NORTHWESTERN
UNIVERSITY

Computer Science Department

Technical Report
NWU-CS-04-39
July 20, 2004

Virtuoso: A System For Virtual Machine Marketplaces

Alex Shoykhet Jack Lange Peter Dinda

Abstract

In most existing computing environments, resources such as CPU time,
memory, disk space, and network bandwidth are not used to capacity. In
future environments, such as computational grids, resources may exist
solely for sale. There is no clean way for a resource provider to sell
either kind of resource because the current abstractions an owner can
provide (and a buyer can request) are (1) too high level, (2) numerous,
and (3) complex. Virtuoso is a prototype system that creates a
marketplace in which resources can be straightforwardly sold by
resource providers to resource buyers. The resource exchange is in the
form of a low level virtual machine and virtual network that presents the
abstraction of a new raw physical machine on the buyer's network. This
report describes the interface and implementation of the Virtuoso
system. It is also a user manual for those who wish to try Virtuoso.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-
0112891, ANI-0301108, EIA-0130869, and EIA-0224449. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation (NSF).

Keywords: virtual machines, distributed computing, economic models of computing

e Table statusrelations lists all the possible states of a VM and the possible actions that can be per-
formed in each. Its fields are:
status a state of a machine.
relations legal actions that can be performed on that state.

e Table pmseller lists all of the physical machines in the system. Its fields are:

machineid universal unique identifier.

machinename a human readable name.

processor the processor type.

speed number of bogomips the machine has.

speedunit the size of the chunk of speed in which the resource will be sold.
speedprice the price per second for the speedunit size chunk of speed.

memory number of megabytes of memory the machine has.

memoryunit the size of the chunk of memory in which the resource will be sold.
memoryprice the price per second for the memoryunit size chunk of memory.

runningunitamount the period (in seconds) with which a user storing their VM on this machine will
be charged for running.

storage number of megabytes of storage space the machine has.
storageunit the size of the chunk of storage in which the resource will be sold.
storageprice the price per day for the storageunit size chunk of storage.

storageamount the period (in days) with which a user storing their VM on this machine will be
charged for storage.

connectspeed speed of network (for example: 1Gbps).
virtuosohost ip address of the machine.
virtuosoport port on which virtuoso.pl is listening.
owner the owner of the current machine.
¢ Table machinepairingsassociates physical machines with the virtual machines they contain. Its fields
are:
machineid universal unique identifier of a virtual machine.
pmachineid universal unique identifier of a physical machine.

e Table userslists all the users in the system. Its fields are:

username user login name

password must be atleast 8 characters (vncpasswd requires this)
sessionlD username + rand()

emailaddress contact info

balance currency in the system that the user holds (dollars)
accounttype either buyer or provider

30

6.1.7 Virtual machine control

The control of the state of the virtual machine is defined by the statusrelationstable. For a given state, there
are only a certain set of actions that can be taken. This table is initialized when the system is first installed.
The states and actions that may be performed are:

migrating migrationstatus

registered searchprovider editregistrationinfo
started stopmachine viewmachine suspendmachine
stopped startmachine migrate

stored startmachine migrate

suspended resumemachine migrate

The fact that each relation name can be turned into the name of a script by adding a “.pl” is not
coincidental. This is done in a Javascript function printed out by the mycomputers.pl interface.
That is, for a given state, a set of Javascript functions will be generated which are referenced by
buttons in the interface and which call the respective script to run.

6.1.8 VNC display

Virtuoso uses a Java applet VNC client to let a buyer view his running machines. When a buyer asks to
view a machine, a message is passed to the provider computer asking to first disconnect the machine from
a VNC session—if the machine is not in a VNC session then this message is ignored. After the success of
the disconnect, a connect message is sent to the provider machine which returns a port on which the VNC
server will allow connections to the machine’s display. The viewmachine.pl and startmachine.pl scripts
get served a Java VNC applet from the front-end machine, the applet takes as input the host machine on
which the virtual machine is running and the port on which the VNC server for that session is listening?*

6.1.9 Background daemons

Several background daemons are run to keep the Virtuoso system up to date on marketplace trends and also
to update the balance of user accounts.

The script priceaverage.pl runs through the configurations and preconfigurations stored in the database
tables config and preconfig and updates the average market prices for each configuration. For each con-
figuration it searches for providers that would be able to host the configuration and then, from the suitable
providers, it makes an average for the resource prices. If it is not able to find a provider which could host
the configuration, it leaves the stale price. This script is run, by default, every 60 seconds.

The scripts storageupdate.pl and runningupdate.pl update the balances of both the provider and the
buyer for a given machine if that machine’s storage deadline or running deadline has been reached. The
provider is credited by the storageprice/running price if the storage/running deadline has been reached. The
system can figure out whether a storage/running deadline has been reached by seeing whether the current
time > the last time debited + storage or running unit amount. Machines are only debited for CPU when
they are in the running state.

2*Currently there is no mechanism to dynamically adjust the VNC display size and it is set to be large enough to accommodate
a typical display screen.

31

6.1.10 Event logger

The event logger is a debugging tool for the Virtuoso system and is helpful in understanding how the system
works. It listens on port 6767 for connections and understands the messages append.ta log and flush. log.
The logger does not actually flush to a file until the flush.log command is received. All important events
in the system (including provider system events) are logged through the event logger and come in order of
their occurrence. Thus, to read an event log is to see the order of Virtuoso calls and the origin of each call?®

6.1.11 Environment initialization

The env.pm package in the virtuosoDB directory is called at the beginning of each script to initialize key
environment variables. During installation, the user’s environment was read and printed to the env.pm file.
This is important since the CGI scripts are executed by the user oracleuser and not by the user virtuoso, so
the environment would be different unless explicitly set to the same thing.

6.2 Provider system

The provider system is mostly a set of Perl scripts and packages which work together to implement the func-
tions of controlling virtual machines, answering questions about those machines during migration events,
answering VMMP (migration) messages, and migrating machines. Since a full description of the migration
system is available in Section 7, we focus on aspects of virtual machine control here.

6.2.1 Files

The following lists the files relevant to the provider system. prog.dir refers to the directory in which the
provider scripts and other tools are installed.

~/l.vnc/xstartup VNC startup script. It must be configured to execute prog.dir/console starter.pl. If it does
not exist, it will be automatically created. The console starter runs the VMWare console session as
the window manager.

prog-dir/virt_config.pom Contains all of the configuration parameters for the provider.

prog-dir/vm_config_create.pom Perl library that implements the function
create_from_config(@configuration_parameters) that creates virtual machines based on configuration
parameters supplied by Virtuoso. Translates a Virtuoso config file to a VMWare config file.

prog-dir/vm_delete.pm Perl library that provides the mechanism to delete virtual machines from the provider,
delete_vm($uuid).

prog-dir/virt_interface.om Perl library that implements the client side interface to the Virtuoso provider
network interface. Implements:

create_vm($host, $port, @configuration_parameters)

register_vm($host, $port, $uuid)
start_vm($host, $port,$uuid)
stop_vm($host, $port, $uuid)

Bt the event logger is not operating, then all events will be logged locally by the provider system. This is useful to speed up
operation of the system since every event will no longer have to wait to send a log of itself to the central server.

32

set_passwd($host, $port, $uuid)

$port = connect. vm($host, $port, $uuid)

disconnect_vm($host, $port, $uuid)
delete_vm($host, $port, $uuid)
e @info = get_server_info($host, $port, $uuid)

prog_dir/virt_machine.info.om Collects performance and configuration information from the machine the
server is running on. The library implements @info = get info().

prog-dir/vm_control.pm Implements the interface to the VMWare Perl APIs, providing

e stop_vm($uuid)
e start_vm($uuid)
e resume_vm($uuid)
e suspend_vm($uuid)
o register_vm($uuid)

$status = vm_status($uuid)

prog-dir/vm_lookup.pm Implements the mapping from uuid to VMWare configuration file location. This
is needed because Virtuoso tracks machines by their uuid, while VMWare and disk operations need
the path to the configuration file. It provides the following:
e add_vm($uuid, $config_file)
delete_vm($uuid)
stash_vm($uuid)

$config_path = find_vm($uuid)

restore_vm($uuid)

prog_dir/vm_portspm This implements the mapping of a virtual machine to the port number that it runs
VNC on. It also tracks how many VNC sessions are running, and limits the number of simultaneous
sessions that can be run. It provides:
e add_vm($uuid)
e delete_vm($uuid)
e find_vm($uuid)
prog_dir/vnc_control.pm This implements the controls for the VNC software, that provides the interface
to the Virtuoso users. It implements:
e start_vnc($uuid)
e stop_vnc($uuid)
e set_vnc_passwd($uuid, $passwd)

prog_dir/vncserver This is a modified version of the vncserver script found in the standard VNC distribu-
tion. It allows us to handle multiple sessions easily.

33

prog_dir/vnc_mod/* This is a modified version of the vncpasswd program that creates VNC passwords.
The difference is that this version takes the password on the command line.

prog_dir/virtuoso.pl This is the actual provider daemon that is run in the background continuously. It
handles all the communication with the front end.

prog-dir/console_starter.pl This is run from the VNC xstartup file. It takes the uuid as a command line
argument, looks up the configuration file path, and then forks and execs vmware-console with the
correct configuration file. In other words, it attaches a display to a running VM.

machine_dir refers to the directory in which VMs will be stored on the provider.
machine_dir/vm_list.virt Virtuoso data file that contains uuid to configuration file path mapping.
machine_dir/vm_ports.virt Virtuoso data file that contains the uuid to VNC port mapping.

For each VM, the following is stored in addition to the actual VMWare state:
machine_dir/vm/vm.passwd VNC password file for the VM.
machine dir/vm/vm.virt Virtuoso configuration parameters.
machine_dir/vm/vm.pid VNC pid for stopping the VNC service for the VM.

The following sections describe the functionality of the provider server in more detail.

6.2.2 Local state

To keep track of the machines stored locally in the virt directory and to keep track of certain configuration
information, the provider system manages a set of local state files. These files are key, value pairs and
contain information about machines.

vm_list.virt pairs each machine’s uuid with the relative path to the machine’s configuration file.

vm_origin_list.virt pairs each machine’s uuid with the IP address and port from which the machine was
migrated. If the machine originated on this computer, there is no entry for that machine.

vm_version_list.virt pairs each machine’s uuid with the version number stored locally. This is consistent
with the version number stored in the central database.

vm_port_list.virt keeps a list of ports that can be used for VNC sessions. Pairs a port with a machine id if
that machine is connected to a VNC session.

6.2.3 Virtual machine control

The act of creating/registering/starting/stopping/suspending/resuming/deleting a virtual machine is carried
out with the help of the vm_control.pm package. The virtuoso.pl server gets a message and dispatches to
an action based on the type of the message. There is an assumption that if the message has been received,
then the action is permissible in the system. That is, there is no access checking by the provider system.?

%This is the current state. In a deployed system, the provider would not trust the front-end and the network quite so much. One
way to add additional security now is to bind the provider to the loopback address, and then set up an SSH tunnel between the
provider and the front end for access to that port.

34

To create a virtual machine image, Virtuoso does not use any VMware related API, but rather has its own
methods of creating a disk, configuration file, and ram. The create from. config function in vm. config create.pm
takes as input an array of key, value pairs. These are the values that will be inserted into a configuration
file. This function creates the directory where the machine will be manufactured, creates the disk file, and
registers the machine with the local state files through vm.lookup.pm.

Each VMWare virtual machine is issued a unique id from the Virtuoso system, instead of the standard
uuid that is automatically generated by VMWare whenever the machine is run. Also issued by Virtuoso is
the Ethernet address, which, like the uuid, is usually automatically generated by VMWare when the machine
is run. These numbers are controlled by Virtuoso as (1) a means of tracking and managing machines across
multiple providers and (2) a way to interface to the VNET virtual network service.

Currently all of the configuration is done at the time of creation, as discussed above. In order to provide
security for the providers Virtuoso users are not allowed to modify the machine configurations themselves.
The actual configuration file is locked to prevent this from happening. Providing for configuration changes
is due in a future iteration of this distribution.

All other machine control commands then are passed through VMWare. The package vm. control.pm
is a wrapper for the VMWare Perl API. Refer to the VMware Perl Scripting API documentation at
http://www.vmwar e.com/pdf/Scripting-API _21.pdf for a full description of all supported functions. The
intent behind wrapping this API is to make it possible in the future to use similar APIs provided by other
VMMs.

To start a machine, the system needs to first find its configuration file for the given uuid. The vm.lookup.pm
package is used—it consults vm_list.virt to find the relative path and appends it to the Virtuoso path stored
in the virt_config.pm file. Once the system knows where the machine is, it can use a VMWare control
server to send a start message to VMWare. A similar sequence of steps is used for resuming a machine, and
discovering its status.

The sequence of steps that it takes to stop a running machine is a bit more involved. This is because
VMWare will often ask a question before letting a user stop the machine. A typical question might be
“Would you like to commit undoable disk...” Since this is an automated system, the stop function has a set
of default answers that it uses to pass to VMWare—the default is to answer “yes” to everything?’ If the
stop command is successful, the version of the machine is increased by 1.

The act of suspending a machine may fail if the use asks to suspend the machine while its operating
system is still loading - VMWare refuses to honor the suspend request. The suspend command attempts to
fix this by asking to the suspend the machine repeatedly if the request is not successful—it stops after 100
attempts and returns a response of failure. If the suspend command is successful, the version of the machine
is increased by 1.

When the system first creates a configuration, it sets the permissions on the configuration file to be 544.
The register machine function changes these, temporarily, to 744. It then registers the machine and changes
the permission back to 544. The version of the machine is then increased by 1.

6.2.4 VNC control

After a machine has been started, it can be viewed through a VNC session. The control of VNC is managed
by the vnc_control.pm package. This package exposes the functions of starting and stopping VNC and
setting the VNC password. The set password function of VNC takes as input a uuid and password. It
then calls vncpasswd which is an command line tool (executable) that sets the VNC password to the given

21t would be possible to provide an exhaustive interface to VMWare that lets the user answer these questions himself, but that
would cause us to be heavily dependent on VMWare.

35

password. A password must contain at least 6 characters. After the password is set, the system will receive
a message from the front-end to connect a vncserver.

The start VNC function takes as input a uuid. Using the vm_lookup.pm package it adds a port on which
the VNC session will be started and it builds a command line to pass to vhcser ver— part of which includes
the name of the password file for that particular machine. It then runs vncserver with the command line—
this is the standard vncserver script except that it configures the VMM’s console display as the window
manager. This is done by passing xstartup the uuid of the machine— xstartup then calls consolestarter.pl
to start a VMWare console. The result is that although the user can see the console of his machine, as
provided by the VMM, he cannot “escape” and use VNC’s X11 session to run other programs.

The stop VNC function takes an input a uuid. It calls vncserver to kill the desktop with the given uuid.

6.25 VMWaredisks

The provider system uses VMWare (Specifically VMWare GSX Server) as the underlying VMM. Hard disks
in VMWare are configured in the same way that true physical disks are. Hence, file sizes are not computed
as straightforwardly as one would assume. In order to mimic the hardware as closely as possible VMWare
uses cylinder, sector, and head counts to calculate disk sizes and handle disk accesses. What this means is
that creating a VMWare disk requires a matching algorithm that calculates a disk size as close as possible to
the size desired.

The size of the disk is

Size in bytes = (bytes/sector)(sectors/head)(# of heads)(# of cylinders)

(bytes/sector) is generally a constant of 512 for physical disks, and VMWare assumes this as well. To get
the disk size in MBytes simply divide the result by 1048576 (byes/MB).

Solving for 3 unknowns can be tricky, and there are several bounds issues and specific allowed values to
take into account with the sectors and heads as well. However there are several assumptions and observations
that can be made to simplify this. First, when the disk size is > 2 GB, VMWare sets the head count to 255
and the sector ratio to 63. In this way the cylinder count solely determines the disk size. If we assume that
all disks are going to be larger than 2 GB, which today is a safe assumption, the equation is simplified to
solving for one variable, the cylinder count.

Given a request for an SIZE MB disk, provided SIZE > 2048 (2 GB), the values needed for a VMWare
disk file can be calculated as:

head_count = 255

sector_ratio = 63
sector_count = (SIZE x 1048576)/512
cylinder_count = sector_count /(head_count X sector_ratio)
cylinder_count = | cylinder_count |
true_disk_size = cylinder_count X head_count X sector_ratio x 512 x 1048576

VMWare supports several different schemes for disks. Plain disks are the simplest type, but several
of their features are beneficial to Virtuoso. Plain disks are preallocated, meaning that the disk files do not
automatically grow or shrink as needed. This allows for tight control on disk space use. Preallocation does
mean that transfers and copies of disk files require the movement of unused data blocks. However during
initialization each disk file is written with zeros so compression algorithms are very effective.

Plain disks are represented by VMWare as a text file that contains the configuration details of the disk
and a set of data files whose number depends on the virtual disk size. Because the maximum file size

36

Users (Consumers and Providers)

]

N
Web Interface ,_§ Physical Machine
Tl s
Database S |Virtual | Virtual
é—’/ & |Machine| Machine
Machine Control ———— =)

Mechanism Register '”E Maching| Machine| |
Create =3
= |Machine| WMachine
2
Start =

Stop

Suspend
Resume

Start VNC
Stop VNC

Figure 36: Overview of Virtuoso system and control interface between front-end and provider systems.

commonly supported is only 2 GB, the virtual disk is broken into 2 GB chunks. The configuration file keeps
track of these chunks. When a chunk is created, it is written with zeros. The naming scheme usually follows
a simple convention. disk_name is the configuration file, while disk_namei.dat is the ith chunk.

The configuration file contains information that VMWare needs to access data in the file. The cylinder
count, head count, and sector ratio are all given in the file. Additionally, there is the full byte capacity of the
drive, which currently does not appear to be used by VMWare. The configuration file data is tailed by the
chunk listings that provide spatial information for each file. Each chunk has exactly one entry in the config
file that lists it’s filename, starting offset, and length.

An example config file for the disk “test” follows:

DRIVETYPE scsi

#vm | VERSION 2

#vm | TOOLSVERSION 0

CYLINDERS 382

HEADS 255

SECTORS 63

#vm| CAPACITY 6136830

ACCESS "testl.dat" 0 4176900
ACCESS "test2.dat" 4176900 1959930

6.3 Virtual machine control interface between front-end and provider

Any user action that results in the state change of a stored machine needs to be communicated to the provider
system so that it may be carried out. Figure 36 shows where the interface fits into the Virtuoso system.

37

Most virtual machine control commands from the front-end to the provider system are issued by the
virt_interface.pm module located in the server_interface directory.

6.3.1 Storing/registering a machine

There are two paths that Virtuoso can take in storing a machine—which one is chosen depends on the type
of machine which was registered:

e If the registered configuration matches the profile of a preconfigured machine, then the system per-
forms the actions of moving that preconfigured machine from local storage to the destination ma-
chine. This involves the module preconfigured_control.pm calling addpreconfigured.pl in the
server _interface directory. This script is a command line tool that manages the movement of a pre-
configured machine to the provider on which it should be stored. This movement is separate from
the migration mechanism but sets the status of the machine to migrating so that the user is prevented
from making any changes while the machine is being stored.

e If the registered machine is not preconfigured, then the front-end passes a create message to the
provider computer. The message contains the configuration information for the machine in an array
of key : value pairs. If the create command returns a success, then the front-end passes a register
machine message to the provider system. This message contains the uuid for the machine that is
being registered with VMWare.

6.3.2 Starting/resuming a machine

If a machine is stopped, it may be started. If it is suspended, it may be resumed. The messages for starting
and resuming are similar and included the uuid of the machine. The start command occurs before the start
vnc command.

6.3.3 Starting/stopping a VNC session

As soon as a start command is successful, the system will want to start a VNC session on the provider. The
first step is to set a password, this involves sending a passwd message which includes the uuid and password
for the VNC session. Next, the system sends a message to connect the VNC session, this message includes
a uuid. The provider system passes back a response that includes the port on which the VNC session has
been started.

6.3.4 Stopping/suspending a machine

If a machine is running, it maybe either be suspended or stopped. Both of these commands take only a uuid.
The fact that a machine is running when these commands are issued mean that they are prone to failure—the
failure reverts the state to running. This is because VMWare may refuse to stop or suspend a machine if its
operating system is still loading.

6.4 Buyer system

Currently, the buyer system consists of a java-enabled web browser.

38

Users (Consumers and Providers)

w]

Web Interface
T
Database

Machine Migration
Mechanism

i T Virtual Machine Migration Protocol : <VMMP... >

Physical Machine

Server
(User Process)

Virtual | Virtual
Machine| Machine | 12

(7]

Machine

Machine ,

»
7]
2

Z

Figure 37: Overview of Virtuoso system and migration interface between front-end and provider systems.

7 Migration system

The motivation for including migration in Virtuoso was in part an economic one; without migration, both
the provider of resources and the consumer of resources were stuck with the agreement that they had made,
arbitrated by Virtuoso, at the time of machine creation. If the consumer became unhappy with the perfor-
mance of their machine or the reliability of the provider’s computer, they were not able to pick up and move
elsewhere. Similarly, if they had found a better deal given by another provider, they were not able to take
advantage of the deal. From the provider’s side, this was also a disadvantage—they were not able to entice
existing users to move to their system. Thus, there was not as strong of a motivation to provide competitive
prices since the only customers they could get would be those that are creating a new machine and would be
stuck with the chosen price. Also, a buyer would spend an inordinate amount of time looking for the best
deal instead of picking a decent deal and getting on with using the machine. Migration helps to ease this
friction.

Automating performance optimization and economic optimization are research topics for our group.

Figure 37 shows where the migration system fits into the Virtuoso system—it is an interface between
the front-end and provider systems. The figure illustrates that all communications between the two systems
happen through a Virtual Machine Migration Protocol (VMMP).

7.1 Requirements

The design of the migration system began with an enumeration of the requirements:

39

1. independence from any particular virtual machine platform or host platform
2. generality and interoperability

3. efficiency of migration

4. management of multiple migrations by multiple users

5. machine encapsulation

6. concurrency of versions of the machine

7. atomicity of migration transactions.

7.1.1 Independence

The goal of the Virtuoso system is to be a general purpose tool that can be inserted in-between consumers
and providers; a tool that is as divorced as possible from any particular instance of a technology. This
independence has two aspects; the system should not depend on any particular host operating system, nor
should it depend on any particular virtual machine monitor. That is, the system may currently be built upon
Red Hat Linux and use VMWare as the virtual machine monitor, but it should be possible to use any other
combination of OS and VMM with minimal changes to the system.

7.1.2 Generality

Not only should the system be divorced from any particular instance of an OS or VMM, but its pieces should
be as thinly linked as possible and their communication protocols well defined. Thus, the system would be
general enough that new developers could come along and develop their own versions of the system that are
interoperable with earlier versions—versions which could be added without complication to other instances
of the system.

7.1.3 Efficiency

The fact that a virtual machine can be on the order of many gigabytes in size should not be a limiting factor
in whether a user wants to migrate the machine or not. Thus, the system should take advantage of efficient
migration mechanisms for the transfer of large chunks of data.

This efficiency should not come at the expense of any of the other migration requirements. Previous
efforts at migration have used mechanisms which were specific to a virtual machine for example, the use of
a VMWare C-shim library to capture disk writes for the creation of redo logs (Rosenblum [10]). This is a
breach of independence between the migration system and the virtual machine monitor.

7.1.4 Machine encapsulation

Previous work has been done in building migration systems, often taking advantage of the fact that not all of
the data needs to be sent to migrate a machine. Specifically, data can be fetched only when it is needed—for
example on-demand paging (Rosenblum [10, 7]). However, this increases how much the system relies on
the operation of all of its nodes and decreases overall reliability. If possible, a migration system should
attempt to keep all of the machine in as concentrated an area as possible—that is, the machine should be
encapsulated.

40

7.1.5 Consistency of versions

In the Virtuoso scheme, the machine goes through a series of states. Each state change marks a progression
of the machine from an earlier version to a new version. A state change occurs when a machine is registered,
created, stopped, suspended, or arrives at a migration destination. The state of the machine is stored locally
with the machine and is also stored by the Virtuoso system. Thus, there is an important piece of state
information that is mirrored and must be updated concurrently. The system must be designed to ensure that
the version numbers are never out of synchronization.

7.1.6 Atomicity of migration

Migration is an especially critical period of state change. That is, there is a chance that something might go
wrong and that the migration is not a success. The situation where a machine is left in a state of transition
should not be a terminal one, that is we must be able to know that a migration was not successful and we
must be able to revert to the situation the machine was in right before migration.

7.2 Migration implementation

The implementation consists of a mechanism-independent migration protocol, a migration agent and inter-
face that implement the protocol, and ssh and rsync transfer methods.

7.2.1 Migration protocol

The requirement of generality and interoperability led to the definition of a Virtual Machine Migration
Protocol (VMMP). The Virtuoso system supports version 1.0 of this protocol.

Through the use of VMMP, the migration agent on the central server only needs to know how to commu-
nicate with the migration server on the destination machine. The central server issues queries and requests
and gets results and responses from the destination machines.

There are five supported VMMP messages:

1. <VMMP 1.0 QUERY MACHINE_ID METHODS>
2. <VMMP 1.0 RESULTS MACHINE _ID N.METHODS METHOD 1 METHOD 2 ... METHOD N>

3. <VMMP 1.0 REQ MACHINE_ID VERSION ORIG_IP ORIG PORT CENTRAL 1P CENTRAL PORT
METHOD>

4. <VMMP 1.0 HEARTBEAT MACHINE _ID>
5. <VMMP 1.0 RESP MACHINE_ID VERSION’ SUCCESS/FAIL>

The QUERY message is used to ask the providers’ machines which methods of migration they support.
The MACHINE_ID is the universal unique identifier of the virtual machine, as stored in the database. The
1.0 in front of VMMP is the version of the protocol that we are using.

If the QUERY is received and if the destination machine supports protocol version 1.0, then the response
that the machine produces is a RESULTS message. The tag N.METHODS is an integer which marks how
many methods it has returned. The instance of the migration system that has been built supports the methods
of RSYNC and SCP—the merits of these methods and how they are used are discussed later.

The REQ message is a request to the server on the destination machine to migrate the machine MA-
CHINE_ID using the specified method (METHOD). The ORIG_IP and ORIG_PORT are the values of the

41

address of the host on which the machine is currently stored and of the port on which the migration server
on that machine is listening.

The HEARBEAT message is a message generated by the destination machine intermittently to let the
central server know that the destination machine is still running and is still migrating the machine that has
been requested. It is sent to CENTRAL_IP/CENTRAL_PORT and is the reason that those two values are
sent with the REQ message. If the heartbeat is not received within a pre-specified window time, the central
server decides that the migration failed and reverts the system to its previous state. This is one way through
which atomicity is approached—the system makes sure that any failure is regarded as a complete failure and
an earlier state is reinstated.

The RESP message is sent by the destination server once it has received the machine and has checked
that its local state is sane. The central server can then update the state of the machine to VERSION’,
and update other appropriate database tables: machine pairings table with the new machine location, and
physical machine table to reflect the memory, storage and speed changes.

7.2.2 Migration agent

The migration agent is a bridge between the web interface and the Virtuoso provider server on the destination
machine. All requests for migration and migration related queries come through the migration agent on the
central server in the form of VMMP requests.

The agent is a Perl script that runs in a continuous loop, waiting for requests. If a request is for a QUERY
message, it sends the message directly to the destination machine and returns the result via an open socket
with the web interface. If, however, the message is for a REQ, the migration agent cannot afford to wait
for a response from the server on the destination machine. Instead, it forks an independent server that is
charged with handling that specific request for that machine id. The migration agent maintains a list of ports
on which migration servers are already running. When a server finishes, the server cleans the port list of the
port it was using. The migration ports, by policy, start at 10000.

7.2.3 Migration server on provider machine

On the destination machine, there is a server running virtuoso.pl that is responsible for both regular machine
operating requests and for migration requests. It supports many different messages: VMMP messages,
machine operating messages, and back-end specific messages.

The VMMP messages have already been discussed, as have the machine operating messages and vnc
operating messages (start/stop/suspend/resume/register/passwd/ connect/disconnect/create).

The back-end messages are those messages that are used by the origin and destination machines to
communicate with each other during a migration event. The messages that are supported are:

register_pre configured This function is a necessity brought about by VMWare—a machine cannot simple
be started with VMWare, even though it has been created. Upon the termination of migration—the
machine must be registered.

ask_virt_path ask_base_path ask_config_path These functions are used by the copying methods to copy
the correct directory to the correct destination directory.

make vm_migratable This function is used to make sure that the permissions of the files used by the
virtual machine are set correctly so a copy is permitted to the Virtuoso user. In further extensions to
the system, this function will probably be more important as it is a general purpose function to make
sure that the machine state is sane for migration.

42

ask_state This is a function which figures out the state of the virtual machine.
There are many local modules that the migration server uses. For migration, the modules are:
vmmp_back This module executes VMMP instructions on behalf of virtuoso.pl.

Thelookup modules

back_end_lookup This is a wrapper for communications from the destination server to the origin
server. This module is used by [method]_server.pl to ask the origin machine where it has stored
the machine with a given machine id.

vm_lookup This is used to look up path information for the virtual machines stored on a physical
machine—it accesses the virt_config.pm module to see where the machines are stored.

vm_version_lookup vm_origin_lookup These two modules look up the version file list and origin
lookup list respectively. These lists keep the information for the version stored on the machine
and for the last location of a given virtual machine.

(scp — rsync)_server.pl These are wrappers for the given copying methods (scp and rsync). These are
currently the two methods supported by the system. They are command line tools used by vmmp. back
to execute REQ instructions.

vm_control.pm This is a wrapper for VMWare’s Perl APl—in the migration context, it is used to register
machines once the migration process is completed.

heartbeat_server.pl This script reports intermittently to the central server by sending VMMP HEART-
BEAT messages.

7.24 Local state

In addition to the database, there are local state files that are maintained by the host machines. The ones
which are important to the migration system are the vm_list.virt, vm_origin_list.virt, and vm.version list.virt
files. These are newline delimited machineid : value pair files. They are parsed by their corresponding
lookup functions.

7.2.5 Supported methods

Currently the migration system supports two copying methods. These are rsync (an updated version of
rcp, which implements a remote update protocol based on block hash comparisons) and scp, which does an
straight copy over an encrypted channel. These two methods were chosen because they are well behaved
and contrast each other enough to give interesting performance data.

The advantages of rsync are that it does compression and updates to files—it doesn’t send a block if it is
already at the destination. Scp does a simple transfer and should provide a baseline of performance. Their
relative performances are discussed in Section 7.4.

We have been worked on a migration method based on a versioning file system, but it is not ready yet.

7.3 Usagescenario

Here we describe how the migration process works from mouse click in the web interface to completion, all
at the granularity of a migration log:

43

7.3.1 Front-end initiates migration and waits

The user clicks migrate on the migrate.pl page.

e startmigration.pl has to check the sanity of the request:

1. Checks the database to make sure the user has permission to start the machine with the given
machine id.

2. Uses vmmp.pm to QUERY the destination for which methods it supports.

3. virtuoso.pl on the provider destination machine receives the query and consults vmmp. back.pm
to ask the methods that it supports.

4. startmigration.pl uses vmmp.pm to parse the results and determines that the destination supports
the migration method

e The request is sane, it is ok to issue a migration request:

1. startmigration.pl calls start_migration through the vmmp.pm package—sending the version,
machine id, destination ip/id, origin ip/id, and method.

2. vmmp.pm sends a message to the migration agent on the central server, giving it the newly
constructed VMMP request and the destination information. The migration agent, passes this
information off to a migration server that it starts in the background on the same machine—the
migration agent keeps track of which ports the servers that it has started are using.

3. migration_server.pl sends the VMMP message to virtuoso.pl on the destination machine, it
now waits for a response in the form of either a HEARTBEAT or a RESP. It will continue to spin
until it either times out because no heartbeat arrives or the response is a SUCCESS/FAILURE.

7.3.2 Providers coordinate and perform migration

1.

virtuoso.pl on the destination machine receives the request and uses vmmp. back.pm to execute the
request.

vmmp_back on the destination machine unregisters the machine locally by deleting its entry from the
vm_list.virt file, if the machine was already cached there.

Depending on the METHOD type, vmmp_back.pm starts the appropriate server (in this case, either
scp_server.pl or rsync_server.pl).

virtuoso.pl upon receipt of a migrating message from vmmp_back starts a heartbeat server on the
destination machine.

. heartbeat_server.pl intermittently checks the local vm_list.virt file to see if the machine with the

given machine id exists, if it exists, it knows that the machine migration has been successful.

In the meantime, the appropriate method of migration is being executed (either scp or rsync in this
case) by the appropriate server.

. (scp — rsync)_server.pl sends messages to the origin machine to inquire as to the information it

has about the machine with the given machine id. Namely, it wants to know the machine’s absolute
directory, the absolute path to the configuration file, and the state of the machine. Then, it issues
the command make_vm_migratable which tells the origin that it is about to receive a command to
migrate, so the origin should make sure that the permissions are set properly to allow for migration.

44

8. (scp — rsync)_server.pl then does a system call to start the specified method to copy the machine
into their local Virtuoso directories.

9. When the copy is completed, the local files are updated with the new version of the machine, the path
to its configuration file, and the machine from which it was copied. Also, the VMWare Perl API is
invoked to register the machine with VMWare.

10. Now that the machine has been locally registered, the heartbeat server notices that the machine exists
in vm_list.virt and returns the SUCCESS response to the migration server on the central server.

7.3.3 Front-end isupdated and updates database

e migration_server.pl receives a response from the destination:

1. If the response is a SUCCESS, then it will update the database in the following ways: the version
will be set to the returned version, the memory, storage and speed of the destination and origin
machines will be decreased and increased respectively, the machine pairings will be updated
with the new pair of machine id and physical machine id, and the state of the machine will be
returned from “migrating” to its previous state. Also the user account will be debited and the
provider account credited.

2. If the response is a FAILURE then it will revert the system to the previous state, which the script
keeps in local variables.

7.4 Migration performance

In the previous section, an in-depth account of the migration sequence was given. Although it is a fairly long
sequence of events, the major bottleneck occurs between steps 8 and 9, between when the copy command
is issued and when it terminates. In measuring the performance of the system, this was the only metric that
was used; how long the actual copy took.

The first test that was performed on the system was a test to see how long it would take to migrate a
suspended machine (a 1.1 Gigabyte win2000Pro machine over a 100Mbit network) when the machine was
run without disk use, when it was run with disk use, and when it was run with heavy disk use. The methods
of rsync and scp were compared in this test.

Figure 38 shows the results for rsync and Figure 39 shows the results for scp. Note that these tests were
done at different times and it is not the height of the graphs that is important but rather their relative heights
to each other. That is, scp is not necessarily 6 times slower than rsync in copying an entire disk without
caching, but it is much slower than rsync after an older copy already exists on the destination machines. In
test 1 of scp and rsync, VMWare’s undoable disk was used. A machine was run on a single machine and
then suspended. It was then sent to 6 machines in a round-robin fashion; these machines did not have a
previous version of that virtual machine available.

The machine was then sent around again to measure the latency of rsync in checking the file lists for
differences and sending the differences—in this case, there were none. The machine was then run and
suspended—the time spent is mainly the time it took to send VMWare’s state file (.vmss), which is mainly
memory contents. The “ballooning” technique described in [10] would potentially help to reduce these
costs.

The next two tests used the disk?® slightly—the second test being an automated one.

2\/MWare’s undoable disk option actually writes to a redolog file

45

RSYNCTest 1

Mo Ceche
Full Cacte
L 10mArs (ro dsk LEE)
o FEC Test 1
- R 10 Mns (oo LeE)

RU 10 Mrlight disk Lse)

FLr 1DMPETERY dsk LEE)

0 3 100 B a0 pall

Figure 38: First rsync test.

1600
1400
1200
1000
seconds G500
B00

400

200

1.3 qige 1.3 gigs cached

Figure 39: SCP test.

46

Mo Cache : ~1.1
G

Fesurre & Stop: ‘
~1.1GiE

0 FSYMC Test 2

Start, usedisk,
gop:~14dogs

Stat & Stop: ~14
Gigs

0 20 400 B0 8O0 1000 1200 1400

Figure 40: Second rsync test.

The final test was one where the disk was updated heavily—about 250 megabytes were written to the
disk in the space of 10 minutes. In each case, the machine was suspended and sent around the six nodes.

The test for scp was not as thorough as the one for rsync as it became obvious that no performance
difference would be seen upon further testing.

The results show that rsync is fairly efficient for transfering VMs. The fact that the average time to
migrate a fully cached machine was less than 5 seconds means that a user is now free to migrate their
machine frequently in a search for a better provider.

Seeing that scp was consistent in its migration times, a second test was not done on it. However, rsync
was explored further—a second test was run on it to see what happened when the redolog files generated by
VMWare were committed to disk. The results of this test are seen in Figure 40.

As before, in the first case, a suspended machine was sent to a machine on which it was not cached. In
the second case, the machine was resumed and then VMWare was forced to commit the VMWare redolog
files to disk—which amounted to the writing of about fifty megabytes of data to the disk, and the deletion
of about fifty megabytes of redolog files. In the third test, the disk was started and about 250 megabytes of
data were written to it. In the final test, the machine was simply started and stopped—as before the redo logs
were committed to disk. It appears from this test that there is a fixed overhead of writing to a disk—this is
probably a side effect of the operating system running. Compared to this, the actual writing to disk seems to
be a small overhead. This result makes sense, especially if most of the writes happened to a single section
of disk—since this is the situation that rsync was designed for.

8 Conclusion and future work

We have described in detail the interface, design, and implementation of the Virtuoso system. The examples
provided have thoroughly shown how the system can be fully used by both providers and buyers. The system
is useful prototype that furthers the goal of helping to bring providers of resources together with buyers of
resources, to their mutual benefit. We provided an in-depth description of the implementation which should

47

be sufficient as a technical reference for developers in the Virtuoso system.

We are currently integrating Virtuoso, as described here, with the VNET virtual network system. We
also plan to integrate remote device support to make configuring a VM straightforward. Our research agenda
is moving towards adaptation using Virtuoso and VNET. In particular, a future version of this system will
automatically determine VM to provider mappings, as well as virtual network topology and routing, and
resource reservations on the underlying hardware, to optimize the performance of groups of VMs running
parallel and distributed applications.

Please visit virtuoso.cs.northwestern.edu to learn more.

References

[1]

(2]

(3]

[4]
[5]

[6]

[7]

(8]

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER, R.,
PRATT, I., AND WARFIELD, A. Xen and the art of virtualization. In ACM Symposium on Operating
Systems Principles (SOSP) (2003), pp. 164-177.

CORNELL, B., DINDA, P., AND BUSTAMANTE, F. Wayback: A user-level versioning file system for
linux. In Proceedings of USENIX 2004 (Freenix Track) (July 2004). To Appear.

FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case for grid computing on virtual machines. In
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS 2003)
(May 2003).

GOLDBERG, R. P. Survey of virtual machine research. |IEEE Computer 7, 6 (1974), 34-45.

GUPTA, A., AND DINDA, P. A. Inferring the topology and traffic load of parallel programs running
in a virtual machine environment. In Proceedings of the 10th Workshop on Job Scheduling Strategies
for Parallel Processing (JSPPS 2004 (June 2004). To Appear.

GUPTA, A., LIN, B., AND DINDA, P. A. Measuring and understanding user comfort with resource
borrowing. In Proceedings of the 13th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC 2004) (June 2004). To Appear.

KozucH, M., AND SATYANARAYANAN, M. Internet suspend/resume. In Proceedings of the 4th
Workshop on Mobile Computing Systems and Applications (June 2002).

LINuUX FREEVSD PROJECT. http://www.freevsd.org.

[9] LINUX VSERVER PROJECT. http://www.linux-vserver.org.

[10] SAPUNTzAKIS, C., CHANDRA, R., PFAFF, B., CHOow, J., LAM, M., AND ROSENBLUM, M. Opti-

mizing the migration of virtual computers. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI) (2002).

[11] SmiITH, J. E. An overview of virtual machine architectures. Department of Electrical and Computer

Engineering, University of Wisconsin, 2001.

[12] SUNDARARAJ, A., AND DINDA, P. Exploring inference-based monitoring of virtual machine re-

sources. Tech. rep., Department of Computer Science, Northwestern University, 2004.

48

[13] SUNDARARAJ, A., AND DINDA, P. Towards virtual networks for virtual machine grid computing.
In Proceedings of the 3rd USENIX Mirtual Machine Research And Technology Symposium (VM 2004)
(May 2004). To Appear. Earlier version available as Technical Report NWU-CS-03-27, Department
of Computer Science, Northwestern University.

[14] WHITAKER, A., SHAW, M., AND GRIBBLE, S. Scale and performance in the denali isolation kernel.
In Proceedings of the Fifth Symposium on Operating System Design and | mplementation (OSDI 2002)
(December 2002).

49

