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Abstract—Address translation often emerges as a critical performance bottleneck for virtualized systems and has recently been
the impetus for hardware paging mechanisms. These mechanisms apply similar translation models for both guest and host address
translations. We make an important observation that the model employed to translate from guest physical addresses (GPAs) to host
physical addresses (HPAs) is in fact orthogonal to the model used to translate guest virtual addresses (GVAs) to GPAs. Changing
this model requires VMM cooperation, but has no implications for guest OS compatibility. As an example, we consider a hashed page
table approach for GPA→HPA translation. Nested paging, widely considered the most promising approach, uses unhashed multi-level
forward page tables for both GVA→GPA and GPA→HPA translations, resulting in a potential O(n2) page walk cost on a TLB miss, for
n-level page tables. In contrast, the hashed page table approach results in an expected O(n) cost. Our simulation results show that
when a hashed page table is used in the nested level, the performance of the memory system is not worse, and sometimes even better
than a nested forward-mapped page table due to reduced page walks and cache pressure. This showcases the potential for alternative
paging mechanisms.

Index Terms—Virtualization, Computer Architecture, Virtual Memory, Nested Paging
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1 INTRODUCTION

V IRTUAL machine monitors (VMMs) must efficiently map
the address space seen by a guest operating system to

the true physical memory of the host system. In x86 systems,
the instruction set architecture (ISA) specifies page table struc-
tures, the paging model, and translation caching/invalidation,
effectively exposing them as architected features [7]. This has
a profound impact on the complexity and performance of
the virtualization software. On the x86, TLB misses trigger
the hardware to perform a page walk operation that fetches
the missing translation via a traversal of the multi-level page
table structure. The guest operating system expects these
interactions with the hardware and the VMM consequently
must virtualize these aspects of the memory system. These
complexities make pure software support for memory virtu-
alization for x86 architectures challenging to implement and
may expose memory virtualization as a potential performance
bottleneck [2].

In response to these concerns, both AMD and Intel have
added an x86 hardware virtualization support feature known
as nested paging to recent processors. Nested paging recognizes
that memory virtualization requires two separate types of
memory translation: (1) guest virtual address to guest phys-
ical address (GVA→GPA) and (2) guest physical address to
host physical address (GPA→HPA). The current nested paging
approach applies the same address translation model to both types of
translation. The guest operating system controls the GVA→GPA
translations by directly manipulating its own page tables and
doing localized TLB invalidations. The VMM controls the
GPA→HPA mapping by directly manipulating a second set
of page tables and TLB. These translations “nest” inside of
the steps of the guest’s page-walk. If the page tables are n
levels deep, an O(n) page-walk from the guest’s perspective
can, in fact, turn into an O(n2) page-walk in the hardware. The
address translation process for a 64-bit host VMM running a
64-bit guest operating system is illustrated in Figure 1. In a
virtualized system, up to 24 separate memory accesses may
be needed to perform complete translation as opposed to a
maximum of five accesses for native execution.
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Fig. 1: Nested page walk using multi-level forward page tables
for 64 bit guest and 64 bit VMM. A 4-deep GPA→HPA page
walk is nested inside each step of the guest’s own 4-deep page
walk. This figure is a variant of that provided by Bhargava et
al [2].

Intel and AMD’s nested paging architectures merely dupli-
cate the native paging model to cope with a second layer of ad-
dress translation. However, in general, GPA→HPA translations
are only visible to the VMM itself and not the guest operating
system. This raises the question: Is a multi-level forward page
table the right approach for GPA→HPA translation?

Our experiences with implementing support for shadow
paging and nested paging in a new open source VMM sug-
gest that, from the VMM implementation perspective, there is
little benefit to having the GPA→HPA model behave like the
GVA→GPA model [8]. The model used for GPA→HPA translations
need not match the model used for GVA→GPA translations. A
different GPA→HPA model could be used without breaking
compatibility with guest operating systems in any way. This
combination of VMM flexibility and the architectural separa-
tion of concerns at the guest and VMM levels presents an
opportunity for hardware vendors to radically redesign the
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Fig. 2: Translation process for a hashed page table used for
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GPA→HPA translation model to more closely align with the
needs and capabilities of VMMs.

This paper advocates that other nested paging or, more
accurately, nested address translation, models be considered
by the academic and industrial communities. As an example
of an alternative paging model we consider a hashed page
table approach [4] for GPA→HPA translation. We present a
preliminary evaluation of the potential of this approach. The
results show that hashed paging offers considerable promise
for accelerating memory virtualization. This suggests that there
is opportunity in revisiting paging models on x86 processors.
We then discuss several additional alternatives.

2 NESTED PAGING WITH HASHED PAGE TABLES

We have investigated the use of a one-level forward hashed
page table for GPA→HPA translation. For each guest, a single
page table is used where each entry corresponds to a frame
in the guest physical memory (the memory map provided by
the VMM). The size of the page table scales with amount of
guest physical memory. In our description and evaluation, we
assume a single general purpose hash function, but our VMM
could also provide a per-guest perfect hash function. Using
a hashed page table of this kind, while retaining the legacy
paging model for GVA→GPA translation, a nested page walk
would be an expected O(2× n) steps long.

The translation process: The GPA→HPA translation is
illustrated in Figure 2. It starts with applying a hash function
on the guest physical frame number to obtain an index into the
page table. Each entry in the table contains a guest physical
frame number and a host physical frame number to which it
maps. A comparison is made between the guest physical frame
number given and the one contained in the entry. If there is no
match, we advance to the next entry and repeat. When a match
occurs, the host physical frame number is concatenated with
the page offset from the guest physical address to obtain the
exact location in host physical memory. If no match is found,
a page fault occurs, which induces a VM exit. The VMM then
attempts to resolve the situation. Since all usable guest physical
pages should have their own entry in the page table, a page
fault indicates an access to a region in guest physical address
space that does not correspond to a location on usable guest
physical memory, although it may correspond to a memory-
mapped virtual device.

The VMM can arrange for the mapping from guest physical
address to host physical address to be relatively simple, and,
given knowledge or control over the hash function, can arrange
that it results in few collisions. Therefore, a nested translation

TABLE 1: Architectural Configuration
TLBs ITLB/DTLB: 64-entry, fully-associative
Memory IL1/DL1: 64 KB, 2 way, 2-cycle latency
Hierarchy L2: 512 KB, 16 way, 9-cycles latency

L3: 2 MB, 32 way, 50-cycle latency
Memory: 4 GB, 250-cycle latency

Page Walk 24-entry, fully associative, 2-cycle latency
Cache
Nested TLB 16-entry, fully associative, 2-cycle latency

usually requires one hash computation and one memory ac-
cess, compared to as many as four memory accesses given the
model of Figure 1.

The hashed page table organization requires more space
per table entry, because it needs to store both guest and host
physical frame numbers. We conservatively estimate the size
of each entry to be 16 bytes (considering 64 bit address space
for both guest and host). For 4GB of guest physical memory
and a 4KB page size, we will need 220 entries. The size of the
hashed page table scales linearly with the size of guest physical
memory. In our example, the size of the page table would be
16MB, a (constant) 0.4% overhead.

VMM design considerations: To support hashed page
tables for GPA→HPA translation, the VMM needs to be able
to designed to build and manipulate these tables, as well as
to emulate a nested page walk that uses them. As long as
the hash function is known, or supplied by the VMM, and
the hashed page table format is well documented, this can be
readily done. For our VMM, we believe the implementation
complexity would be on par with that of our implementation
of nested paging support on AMD SVM, and simpler than that
of our general shadow paging implementation.

We expect that a typical implementation will pre-allocate
the hashed page table during initial guest construction. At
this point, the VMM has an implementation-independent guest
physical memory map and is aware of all GPAs that will map
to physical memory. This map will remain constant for the life
of the guest in almost all cases, and thus it could be readily
used to populate the table, and even to construct a custom
hash function, if desired. If the map1 changes, the VMM would
rebuild the table. The primary limitation of the hashed page
table approach is that it makes lazy instantiation of nested page
table structures much harder.

Hardware Complexity: Hashed page tables have been
studied extensively by Huck et al [4], and an implementation
of hashed page tables in the PA-RISC machine is described by
Jacob et al [6]. Huck notes that the implementation of an HPT
hardware miss handler has complexity similar to that of a 2-
level TLB in the previous generation of PA-RISC. This suggests
that a nested HPT approach is unlikely to be more complex
than a nested forward page table approach. Hashed page tables
do require extra hardware to implement a hash operation, but
Huck et al conclude that a simple XOR function is sufficient
and requires minimal additional hardware. Hashed page tables
may rely on a PWC and nested TLB to accelerate translations,
but these components are also found in the best current nested
forward page table approach described by Bhargava et al [2].

3 METHODOLOGY

In evaluating the hashed page table model and other models,
we consider the average memory latency seen by the guest.
We assume a VMM-independent system, and do not model
VM exits and entries.

1. It is important to note that we are referring here to the guest’s
physical memory map—the GPAs that are valid in the guest—not
how those addresses map to host addresses. The latter can change
dynamically.



We use Simics [10] to execute a benchmark in a copy of Linux
Fedora Core 5, collecting traces of memory references from
both the benchmark and the guest OS. Guest context switches
are also captured in the trace, their effects being presented in
the form of TLB invalidations (e.g., MOV to CR3, INVLPG*,
etc). Simics also provides the specific memory accesses due to
each page table walk.

We consider a range of benchmarks that have different
memory system behavior. These include the TPC-C benchmark
for on-line transaction processing [9] the TPC-H decision-
support benchmark [3]), a subset of SPEC CPU2000 [11], and
the compilation of the Linux 2.6.14 kernel. We also use a
microbenchmark that stresses nested page translation. This mi-
crobenchmark accesses a very large array at a regular interval
far apart enough that each access requires a new translation
entry in both the TLB and nested TLB, causing faults in both
translation levels.

To model the effects of nested paging, we developed a mem-
ory simulator which takes as input the GPA→HPA mapping,
a nested paging model, and a memory reference trace. Our
memory simulator models the memory hierarchy as closely as
possible to a recent model AMD Opteron processor, specifically
in the form described in Table 1, with the choice of nested
paging model being optional. We compare several different
nested paging models, as described below (a 4KB page size
is used in both guest and host memory system).

• NATIVE: Native system (without any nested paging). In
addition to the TLB configuration described in Table 1,
a “1D” page-walk cache (PWC) (cf. [5]) is included. This
gives us an upper limit on performance.

• BASE: Baseline system with nested multi-level forward
page tables, but without page walk caching.

• FPT2D+NTLB: Nested multi-level forward page table with
a nested TLB and a “2D” PWC. The nested TLB (NTLB)
serves to significantly improve the performance of nested
paging by directly caching GPA→HPA translations. This
configuration is the one recently proposed by AMD to
dramatically speed up the current nested multi-level for-
ward page table model [2]. As far as we are aware, it
represents the current state of the art in nested paging
implementation for the multi-level forward page table
model.

• HPT1D: Nested hashed page table with 1D PWC.
• HPT1D+NTLB: Nested hashed page table with nested TLB

(NTLB) and 1D PWC.
It is important to realize that for each of these models, page

walks are also accelerated (and thus memory latency reduced)
by the fact that page table entries can reside in data caches.

4 RESULTS

The results of our experiments can be summarized as follows.
• The hashed page table model is a viable alternative, per-

forming comparably to the state-of-the-art model [2] for
many benchmarks, and never performing worse.

• For some benchmarks, the hashed page table model per-
forms significantly better than the state-of-the-art model.

• In these cases, the hashed page table model performs
better because it is able to avoid nested page-walk cache
references altogether, and reduce nested L2 cache accesses.

Figure 3 shows the number of cycles spent in the mem-
ory system, including both cache stalls and TLB translations,
normalized to native system performance. In comparison to
the base system, the nested hashed table model reduces the
memory access latency significantly for all our benchmarks. Its
performance is on par with the current state-of-the-art nested

microbench kernel tpcc tpch vpr0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
iz

ed
 a

ve
ra

ge
 m

em
or

y 
ac

ce
ss

 ti
m

e base
fpt_2d_ntlb
hpt_1d
hpt_1d_ntlb
native

Fig. 3: Performance Comparison.
.

forward page table [2]. Even without the support of an NTLB,
the hashed page table model provides performance very close
to the state-of-the-art approach. With an NTLB, performance is
slightly closer to native performance than that approach.

The SPEC2000 vpr benchmark shows the most differentiation
between the various models. Even with an NTLB and a 2D
PWC, the nested multi-level forward page table model per-
forms 24% worse than native. In contrast, the nested hashed
page table model with a 1D PWC and an NTLB suffers only a
10% loss of performance.

It may be surprising that SPEC2000 vpr shows a more pro-
nounced difference between the native and baseline virtualized
systems than does the microbenchmark. A detailed analysis of
the number of cycles spent in page walks reveals that, while the
microbenchmark is designed to cause misses in the nested TLB,
it also results in significant TLB misses in the native case. The
execution time of the microbenchmark is dominated by TLB
miss handling in both cases, making the difference between
them less pronounced than we see for SPEC2000 vpr.

To better understand the source of the performance differ-
ence for SPEC2000 vpr, we analyzed the number of mem-
ory accesses due to page walks for each scheme as well as
the location in the memory hierarchy where these walks are
serviced. Figure 4 plots the number of page walks generated
by each model, normalized to the number performed by the
baseline nested paging model. These page walks are further
decomposed into where they occur and how they are satisfied:
guest(g) or nested(n) paging levels; and service in PWC, L2,
L3 cache or the main memory.

Figure 4 shows that the primary reason for the hashed page
table model’s improvements result from a reduction in page
walks. Hashed paging with an NTLB gives a number of page-
walks that approaches that of the native system. Even without
an NTLB, the number of page walks in in hashed paging is very
close to multi-level forward paging supported with a NTLB.
The addition of an NTLB to hashed paging eliminates many of
the nested page walks originally serviced by the L2 cache. This
means that hashed paging significantly reduces the pressure
that page translation places on the memory system during
page walks. Overall, this translates into significantly improved
memory access times.

Beyond the SPEC2000 vpr results, we have also noticed an
across-the-board reduction in the total number of page table
entry accesses. This accounts for a noticeable reduction in
memory stall time for many of the workloads.
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5 OTHER MODELS

The results of the previous section suggest that there is con-
siderable promise to exploring alternative paging models in
virtualized systems. We now consider other paging models that
could be employed.

Software-managed nested TLB: Instead of enforcing a
specific page table model in the instruction set architecture,
the ISA could instead provide for a software-managed nested
TLB, exiting to the VMM whenever an NTLB miss occurred.
This would allow the VMM to adopt whatever paging model
would be most appropriate for the current workload. The guest
would continue to see the legacy (hardware-based) paging
model. While at the present time this concept would appear
quite expensive as VM exit/entry costs are very high in AMD
and Intel’s virtualization extensions, there doesn’t appear to be
any intrinsic reason why this will remain so.

Segments/extents: Some VMMs employ a simple
GPA→HPA mapping, trying to keep physical memory
contiguous at the host and guest levels. One advantage of this,
particularly in high performance computing, is to make the
memory system maximally predictable at the guest level. Such
a mapping could be compactly represented as a collection
of run-length-encoded extents provided by the VMM to the
hardware. For example, in our VMM, when creating a memory
map comparable to a commodity PC on an HPC system, it
could be represented with O(10) extents.

With the decline of segmentation in 64 bit x86, one could
imagine mapping these extents into segmentation. Each seg-
ment described in the GDT or an LDT is already defined by a
base address and length in pages. A special segment type that
also contained a guest physical base address as a tag, and a
corresponding host physical base address, could be created.
Nested translation would then consist of a lookup through
those special segments. With a small number of entries in the
segment table, a small and very fast cache close to the core
could be dedicated to these lookups, for example extending
the existing segment descriptor cache. Using a fully associative
cache with logic to support the ≤ relation, all comparisons
could be done in parallel in a single cycle. Since the VMM is
in full control of the GPA→HPA mapping, it could limit the
number of extents used, balancing between memory traffic due
to missing in this cache and flexibility in its mapping.

Further discussion of software alternatives and of adaptive
paging is given in a separate technical report [1].

6 CONCLUSION

The overhead associated with memory translation, especially
in page walks, results in significant slowdown in virtualized
x86 systems. We have made the observation that the translation
model applied to map from a guest physical address to a host
physical address is orthogonal to the translation model used to
map from a guest virtual address to a guest physical address.
Current hardware uses identical models for these two very
different translations. Adopting a different model for the guest
physical to host physical translation would not present any
compatibility challenges for the guest operating system, and
existing VMMs could be readily modified to support it. This
creates an opportunity to revisit paging models even in the
widely used commodity x86.

We next considered an example of an alternative model, a
hashed page table, and compared it to several implementations
of the conventional model, including an implementation that is
considered to be state-of-the-art. Our results show that hashed
paging achieves significant reduction in memory access time
compared to the alternatives. Even compared to the state-
of-the-art, it never performs worse and in some instances
performs considerably better due to reduced numbers of page
walks and more efficient handling of page walks that do occur.
We considered the implementation of hashed paging in our
own VMM and found that it’s complexity would be on par
with that of the conventional model.

Our results suggest that there are potential performance
gains to be had in revisiting address translation in virtualized
systems and discarding the assumption that the “nested” layer
of translation should employ the same model as the (backward
compatible) “guest” layer. We described several other alterna-
tives, and we advocate further exploration of different models.
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