exerciser thread runs full time, other applica-
tions would be stuck and there is complete loss of interactivity. This is also not an option.
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Memory chunks of 
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Memory 
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the granularity of page size

Figure 2.6: The memory exerciser. Here a total of blocksize*4 memory is allocated.

3. Normal Here the CPU exerciser threads are treated at the same level as other application threads and
here the affect of CPU threads on other applications can be studied. Thus, the CPU exerciser threads
are run under normal priority in Windows.

2.2.4 The memory exerciser

The memory exerciser is much simpler in design. It simply allocates a given amount of physical memory,
avoiding having the allocated memory paged to disk. Contention is interpreted as the fraction of physical
memory it should attempt to allocate. To borrow the desired amount of physical memory, it keeps a pool
of allocated pages equal to the size of physical memory in the machine and then touches the fraction corre-
sponding to the contention level with a high frequency, making its working set size inflate to that fraction of
the physical memory.

It is important to ensure that the memory exerciser doesn’t itself consume a lot of CPU cycles as
it touches a large number of pages at a high frequency. We use the dynamic memory allocation features
of C++ to allocate memory. We found that the amount of CPU cycles consumed by the memory exerciser
depends on the unit allocation blocksize. To allocate a given amount of memory, we keep an array of
pointers and then bind the required number of pointers to newly allocated regions of size blocksize. This
is done at a regular frequency. Figure 2.6 shows the memory structures used by the memory exerciser. To
ensure low CPU usage, a blocksize of 1 MB was chosen. It was found that a blocksize of 64K produced
significant CPU contention. Surprisingly, lowering the blocksize to around 64K - 512 bytes eliminated the
CPU contention. This is almost certainly due to the dynamic memory allocation strategies implemented in
the particular C++ run-time (malloc blocksize effects).

We avoid contention levels greater than one because this immediately results in thrashing which
is not only very irritating to all users (as it affects interactivity drastically), but also very difficult to stop
punctually.

2.2.5 The disk exerciser

Here we borrow the contention concept from the CPU exerciser. We create threads to produce contention.
There are two kinds of threads: a full working thread and a fractional thread.

In a full working thread, we continuously keep writing the disk. In a fractional thread, we need to
balance the writing times and sleep times (when no writes are issued) precisely for the thread. Our approach
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to creating fractional contention is very similar to the one we used in CPU exerciser. We have two functions,
sleep() and write(). sleep() sleeps for a given time x and write()writes disk for time x. We call
these functions randomly with a probability distribution to match the amount of disk contention required.
To generate the contention of 0.6 we call the write() function with a probability of 0.6 and the sleep()
function with a probability of 0.4.

However, there are issues involved with the sleep() function in the Windows API as we men-
tioned before. We want sleep() and write() functions to consume an equal amount of time. For this,
we use high resolution timing functions QueryPerformanceCounter() and QueryPerformanceFrequency()
to calculate the average time of each disk write with a fixed data chunk size. Using these functions we can
get timing up to a millisecond level of precision. In the fractional thread, we then use the calculated sleep
time in sleep() in the fractional thread. The following is pseudocode for the fractional disk writing
thread:

while(1)
{

if (rand_number() < fraction_number)
{

disk_seek (file, random_place);
write_disk (file, chunk_of_data);

}
else
{

sleep (sleep_time);
}

}

There are three levels of disk caches we need to deal with: application level, OS kernel level and
hard disk level. Data writes issued from application level can be sped up any level of caching. Furthermore,
sometimes the writes we issue will not write disk at all or write disk in an unpredictable way. For example, if
the OS or disk detects that two consecutive writes are for the same sector, only one disk write will be actually
occur. Another issue is that the disk itself can queue, reorder, and merge writes to reduce or eliminate seeks
and rotational latency. When writing to the cache on the disk, it is possible to achieve very high bandwidth,
particularly in bursts (try hdparm -t versus -T on Linux to get a sense of this, or a tool like bonnie++).

To make application-level writes directly and precisely produce raw disk writes, we need to coun-
teract the caches. First,we use the CreateFile() function with the FILE_FLAG_NO_BUFFERING
parameter to create a large file in disk. The size of the file is the minimum of twice the physical mem-
ory size or the available disk space size. The FILE_FLAG_NO_BUFFERING parameter turns off the OS
level cache. Second, we use the FlushFileBuffers(} function immediately following each write
(WriteFile()), which forces data to be immediately flushed to disk. Third,we randomly seek in the file
before each WriteFile(), which makes the probability of two consecutive writes to the same sector very
small.

There are two kinds of contention involved in our exerciser: the contention for seeks, and the
contention for disk bandwidth. With very large write sizes, contention will be dominated by contention
for disk bandwidth. If the user application issues small writes, they will not be much affected since their
predominant cost is a seek. With very small write sizes, the contention will be dominated by how many
seeks/second the disk can do, but there will be plenty of bandwidth left over. In that case, if the user
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Figure 2.7: Disk Contention Monitor

application issues large writes, they will be minimally effected. Because we seek to affect all applications,
we have the exerciser issue writes of randomly chosen sizes. In this way, the exerciser affects both large and
small writes/reads made by other programs. In the disk exerciser, we set the NumberOfBytesToWrite
in WriteFile() to be a random number between 0 and 4 MB. (In the fractional thread, the number is a
fixed 512 KB)

Another issue is that since we open the disk space file with the FILE_FLAG_NO_BUFFERING
flag set, for the random seek and random write size to work properly, the file pointer must be set to sector-
aligned positions and the write size must be an integer number of sectors. A sector-aligned position/number
is a position/number that is a whole number multiple of the volume’s sector size. We obtain a volume’s
sector size by calling the GetDiskFreeSpace() function.

We developed our own disk contention monitor to measure disk contention on our own. The con-
tention on the disk is correlated with the disk writing time (how long it takes to write a given number of
bytes) of a given thread. This information can be used to get an estimate of the disk contention. Our appli-
cation measures contention by comparing the disk writing time of a thread in the idle state versus the loaded
state (when the exerciser is running). It first calibrates itself by running a loop for a given number of itera-
tions and records the time taken for the execution of the loop. Let this time be t1. This must be done when
the system is idle. Then, the program is run in a continuous loop in which it reruns the previously executed
loop and records the new time taken by this loop. Let this time be t2. The contention introduced is then
t2/t1 − 1 The contention meter displays this ratio as the contention of the disk. Figure2.7 is a screenshot of
the initial state of the disk contention monitor.

2.2.6 The network exerciser

The goal of the network exerciser is to affect the user’s network traffic and control the available bandwidth,
while minimally affecting other machines in the network. We firstly built a network exerciser that used
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sockets to send UDP packets. The exerciser can control the packet sending rate while targeting one ma-
chine, broadcasting or multicasting. We evaluated the UDP exerciser with different irritation parameters
(Kbytes/sec). The goal was to slow down the network interface, as measured by downloading a file from
a local server using Flashget. As we increased the exerciser transfer rate, the time taken to transfer the file
increased. (The normal transfer time for the file was recorded as less than 10 seconds, file size is 25,000,005
bytes) However, the transfer speed depended on the destination for the UDP packets. Destinations can be of
4 types:

1. 127.0.0.1 / local IP address : The idea here was to keep the network stack and the device driver busy
without emitting packets. Unfortunately, this doesn’t affect the transfer rate at all, even if we have a
thread to receive the artificial traffic. No network bandwidth is consumed, which is also shown in the
Windows XP task monitor. It looks like local adapter just discards loop-back packets.

2. Specific host on LAN : This slows down the transfer, but is it is very hard to control the impact. For
a 5000 kbps sending rate, the time was around 25 seconds. The transfer time increases slowly as the
exercise rate increases, until sending rate reached 7000 kbps, at which point the transfer time is 2:11.

3. Multicast: This has the most impact on the transfer speed. When a sending rate of 5000 kbps was
used, the transfer time is 21 seconds. At 6000 kbps sending rate, the transfer time fluctuates a lot,
from 32 seconds to a very long time. At 6500 kbps, the transfer is almost stopped. We cannot use
multicast because of the impact on every host in the LAN.

4. External host : When we sent packets to external host, there was no effect on file transfer rate.
This is still mysterious to us, as the network card is still engaged in sending the UDP packets. Why
should targeting a specific host on LAN and external host give totally different results? A possible
explanation is that the packets are taking a different route through the switched LAN. Perhaps when
we talk to an external machine, via the router, the packets are not interfering with our transfer.

Following the UDP exerciser, we built another which emitted Ethernet packets exerciser using the
WinPcap1 library. Here the idea was to directly inject Ethernet packets with the destination address being
the same as the source address on the interface. We hypnotized that this should pass the packet directly to
the device driver to be sent. If the driver was not too clever, and the network adapter was not too clever, it
would send the packets we inject. The first switch it encountered would send it right back. This way we
would impact the network only as far as that first switch. However, we did not get the expected results. This
does not seem to affect the transfer rate at all and again no network bandwidth is consumed.

At this time we have not developed an adequate network exerciser, although we continue to seek
ways of doing so.

2.3 User feedback techniques

Feedback is essential for the user to indicate his discomfort due to resource borrowing. It should be easy
enough for the user to express. We have two methods: a keyboard hotkey or right clicking on a system
tray icon in Windows. Note that this is binary feedback, either Yes or No. Interestingly, extensive research
has been conducted on various ways to express frustration feedback to the PC [14]! Other methods include
analog methods of expressing discomfort, which allow the user to also include the level of discomfort, thus

1http://winpcap.polito.it/
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fine-tuning his feedback. Advantage of this method is that it would allow us to develop a more sophisticated
model of user comfort with resource borrowing. However, it would also require more participation from the
user, making fewer users interested in trying our software. Based on results from our current study, other
methods may also be considered for feedback in the future.

2.4 The client/server architecture

The Understanding User Comfort System employs a client-server system. This allows us lot of flexibility
in transferring testcases and results between the client and server. The client is the application on the user’s
end which does all the resource borrowing tasks. The server is responsible for sending new testcases to the
client and also for receiving back results from the client. A client-server system allows us some flexibility:

1. Testcases need not be packaged with the client. This allows us to withdraw some testcases or add new
testcases to the testcase database which the clients can download wherever they may be installed.

2. All the results can be gathered at the server, which facilitates organizing and analyzing the results.

3. It also allows us to control parts of the behavior of the client like wait time between testcases, user
idle time parameters, etc.

The client can be configured to periodically hotsync with the server. Hotsync refers to the downloading of
new testcases by the client and transferring the results back to the server. The following is a brief description
of both the processes

Downloading Testcases: The server is designed to send a random set of testcases from its testcase
repository. The client decides how many testcases it wants to receive, which is a configurable parameter on
the client side. Thus each client receives a different set of testcases from the server.

The server picks up testcases randomly from its repository using a exponentially distributed random
seek distances in the file. It starts from the beginning and seeks using the exponential distribution. λ,
the mean value of the exponential distribution is chosen as totalnumberoftestcases

numeroftestcasesrequestedbyclient
. The client on

receiving the new set of testcases, merges them with its existing set of testcases maintaining a sorted order.
This is implemented using a simple merging algorithm that also eliminates any duplicates received from the
server.

Sending Results: The client sends back the following information to the server:

• The results file which logs all the user feedbacks along with the monitored information.

• The system configuration file if it hasn’t been sent before

• The config file which contains the configuration information about the client. This is only referred to
in case of any discrepancy faced later on.

The server is multi-threaded to handle multiple client connections simultaneously. It was tested for robust-
ness with 50 clients connecting simultaneously. Several bugs were discovered and fixed during this stress
test.
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Receiving and Sending Testcases
Client Action Server Action
GET
TESTCASE <number of testcases requested> <Send required number of testcase to client>
CLOSE CLOSE
Notes
Client will disconnect before any connection. Send testcases randomly from testcase database.
In case of any exception, the client
disconnects and aborts from the operation.

Sending Results to the Server
Client Action Server Action
POST
RESULTS ID (Wait for timestamp) <Send latest Timestamp to the client>
<Send latest results> <Receive and append results to client file>
CLOSE CLOSE
Notes
ID refers to a globally unique ID of the client Server appends the results to the client’s results file.
The client only needs to send
the results recorded after the timestamp.

Figure 2.8: Protocol for client-server communication

2.4.1 The protocol

The client/server system uses a HTTP like text based protocol. There are two sets of commands, for retriev-
ing testcases and sending results. These protocols are summarized in Table 2.8.

Figure 2.8 does not show the protocol for transferring system information and config information,
which is similar to the results protocol. The server logs every activity to a file. In case of any discrepancy,
the file can be referred to. It also records all the client connects, thus acting as a log for server traffic.

2.5 The client interface

Figure 2.9 shows the graphical interface of the UUCS client. The most basic interface is the tray interface
(Figure 2.9(a)), in which a user can only express discomfort, either by clicking on the tray icon or by pressing
a hot-key (F11 here). The remainder of the interface can be disabled, and is disabled in our controlled study.
If it is enabled, the user can see a popup menu (Figure 2.9(b)), or pop up a detailed view (Figure 2.9(c)) of
the operation of the application.
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(a) Tray interface

(b) Menu

(c) Application

Figure 2.9: Client interface. The menu and full application interface can be disabled.
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3

Controlled study

As the second stage of our user studies (after a beta test), we conducted a study which involves users
participating in experiments with some pre-specified controls. The purpose of the controlled study is to
answer some of the questions which we want to study and the data which we have got from this study has
indeed given us some clear answers to some questions we had posed earlier.

3.1 Terminology used

User The test subject

Application The program the user runs

Task Period The duration of a task

Task Some operation we ask the user to accomplish using an application. A task is timed and should exceed
the length of a task period in other words, even for power users, they should not ever finish the task in
the task period.

User Comfort Client Our software for inducing and measuring user discomfort

Testcase Period The duration of a testcase. The Task Period is an integral multiple of the Testcase Period.

Run Execution of resource borrowing in the client during a task, using some set of exercise functions.

3.2 The experimental setup

Doing a controlled study gives us some advantages, mainly in helping us control various factors which
provide more focus in answering certain questions. Designing the controlled study was tricky and mistakes
in choosing the wrong controls can be costly later on. We also learned from our experience, and would
improve the experiments if repeated.

3.2.1 Hardware

Two machines were used for conducting control experiments in two separate private environments. Their
hardware configuration is summarized in Figure 3.1.
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Machine Configuration

Hardware Configuration 2.0 GHz P4, 512 MB, 80 GB.
Dell Optiplex GX270, 17 in monitor

Operating System Windows XP
Applications Installed Word 2002, Powerpoint 2002,

IE 6, Quake 2

Figure 3.1: Machine configuration.

3.2.2 Invitation and interaction with subjects

An advertisement for the controlled study was prepared and posted in the Computer Science Department
and in the Main Engineering Building at Northwestern University (named Tech). Email announcements
were also sent to mailing lists. Each subject was asked to fill in a questionnaire with following questions:

1. Email address

2. Gender, age, occupation

3. Overall, do you consider yourself a beginning, typical, or power user of computers?

4. Overall, do you consider yourself a beginning, typical, or power user of MS Windows, or have you
never used it before ?

5. For each of our Applications (Word, Powerpoint, Internet Explorer and Quake III), do you consider
yourself a beginning, typical, or power user, or have you never used it before?

During the experiment, each user was given written instructions 1, after which they started the tasks de-
scribed below. Each task was timed using a custom-made software timer which runs in the background and
pops up at the end of 16 minutes.

The 33 users in our study consisted primarily of graduate students and undergraduates from the
Northwestern engineering departments. Anecdotal evidence suggests that this group is more sensitive to
resource borrowing than others. Each user was given $15 for participating. The duration of the study for
each user was 84 minutes. The user:

1. Filled out a questionnaire as described above. The key questions were user self-evaluations as “Power
User”, “Typical User”, or “Beginner” for use of PCs, Windows, Word, Powerpoint, Internet Explorer,
and Quake. (5 minutes).

2. Read a one page handout (5 minutes).

3. Acclimatized themselves to the performance of our machine by using the above applications (10
minutes).

4. Performed the following tasks:

• Word processing using Microsoft Word (16 minutes): Each user typed in a non-technical docu-
ment with limited formatting.

1These instructions can be found at http://comfort.cs.northwestern.edu
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No. Resource Type Word Parameters Powerpoint Internet Explorer Quake

1 CPU Ramp 7.0,120 2.0,120 2.0,120 1.3,120
2 Blank
3 Disk Ramp 7.0,120 8.0,120 5.0,120 5.0,120
4 Memory Ramp 1.0,120 1.0,120 1.0,120 1.0,120
5 CPU Step 5.5,120,40 0.98,120,40 1.0,120,40 0.5,120,40
6 Disk Step 5.0,120,40 6.0,120,40 4.0,120,40 5.0,120,40
7 Blank
8 Memory Step 1.0,120,40 1.0,120,40 1.0,120,40 1.0,120,40

Figure 3.2: Testcase descriptions for the 4 tasks (given in random order).

• Presentation making using Microsoft Powerpoint (16 minutes): Each user duplicated a presen-
tation consisting of complex diagrams involving drawing and labeling from a hard copy of a
sample presentation.

• Browsing and research with Internet Explorer (16 minutes): Each user was assigned a news web
site and asked to read the first paragraphs of the main news stories. Based on this, they searched
for related material and saved it. This task involved multiple application windows.

• Playing Quake III (16 minutes): Quake III is a well known first-person shooter game. There
were no constraints on user’s gameplay.

As the user performed the tasks, the UUCS client executed in the background and ran specific testcases. It
recorded all the system and contextual information as well as the user feedbacks, which were later used to
generate the results.

3.2.3 Testcases

We designed a set of primary testcases for each task that would help us answer some specific questions we
have. Testcases were either of the type ramp or step. We had 8 testcases of duration two minutes each as
the primary testcases for each task, and some extra testcases in case the user exhausted these. They are run
consecutively for each 16 minute task.

Calibration: Each task has different resource requirements, and the regions of resource usage
where interactivity is affected may be different for each task. For example, in Word very high values of
CPU Contention (around 3-5) are needed to affect interactivity, whereas in Quake CPU Contention values
in the region of 0.2 to 1.2 are enough to affect the interaction drastically. Therefore, careful calibration is
required to choose the parameters for the testcases for each task to observe any phenomena of interest. The
calibration was done by using the applications, running a large number of testcases with different parameters,
and then selecting those testcases which affected interactivity. However, these judgments are subjective in
nature and therefore prone to error. Incorrect calibration can result in regions of operation in which the user
is seldom discomforted or always discomforted. It is also important to choose the value of step testcases
carefully, as they help us in understanding the time dynamics of the relationship between resource borrowing
and user discomfort, the frog in the pot hypothesis (Section 1.2). By studying the user feedback values from
both, we can judge whether a ramp can lead to higher levels of resource borrowing compared to a step.

The testcase description for the control study by each task are summarized in Figure 3.2, with
additional details below:
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• Testcases 1, 3, 4 test for the level at which user discomfort is incurred

• Testcases 1 versus 5, 3 versus 6, 4 versus 8 are tests for frog-in-pot

• Testcases 2, 7 (and irritation expressed during sleep periods of all the others) test for the background
level of irritation

3.2.4 Overview of factors used in the controlled study

As described earlier the controlled study allows us to control various factors which can in turn help us find
answers to our questions directly. Some of the factors which were fixed and hence acted as controls are:

1. Context: The applications and their durations are pre-defined, thus letting us study the effects of
context.

2. Hardware and the software environment: The hardware was same for the two PCs used, thus elim-
inating any biases due to hardware. The effects due to hardware cannot be studied in this. The OS
(Windows XP) and installed software were also same.

3. Testcases: Using the same set of testcases for each task allowed us to study affect of specific patterns
of resource borrowing. Testcases were either of type ramp or step with different parameters. Using
careful calibration (Section 3.2.3), we can also study the frog in the pot hypothesis (Section 1.2).

3.3 Control study results

We now address the questions posed in the introduction using empirical cumulative distribution functions
and informal factor analysis. We describe the results below, along with additional observations.

3.3.1 What level of resource borrowing leads to user discomfort for a significant fraction of
users?

From the perspective of an implementor this is a key question. We can answer this question using cumulative
probability distributions (CDF) derived from running our ramp testcases, aggregated across contexts to
convey a general view of each resource.

Figures 3.3-3.5 show CDFs for CPU, memory and disk aggregated over all the tasks. The horizon-
tal axis is the level of contention for each resource. The vertical axis is the cumulative fraction of users
discomforted. As the level of borrowing increases, users’ interactivity is increasingly likely to be affected.
This is the discomfort region. Some users do not become discomforted in the range of levels explored. We
refer to this as the exhausted region. Each graph is labeled with the number of runs that ended in discomfort
(DfCount) and exhaustion (ExCount). There is also some probability that a user will feel discomforted
even when no resource borrowing (blank testcase) is occurring. We refer to this as the noise floor and it is
reflected in Figure 3.10.

To make our discussion easier, we derive three metrics from the CDFs. The first is fd, the fraction
of testcases which provoke discomfort,

fd =
DfCount

DfCount + ExCount
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Figure 3.3: CDF of discomfort for CPU.
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Figure 3.4: CDF of discomfort for Memory.
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Figure 3.5: CDF of discomfort for Disk.

A low value of fd indicates that the range of contention applied in that context for resource borrowing
doesn’t affect interactivity significantly.

The second metric is c0.05, the contention level that discomforts 5% of the users. This is the 5th-
percentile of the CDFs. This value is of particular interest to implementors as it provides them with a level
that discomforts only a tiny fraction of users. Any other percentile can also be found from these CDFs.

The third metric is ca, the average contention level at which discomfort occurs. This is useful in
comparing classes of users. Figures 3.7, 3.8, and 3.9 show the three metrics.

Figure 3.3 shows the CDF for CPU borrowing. Notice that even at CPU contention levels of 10,
more than 10% of users do not become irritated. More importantly, we can reach contention levels of 0.35
while irritating fewer than 5% of the users (c0.05,cpu ' 0.35). This corresponds to consuming 35% of the
processor when there are no competing threads.

Figure 3.4 shows the CDF for memory. Notice that almost 80% of users are unfazed even when
nearly all their memory is consumed (fd = 0.21). Furthermore, aggregating over the four contexts, it
appears we can easily borrow 33% of memory on these common PCs while irritating fewer than 5% of users
(c0.05,memory ' 0.33) in general.

Figure 3.5 shows the CDF for disk bandwidth. Almost 70% of users are comfortable even with
seven competing tasks (fd = 0.33). Furthermore, we can easily execute a single disk writing task, capable
of consuming the whole disk bandwidth if run alone, while irritating fewer than 5% of the users (c0.05,disk '
1.11). We found this result remarkably counterintuitive as we ourselves tend to become uncomfortable when
large amounts of unexplained disk I/O occurs on our desktops. The Dell machines we used for the study are
remarkably quiet and have very dim disk lights. We suspect that it is the limited feedback about disk activity
that leads to users accepting far higher amounts of disk contention than they otherwise might.

3.3.2 How does the level depend on which resource or combination of resources is bor-
rowed?

Figure 3.12 (located at the end of this chapter) shows the CDF for each context and resource pair. Consulting
its columns as well as the aggregated CDFs shown earlier clearly shows the strong dependence on the type
of resource. Within the contention levels explored by the ramp testcases for each resource, users are much
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CPU Memory Disk Total

Word L L L L
Powerpoint M L L M
IE M M H M
Quake H M M H
Total M L L

Figure 3.6: User sensitivity by task and resource (Low, Medium, High).

CPU Memory Disk

Word 0.71 0.00 0.10
Powerpoint 0.95 0.07 0.17
IE 0.75 0.30 0.61
Quake 0.95 0.45 0.29
Total 0.86 0.21 0.33

Figure 3.7: fd by task and resource.

CPU Memory Disk

Word 3.06 * 3.28
Powerpoint 1.00 0.64 3.84
IE 0.61 0.31 2.02
Quake 0.18 0.08 0.69
Total 0.35 0.33 1.11

Figure 3.8: c0.05 by task and resource. (* indicates insufficient information)

CPU Memory Disk

Word 4.35 * 4.20
(3.97,4.72) (1.89,6.51)

Powerpoint 1.17 0.64 4.65
(1.11,1.24) (0.21,1.06) (3.67,5.63)

IE 1.20 0.55 3.11
(1.07,1.33) (0.39,0.71) (2.69,3.52)

Quake 0.64 0.55 1.19
(0.58,0.69) (0.37,0.74) (0.86,1.52)

Total 1.47 0.58 2.97
(1.31,1.64) (0.46,0.71) (2.54,3.41)

Figure 3.9: ca by task and resource, including 95% confidence intervals. (* indicates insufficient informa-
tion)
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more tolerant with borrowing of memory and disk. This observation is qualitative as the testcases for each
resource are different, but within the levels explored this holds true.

The varying tolerance by resource also shows up in our aggregated fd, c5 and ca metrics, the column
totals of Figures 3.7, 3.8, and 3.9. An important point to note is that the high fd value of CPU (0.86), does
not mean that the probability of discomforting users by borrowing CPU is 0.86. This probability depends on
the contention. To determine this probability, a level must be chosen and the CDFs consulted as described
in the previous section.

3.3.3 How does the level depend on the user’s context?

In Figure 3.12, we see dramatic differences in the reactions to resource borrowing between different contexts.
Consulting the rows illustrates this. It is clearly the case that the user’s tolerance for resource borrowing
depends not only on the resource, but also on what the user is doing.

The totals row of Figure 3.9 shows the average level at which discomfort occurs for the CPU con-
tention for the four tasks. For an undemanding application like Word, the CPU contention can be very high
(> 4) without significant affecting interactivity. However, with finer-grain interactivity, as in Powerpoint
and Quake, the average level is much lower. This is likely due to the more aggressive CPU demands of these
applications. Still, for the most aggressive application, Quake, results show that a thread with contention of
nearly 0.2 can still run with a low probability of discomfort.

We used the same testcase for memory in all four tasks, growing the working set from zero to
nearly the full memory size. The effect of memory borrowing is minimal in the case of Word (no discom-
fort recorded) and Powerpoint. IE and Quake are much more sensitive to memory borrowing, with more
instances of discomfort ( fd = 0.3 and fd = 0.45, respectively). For IE and Quake, value of c0.05,mem is
0.31 and 0.08 respectively, meaning that Quake users become discomforted at much lower levels. It appears
that once office applications like Word and Powerpoint form their working set, significant portions of the
remaining physical memory can be borrowed with marginal impact. This seems to be less true for IE and
Quake, where their memory demands may be more dynamic.

Disk bandwidth can be borrowed with little discomfort in typical office applications. In Word and
Powerpoint, the fraction of testcases ending in discomfort was small (fd = 0.01 and fd = 0.17 respectively),
in the wide range covered by the testcases. IE and Quake are more sensitive. For identical disk testcases,
we find that IE is more sensitive (fd = 0.61). This may be expected as IE caches files and users were asked
to save all the pages, resulting in more disk activity.

Figure 3.10 shows that users express feedback even when there is no testcase running. We note that
users exhibit this behavior only in IE and Quake. Quake is a very demanding application in which jitter
quickly discomforts users. There are sources of jitter on even an otherwise quiescent machine. Discomfort
in IE depends to some extent on network behavior.

Figure 3.6 summarizes our judgment of user sensitivity to resource borrowing by resource and task.
Note that the totals are not derived from the columns but represent overall judgments from the study of the
CDFs (Figure 3.12).

3.3.4 How does the level depend on the user, factoring out context?

Users’ comfort with resource borrowing depends to a small extent on their perceived skill level. We asked
our users to rate themselves as {Power User, Typical User, or Beginner} in each of {PC Usage, Windows,
Word, Powerpoint, IE, and Quake}.

29



Total

Non-Blank testcases Blank
Discomforted 295 33
Exhausted 47 212

MS Word

Discomforted 48 0
Exhausted 20 59
Prob of discomfort from blank testcase 0.00

MS Powerpoint

Discomforted 71 0
Exhausted 4 60
Prob of discomfort from blank testcase 0.00

Internet Explorer

Discomforted 50 14
Exhausted 17 50
Prob of discomfort from blank testcase 0.22

Quake

Discomforted 126 19
Exhausted 6 43
Prob of discomfort from blank testcase 0.30

Figure 3.10: Breakdown of runs.

Application Resource Background Rating Pair P-value Avg. Contention Difference

Quake CPU PC Power, Typical 0.006 0.176
Quake CPU Windows Power, Typical 0.031 0.137
Quake CPU Quake Power, Typical 0.001 0.224
Quake CPU Quake Typical, Beginner 0.031 0.139
IE Disk Windows Power, Typical 0.004 1.114
IE Mem Windows Power, Typical 0.011 0.354

Figure 3.11: Significant differences based on user-perceived skill level.
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We compared the average discomfort contention levels for the different groups of users defined by
their self-ratings for each context/resource combination using unpaired t-tests. In some cases, we found sig-
nificant differences, summarized in Figure 3.11. The largest differences were for the combination Quake/CPU.
For example, a Quake Power User will tolerate 0.224 less CPU contention than a Quake Typical User at a
significance level (p-value) of 0.001. Even the users’ self-rating for general Windows and PC use can lead to
interesting differences in their tolerance. For example, for CPU, the differences between discomfort levels
for Power and Typical users are quite drastic with p = 0.002 (PC Background) and p = 0.010 (Windows
Background). Applications which have higher resource requirements show greater differences between user
classes. However, our results are preliminary here and will improve with our Internet-wide study.

These results expose the psychological component to comfort with resource borrowing. Experi-
enced or power users have higher expectations from the interactive application than beginners. When we
borrow resources it may be helpful to ask the user to rate himself.

3.3.5 How does the level depend on the time dynamics of resource borrowing?

For this question, we have only preliminary results. We tested the frog in the pot hypothesis as described
earlier. We paired ramp and step testcases in our study to explore if a similar phenomenon might be true
of user comfort with resource borrowing—that a user would be more tolerant of a slow ramp that a quick
step to the same level. We did observe the phenomenon in Powerpoint/CPU—the majority of users (96%)
tolerated higher levels in the ramp testcase with a contention difference of 0.22 (averaged) with a p-value of
0.0001.

Our Internet-wide study (Section 5.3) is intended to address the question of time dynamics and of
raw host speed more carefully. 2

2Please refer to http://comfort.cs.northwestern.edu for more information on the Internet-wide study
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4

Programming issues

In this section we discuss some programming issues we faced while developing the Understanding User
Comfort client and server. Some of these are specific to the development environment we have used (Borland
C++ Builder Professional 6.0).

4.1 System information monitoring

Process monitoring using PDH puts a heavy load on the CPU. However, the Windows Task Manager does
this quite efficiently. We searched for more efficient means to enumerate all the processes on Windows
and came across an undocumented System call _ZwQuerySystemInformation(), which does this
efficiently on Windows NT/2000/XP systems. Please refer to the code for the complete source code for
enumerating processes and related information.

4.2 Displaying an int64 value in Borland C++

This was needed to handle large disk sizes and other 64 bit structures. The following code fragment does
the trick.

//---------------------------------------------------------------------------
void __fastcall TForm1::Button1Click(TObject *Sender)
{

// ULARGE_INTEGER is a __int64 value.
ULARGE_INTEGER fbatc, tnob, tnofb;

GetDiskFreeSpaceEx("c:", &fbatc, &tnob, &tnofb );

char a[40] = { 0 };
sprintf(a, "%I64Ld", tnob.QuadPart);

ShowMessage(a);
}
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4.3 Handle GUI only in the main thread

We observed that showing and hiding forms or dialogs in other threads besides the main GUI thread led to
unexpected exceptions. It is advisable to have all the GUI handling code in the main thread itself.

4.4 Changing thread priorities

Threads are scheduled to run based on their scheduling priority. Each thread is assigned a scheduling
priority. The priority levels range from zero (lowest priority) to 31 (highest priority). Only the zero-page
thread can have a priority of zero. (The zero-page thread is a system thread responsible for zeroing any free
pages when there are no other threads that need to run.). The system treats all threads with the same priority
as equal. The system assigns time slices in a round-robin fashion to all threads with the highest priority. If
none of these threads are ready to run, the system assigns time slices in a round-robin fashion to all threads
with the next highest priority.

The priority of each thread is determined by the following criteria:

• The priority class of its process

• The priority level of the thread within the priority class of its process

The priority class and priority level are combined to form the base priority of a thread.
The following code illustrates how to change the priority class for a process and then the priority

for a particular thread belonging to that process. Put

SetPriorityClass( GetCurrentProcess(), REALTIME_PRIORITY_CLASS );
SetThreadPriority( GetCurrentThread(), THREAD_PRIORITY_TIME_CRITICAL );

before the code you want to boost and

SetPriorityClass( GetCurrentProcess(), NORMAL_PRIORITY_CLASS );
SetThreadPriority( GetCurrentThread(), THREAD_PRIORITY_NORMAL );

after the block—this will bring your application to a normal status.

4.5 Working with global hotkeys

The C++ Builder VCL Hotkey component does not handle system wide hotkeys. Windows API Calls
RegisterHotKey() and UnRegisterHotKey() do the trick. They take modifiers and the hotkey.
Modifiers can be changed logically using MOD_CONTROL, MOD_ALT and MOD_SHIFT operators. To set a
key like F11 as the hotkey, use VK_F11 as the hotkey without any modifiers. F12 cannot be registered as a
hotkey.

For handling the hotkey message, a message handler for the WM_HOTKEY needs to be added to the
Form class. TMessage is the Windows Message Type and GlobalHotKey() is the function which is
called on receiving this event:

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_HOTKEY,TMessage,GlobalHotKey);

END_MESSAGE_MAP(TForm)
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4.6 Programming the system tray icons

We have used the C++ Builder TrayIcon component which automatically minimizes the application to a
system tray icon. After it has been minimized, it can handle regular events like any other control, like right
clicks. It also supports popup menu on specified input. The OnClick event is used to allow the user to
express feedback using a click on the system tray icon.

4.7 Client-server problems

We used the Indy Socket Library1 available for C++ Builder to implement our client and server. The client
showed many unexpected problems while running. There were numerous exceptions of the type “Socket
operation on non-socket error”. The lesson we learned is that every client socket function must be enclosed
within a try () catch(...) structure to catch all exceptions. Please refer to the client code for exact
code used for this.

Also, the Connected() method should be called before attempting to use a connection between
the client and a server.

4.8 System detection code

The following describes how we can detect and record the detailed hardware and system information of a
user machine.

4.8.1 CPU detection

CPU information like processor type, processor model, numbers of processors and so on are all detected.
For example, we get information like “Intel x86, Family 15, Model 2, Stepping 7, 2000 MHz, MMX”.
Since the frequency of CPU is an important factor considering resource borrowing, we use the following
four methods together to detect and record it, in case some method does not work in certain system:

• Calculate the CPU frequency dynamically

• Assembly code

• Querying Windows registry

• msinfo32.exe tool under Windows

4.8.2 Memory detection

We can detect detailed memory information like physical memory size, virtual memory size, page file size,
page file number and so on. We use two methods together.

• Windows API (e.g. GlobalMemoryStatus() and GetSystemInfo())

• msinfo32.exe tool under Windows
1http://www.nevrona.com/Indy/
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4.8.3 Disk detection

We can detect detailed disk information of user machine. All disks (physical and virtual) and partitions
information will be detected. Here we also use Windows API (e.g. GetDiskFreeSpace()) and the
msinfo32.exe tool methods together to ensure correctness.

4.8.4 Network detection

We make use of the Windows network utilities, ipconfig.exe and route.exe, to detect all network (physical
and virtual) related information.

4.8.5 System detection

By using msinfo32.exe tool, we can detect various hardware system information, for example:

System Name MINET-4
System Manufacturer Dell Computer Corporation
System Model OptiPlex GX260
System Type X86-based PC
BIOS Version/Date Dell Computer Corporation A02, 7/25/2002
SMBIOS Version 2.3

4.8.6 Operating system detection

Using the Windows API (e.g. GetVersionEx()) and the msinfo32.exe tool, we also detect detailed OS.

4.9 Generating the GUID

A Globally unique identifier (GUID) is needed to uniquely identify the client on the server side. GUIDs
help in keeping the information received from the various clients separate from each other. The client GUID
is creating using four values: the group id specified in the client setup, the IP address of the client, calling
UuidCreateSequential() and extracting the MAC address part and the Disk Volume Serial Number
got from Windows API call GetVolumeInformation().

The entire string returned by UuidCreateSequential() is not used, because it was found to
change its value with time. The MAC address portion is the only part that is fixed, so we extract that.
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5

Conclusions and future work

5.1 Advice to implementors

Based on our study, we can offer the following guidance to implementors of distributed computing and
thin-client frameworks.

• Borrow disk and memory aggressively, CPU less so.

• Build a throttle [23]. Your system can benefit from being able to control its borrowing at a fine
granularity similar to the UUCS client.

• Exploit our CDFs (Figures 3.3-3.5) to set the throttle according to the percentage of users you are
willing to affect. As we collect more data, the CDF estimates will improve.

• Know what the user is doing. Their context greatly affects the right throttle setting.

• Consider using user feedback directly in your application.

5.2 Conclusions

We have described the design and implementation of a system for measuring user comfort with resource
borrowing, as well as a carefully controlled study undertaken with the system. The end result has three
components. First, we provided a set of empirical cumulative distribution functions that show how to trade
off between the level of borrowing of CPU, memory, and disk resources and the probability of discomforting
an end-user. Second, we describe how resource type, user context (task), and user-perceived expertise affect
these CDFs. Finally, we have made initial observations on how the time dynamics of resource borrowing
affect the level.

Surprisingly, disk and memory can be borrowed quite aggressively with little user reaction, while
CPU can also be borrowed liberally. Our observations formed the basis of advice for the implementers of
distributed computing and thin-client frameworks. We are currently exploring how to use user feedback
directly in the scheduling of these frameworks and applications.
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5.3 Internet-wide study

Our controlled study at Northwestern helped us to answer and address many of the questions we raised in the
introduction. We are now expanding both the scale and the questions through an Internet-wide study open to
all participants. Any individual with a Windows computer is welcome to visit http://comfort.cs.northwestern.edu
to download and run a copy of the UUCS client. The client is configurable by the user, including privacy
options. We currently have about 100 users and are looking for many more.

In the Internet-wide study, the user uses the computer as normal. When user indicates any discom-
fort, the client records the context, the running processes, the contention levels, and other data similar to the
controlled study. We plan to use this data to create better estimates for the aggregated resource CDFs (Fig-
ures 3.3-3.5), better understand the effect of context and the effect of the raw performance of the machine
which was not studied in our controlled study.

5.4 Possible interaction between different exercisers

Each resource exerciser could affect the operation of other exercisers. Since disk exerciser threads also
consume CPU, they could also contribute to CPU contention and thus affect the CPU results. The amount of
interaction depends on the number of disk contention threads running. Beyond a certain number of threads,
the disk threads may start having significant effects. This sort of interaction is one area of future study. CPU
exercisers could also affect the disk exercisers, by not allowing the disk exercisers enough CPU time to do
their disk processing.

5.5 Resource control using human feedback

The bulk of our work has focused on characterizing user comfort statically, with the goal of finding “do
not exceed” limits on resource borrowing. However, we are also interested in using user comfort feedback
directly, to dynamically find the limits and track them as the change with time. In this vein, we are exploring
the use of the “one button” feedback approach to control the limit, trading off between the average time
between button presses and the amount of CPU that can be consumed by the distributed application that is
contending with the user.
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Appendix A

Publicity

Website: The project website is located at http://comfort.cs.northwestern.edu. The website was designed to
attract users to give an introduction to the project and also to attract people to the study.

Posters: Two posters have been designed. First poster was designed for the beta study and introduc-
ing people in the Computer Science Department to the project. The second poster is a call for participation
for everyone to participate in the Internet-wide study.

The following is the text for the second poster which serves as a brief introduction the project:
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CALL FOR PARTICIPATION

UNDERSTANDING USER COMFORT

WITH RESOURCE BORROWING

What is our Project about ?

As you may already be aware, today’s desktop computer resources can be used for useful back-
ground computation like protein folding (folding@home), drug research and others (seti@home). Such
computation is mostly done when the system is idle. Our goal is to find out how much of the resources can
be borrowed from users’ non-idle PC, still without affecting their work. This could result in tremendous
benefits for distributed computing projects. It could also help us understand how much computing power
is actually needed by individuals in their day-to-day tasks, which could be used to provide cheaper
computing power to the users.

How can you help ?

We have developed an application that emulates resource borrowing. You can help us by installing
this application and giving feedback whenever you feel that your PC’s performance is below your
expectations. On expressing feedback, it releases all borrowed resources and the PC immediately returns
to normal.

The application runs in the background and feedback can be expressed simply by pressing a key or
right-clicking the mouse. The installation is intrusion-free and doesn’t affect your registry or any system
files, and the application can be uninstalled easily and cleanly. Your feedback will give us good insights
into understanding user behavior and contribute to our research.

You can download the application from http://comfort.cs.northwestern.edu/software.html. Please
read the brief help file for a quick intro to using the application

A.1 Inviting controlled study participants

For publicizing our control study, we used posters and email. The following message was sent to different
groups. The poster has similar text.

USER STUDY PARTICIPANTS WANTED!
$15 for your time!

Help advance the state of the art!

We are working to understand user irritation with resource borrowing in
computer systems. We seek members of the Northwestern community
(faculty, staff, students) to participate in a user study to that end.
To participate, please email irritation@cs.northwestern.edu. We will
arrange an appointment with you that will take roughly 1.5 hours. You
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will simply use a Windows computer for several tasks while we make it
slower and faster in different ways. You’ll just press an ‘‘irritation
button’’ when the computer annoys you. That’s it. We will pay you $15
for your time.

41



Bibliography

[1] ANDERSON, T. E., CULLER, D. E., AND PATTERSON, D. A. A case for networks of workstations. IEEE Micro
(February 1995).

[2] BHOLA, S., AND AHAMAD, M. Workload modeling for highly interactive applications. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (1999), pp. 210–211. Extended version as
Technical Report GIT-CC-99-2, College of Computing, Georgia Tech.

[3] BOLKER, E. D., DING, Y., FLYNN, W., SHEETZ, D., AND SOMIN, Y. Interpreting Windows NT processor
queue length measurements. In Proceedings of the 31st Computer Measurement Group Conference (December
2002), vol. 21, pp. 759–770.

[4] CHIEN, A. A., CALDER, B., ELBERT, S., AND BHATIA, K. Entropia: architecture and performance of an
enterprise desktop grid system. Journal of Parallel and Distributed Computing 63, 5 (2003), 597–610.

[5] CURTIN, M., AND DOLSKE, J. A brute force search of des keyspace. ;login: (May 1998).

[6] DINDA, P. A. The statistical properties of host load. Scientific Programming 7, 3,4 (1999). A version of this
paper is also available as CMU Technical Report CMU-CS-TR-98-175. A much earlier version appears in LCR
’98 and as CMU-CS-TR-98-143.

[7] DOUGLIS, F., AND OUSTERHOUT, J. Transparent process migration: Design alternatives and the Sprite ap-
proach. Software Practice and Experience 21, 7 (July 1991), 1–27.

[8] EMBLEY, D. W., AND NAGY, G. Behavioral aspects of text editors. ACM Computing Surveys 13, 1 (January
1981), 33–70.

[9] ENDO, Y., WANG, Z., CHEN, J. B., AND SELTZER, M. Using latency to evaluate interactive system perfor-
mance. In Proceedings of the 1996 Symposium on Operating Systems Design and Implementation (1996).

[10] FREY, J., TANNENBAUM, T., FOSTER, I., LIVNY, M., AND TUECKE, S. Condor-g: A computation manage-
ment agent for multi-institutional grids. In Proceedings of the 10th International Symposium on High Perfor-
mance Distributed Computing (HPDC 2001) (2001), pp. 55–66.

[11] GOOGLE CORPORATION. Google compute. http://toolbar.google.com/dc/.

[12] HUA CHU, Y., RAO, S., SHESHAN, S., AND ZHANG, H. Enabling conferencing applications on the internet
using an overlay multicast architecture. In Proceedings of ACM SIGCOMM 2001 (2001).

[13] JANNOTTI, J., GIFFORD, D., JOHNSON, K., KAASHOEK, M., AND JR., J. O. Overcast: Reliable multicasting
with an overlay network. In Proceedings of OSDI 2000 (October 2000).

[14] KLEIN, J. T. Computer response to user frustration. Master’s thesis, Massachusetts Institute of Technology,
1999.

[15] KOMATSUBARA, A. Psychological upper and lower limits of system response time and user’s preferance on skill
level. In Proceedings of the 7th International Conference on Human Computer Interaction (HCI International
97) (August 1997), G. Salvendy, M. J. Smith, and R. J. Koubek, Eds., vol. 1, IEE, pp. 829–832.

42



[16] LARSON, S. M., SNOW, C. D., SHIRTS, M., AND PANDE, V. S. Folding@home and genome@home: Using
distributed computing to tackle previously intractable problems in computational biology. In Computational
Genomics, R. Grant, Ed. Horizon Press, 2002.

[17] LITZKOW, M., LIVNY, M., AND MUTKA, M. W. Condor — a hunter of idle workstations. In Proceedings of
the 8th International Conference of Distributed Computing Systems (ICDCS ’88) (June 1988), pp. 104–111.

[18] MUTKA, M. W., AND LIVNY, M. The available capacity of a privately owned workstation environment. Per-
formance Evaluation 12, 4 (July 1991), 269–284.

[19] REYNOLDS, C. J. The sensing and measurement of frustration with computers. Master’s thesis, Massachusetts
Institute of Technology Media Laboratory, 2001. http://www.media.mit.edu/∼carsonr/pdf/sm thesis.pdf.

[20] RIPEANU, M., FOSTER, I., AND IAMNITCHI, A. Mapping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design. IEEE Internet Computing Journal 6, 1 (2002).

[21] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware) (2001).

[22] RYU, K. D., AND HOLLINGSWORTH, J. K. Fine-grain cycle stealing for networks of workstations. In Proceed-
ings of ACM/IEEE SC98 (Supercomputing ’98) (November 1998), pp. 801–821.

[23] RYU, K. D., HOLLINGSWORTH, J. K., AND KELEHER, P. J. Efficient network and I/O throttling for fine-grain
cycle stealing. In Proceedings of Supercomputing ’01 (November 2001).

[24] SHARMAN NETWORKS. The Kazaa Media Desktop. http://www.kazaa.com.

[25] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F., AND BALAKRISHNAN, H. Chord: A scalable Peer-
To-Peer lookup service for internet applications. In Proceedings of ACM SIGCOMM 2001 (2001), pp. 149–160.

[26] SULLIVAN, W. T., WERTHIMER, D., BOWYER, S., COBB, J., GEDYE, D., AND ANDERSON, D. A new
major seti project based on project serendip data and 100,000 personal computers. In Proceedings of the Fifth
International Conference on Bioastronomy (1997), C. Cosmovici, S. Bowyer, and D. Werthimer, Eds., no. 161
in IAU Colloquim, Editrice Compositori, Bologna, Italy.

43


