
ACCLAiM: Advancing the Practicality of
MPI Collective Communication Autotuning

Using Machine Learning
Michael Wilkins

Northwestern University
wilkins@u.northwestern.edu

Yanfei Guo
Argonne National Laboratory

yguo@anl.gov

Rajeev Thakur
Argonne National Laboratory

thakur@anl.gov

Peter Dinda
Northwestern University

pdinda@northwestern.edu

Nikos Hardavellas
Northwestern University

nikos@northwestern.edu

Abstract—MPI collective communication is an omnipresent
communication model for high-performance computing (HPC)
systems. The performance of a collective operation depends
strongly on the algorithm used to implement it. MPI libraries use
inaccurate heuristics to select these algorithms, causing applica-
tions to suffer unnecessary slowdowns. Machine learning (ML)-
based autotuners are a promising alternative. ML autotuners
can intelligently select algorithms for individual jobs, resulting
in near-optimal performance. However, these approaches cur-
rently spend more time training than they save by accelerating
applications, rendering them impractical.

We make the case that ML-based collective algorithm selection
autotuners can be made practical and accelerate production
applications on large-scale supercomputers. We identify multiple
impracticalities in the existing work, such as inefficient training
point selection and ignoring non-power-of-two feature values.
We address these issues through variance-based point selection
and model testing alongside topology-aware benchmark paral-
lelization. Our approach minimizes training time by eliminating
unnecessary training points and maximizing machine utilization.

We incorporate our improvements in a prototype active learn-
ing system, ACCLAiM (Advancing Collective Communication
(L) Autotuning using Machine Learning). We show that each
of ACCLAiM’s advancements significantly reduces training time
compared with the best existing machine learning approach.
Then we apply ACCLAiM on a leadership-class supercomputer
and demonstrate the conditions where ACCLAiM can accelerate
HPC applications, proving the advantage of ML autotuners in a
production setting for the first time.

Keywords-MPI, collective communication, autotuning machine
learning

I. INTRODUCTION

The Message Passing Interface (MPI) is the de facto stan-
dard for communication within high-performance computing
(HPC) applications. Communication is a substantial bottleneck
in modern HPC systems. Many applications running on pro-
duction HPC systems spend 50%+ of their execution time on
MPI rather than actual computation [5]. This percentage is
expected to increase in future systems.

Collective operations are among the most popular abstrac-

tions in MPI, and they represent more than half of MPI’s
overhead on production systems [5]. Collectives are a useful
and popular abstraction, but their performance varies greatly
depending on the algorithm used to implement them. Conse-
quently, MPI libraries sport a growing set of algorithms for
each collective. Selecting a suboptimal algorithm can signifi-
cantly reduce performance (35–40% [11]), but selecting a good
algorithm is not easy. The performance of each algorithm is
influenced by many factors, from software (e.g., message size)
to hardware (e.g., network latency). Dynamic factors (e.g., net-
work congestion, effective topology) vary frequently, making
it impossible to create accurate static selections. Because of the
complexity of the decision space, developers rely on automated
tools to select more performant algorithms.

Multiple methods have been proposed to autotune collective
algorithm selection. Examples include analytical models [27],
[7], [23], [24], [16] and exhaustive benchmarking tools [4].
Analytical models have failed to gain adoption because they
are difficult to implement, maintain, and expand for new
algorithms [30]. Production tools such as Intel’s MPITune and
OPTO [4] use exhaustive benchmarking. Benchmarks must be
rerun frequently to account for dynamic factors, making this
brute-force strategy impractical for large systems. In practice,
it can be used only to tune individual scenarios.

Machine learning (ML) improves upon these ideas by
learning to predict algorithm performance patterns [12]. ML
collective autotuners use microbenchmarks to measure al-
gorithm performance and then predict the performance for
situations they have not evaluated (i.e., “unseen” cases). ML
has an inherent advantage over analytical models because it
can understand variation caused by factors that are difficult to
model analytically, such as real-time and/or machine-specific
influences (e.g., network congestion). In addition, predicting
algorithm performance for unseen scenarios lessens the bench-
marking overhead compared with exhaustive approaches.

Previous work has repeatedly shown that ML autotuners can
improve collective performance by up to 30% in simulated

Application
Scientist

Inputs:
Job

Collectives

Output:
Application

Results Hardware

ACCLAiM

Training

.json File

MPICH

Optimized
App

Allocation on Large-Scale System

Hardware

Random
Test Set

Selection

Simulate Training (Lookup
benchmark results from pre-

collected data)

Benchmark Results

Allocation on Large-Scale System

Offline
(b) This Work: ACCLAiM

(Large-Scale, Production Evaluation)
(a) Previous Works

(Simulated Evaluation)

Model Evaluator

Output:
Model

Performance

Inputs:
Exhaustive

Benchmarks

Fig. 1: Previous works’ prototype vs. ACCLAiM. Previous works use offline simulation to show the promise of ML collective
autotuners. ACCLAiM aims to make these autotuners practical for applications on large-scale production supercomputers.

experiments [12], [11], [30]. We set out to build the first ML
collective autotuner prototype that can be deployed on large-
scale production supercomputers. Specifically, we target Theta,
a supercomputer at Argonne National Laboratory.

While ML autotuners have excellent theoretical results,
the state-of-the-art ML design remains overburdened by the
amount of training time required [30]. Like exhaustive ap-
proaches, ML autotuners must be retrained frequently to
account for dynamic influences. On Theta, we must train an
ML model at the beginning of every job. In our previous
simulations, we estimated a training time of 24 hours for
large-scale jobs on Theta [30]. Theta has a maximum job
length of 24 hours, so the model will obviously spend more
time training than it can save during application execution,
rendering it impractical. Additionally, simulations ignore im-
portant components, such as non-power-of-two input features,
that threaten to further balloon the training time.

In this paper we identify multiple key bottlenecks and issues
in the previous state of the art [30] that make ML collec-
tive autotuners impractical for large-scale production systems:
training data point selection, non-power-of-two points, model
testing, and data collection. We address each of these issues
through techniques such as jackknife variance calculations [6].
Our approach reduces training time by minimizing the number
of training points collected and maximizing hardware utiliza-
tion. Then we present ACCLAiM, our ML collective autotuner
prototype. ACCLAiM is the first ML autotuner prototype
that is practical to run on large-scale production systems. In
Figures 1 and 2 we showcase ACCLAiM’s novelty compared
with previous work. Our contributions are as follows:

• A training point selection methodology that uses vari-
ance calculations and guided sampling to minimize the
required number of points and account for non-power-of-
two feature values

• A model testing procedure that uses cumulative variance
to avoid collecting any additional data for testing

• Topology-aware parallel data collection to maximize ma-
chine utilization during the training process

• ACCLAiM, an ML collective autotuner prototype that is
capable of accelerating HPC applications on large-scale
production supercomputers.

II. BACKGROUND

We now introduce our evaluation environments and explain
the importance and difficulty of collective algorithm selection
and the design and limitations of existing ML approaches.
Non-ML solutions are discussed in Section VII.

A. Evaluation Environments

Throughout this work we perform two kinds of experiments.
For intermediate results and direct comparison with existing
work, we use the testing framework in Figure 1(a) from our
previous work [30]. To perform a “benchmark run,” we look
up the corresponding value in the precollected dataset, which
includes exhaustive benchmarking results. We use the same
precollected dataset as the previous work to provide the most-
level-playing field for comparison. This data was collected by
using up to 64 nodes. Each node contains an Intel Xeon-E5-
2694v4 with 36 cores (of which the dataset uses up to 32)
and 128 GB of DDR4 memory. The maximum message size
in the dataset is 1 MB.

To evaluate the practicality of our approach in produc-
tion, we perform experiments using 128 nodes on Theta, a
leadership-class supercomputer at Argonne National Labora-
tory. The full machine contains 4,392 nodes, each with an Intel
Xeon Phi 7230 with 64 cores and 192 GB of DDR4 memory.
The nodes are connected by an Aries Dragonfly network.

In both environments we study the performance of the four
most popular collectives from Chunduri et al. [5]: allgather,
allreduce, bcast, and reduce. For these collectives, we consider
a total of 10 algorithms. Experiments that do not explicitly
separate the four collectives show aggregate values.

B. Collective Algorithm Selection

1) Importance: Collective algorithm selection is a vital
problem because of its impact on performance. The most pop-
ular open source implementations of the MPI standard—Open
MPI [10], MVAPICH [19], and MPICH [1]—use heuristics
to make selections. This work focuses on MPICH because it
serves as the basis of many popular production MPI libraries,
including Cray MPI, which is the primary MPI implementation
on Theta. Hunold et al. [11] found that optimized selections
can accelerate collectives by 35–40% compared with the

2

default heuristic approach in Open MPI. Because collective
operations alone make up a significant portion of HPC appli-
cation runtimes [5], improving collective performance will, in
turn, improve application performance.

2) Difficulty: Optimized collective algorithm selections can
accelerate MPI applications, but accurately selecting the best
algorithms is difficult because of the large number of influ-
ential variables. Two types of variables exist: programmatic
and non-programmatic [30]. Programmatic variables are inputs
to the collective call. They include message size, number of
processes (N), and number of processes per node (PPN). Non-
programmatic variables are factors that are invisible to the
programmer. Many non-programmatic values exist, including
CPU architecture and network topology, latency, and conges-
tion.

To manually select the best collective algorithm for a given
scenario, a developer must understand the influences of all
programmatic and non-programmatic values. To explain what
makes this choice so difficult, we present an example choos-
ing between MPICH’s two algorithms for MPI Reduce on
Theta. The first algorithm is binomial . Binomial constructs
a binomial tree where each node reduces its children’s values
and forwards the result to the “parent.” The second algorithm is
scatter gather, which executes in two parts. First, a “scatter”
causes each of the n processes to hold the complete reduction
for 1/n of the values. Then, the root node “gathers” the fully
reduced values from each of the other processes.

Conventional logic (based on programmatic values) suggests
that binomial is the better algorithm for small message
sizes because it requires fewer sequential steps and that
scatter gather is a wiser choice for large message sizes
because scattering maximizes bandwidth utilization.

This traditional argument falters, however, when we con-
sider non-programmatic variables, such as network factors.
For example, Theta’s scheduler provides no guarantee that
nodes allocated to a job will be near each other in the
cluster, resulting in higher communication latency between
nodes. On Theta, we have measured over 2x difference in
latency for the same collective algorithm on different jobs
and allocations. For networks with high latency, binomial
is advantageous even for large message sizes because it uses
fewer, larger communications that are less affected by latency.
Scatter gather wins out in low-latency situations with its
many, smaller communications. Note that this argument is just
one of many. Other factors, such as network congestion, also
alter the effective network latency. There are more variables to
consider, but the point is clear: the design space for collective
algorithm selections is far too complex to explore manually.
ML collective autotuners learn patterns in collective algorithm
performance, providing optimized collective performance au-
tomatically.

3) Dynamicity of Non-Programmatic Values: In simulated
experiments, ML autotuners have been shown to under-
stand performance trends affected by a multitude of non-
programmatic variables. Since simulations use precollected
benchmark data, it is unclear whether these models maintain

their accuracy in the face of highly dynamic variables. For ex-
ample, Theta’s “best-effort” scheduler greatly alters algorithm
performance for every job. Therefore, an ML autotuner trained
during one job may not make accurate predictions for another.

In order to avoid the challenge of dynamic variables,
ML collective autotuners must be retrained at the beginning
of every job run on Theta. This requirement applies the
strictest possible standard for training time; each job using
the autotuner must be able to recoup the training cost over
the course of its single application run. On the bright side,
this prerequisite decentralizes our design, greatly improving
usability. Instead of trying to coordinate a centralized autotuner
across the many users or applications on the system, appli-
cation scientists can train their own models independently.
Any user can utilize ML collective autotuning without special
permissions.

C. Existing ML Autotuner Approaches

1) Baseline Design: In this work we adopt the state-of-the-
art ML collective autotuners as our baseline design. Hunold et
al. [11] designed the first ML autotuner, which used a single
ML model per algorithm per collective. For example, if the
MPI implementation had 4 collective operations, each with 3
algorithms, the autotuner would create 12 separate ML models.
Each model is responsible for predicting the performance of
one algorithm. Each model accepts three inputs: number of
processes, number of processes per node, and message size.
The inputs are also referred to as “feature values.” All possible
input values are called the “feature space.” Each model outputs
a predicted execution time in microseconds.

The autotuner collects training data using microbenchmarks,
which in Hunold et al.’s work are a random sample of the
feature space. To make an algorithm selection, the autotuner
queries the models for each algorithm, and it selects the
algorithm of the model with the lowest predicted time. Us-
ing precollected data from small clusters (number of nodes
≤ 48), Hunold et al. showed that the autotuner’s selections
outperformed the default heuristics by 35–40%.

Previously, we recognized that the original training method
could not scale for larger machines because benchmarking
random points is too costly. To address this challenge, we
proposed the FACT methodology that uses active learning
to intelligently select training points [30]. Active learning
is an iterative process that intelligently selects new training
points to more efficiently train the ML model. In simulated
experiments FACT maintains near-optimal performance with
6.88x less training data collection time than the Hunold
approach. Because of its superior performance, we proceed
with FACT as our point of comparison in this work.

Despite its improved performance, FACT introduces mul-
tiple new bottlenecks. FACT still requires up to 24 hours
of training time for larger-scale (128–512 node) systems,
which remains impractical [30]. This time is still dominated
by training data collection. Figure 2 illustrates FACT and
compares it with our proposed ACCLAiM methodology.

3

5/12/22, 12:06 PM draw_file

1/1

FACT

Sequential
Evaluation

Surrogate Model

Benchmark
Results

Points to
Benchmark

DeepHyper

Continue?

Train Autotuner
ML Model

Test Set
Performance
Evaluation

Converged?

Test Set

Sequential
Evaluation

Yes

NoSignal Continue

Generate .json

(a) Previous State-of-the-Art Training Methodology

ACCLAiM

Generate .json

Train Autotuner
ML Model

Uncertainty
Evaluation

Converged?

Yes

No
Select Points
by Variance

Parallel
Evaluation

Benchmark
Results

(b) Proposed Training Methodology
Fig. 2: Existing state-of-the-art methodology vs. proposed ACCLAiM methodology. ACCLAiM improves and simplifies the
state of the art.

Size of Training Set (Less is better)

A
vg

 S
lo

w
do

w
n

1.00

1.05

1.10

1.15

1.20

0%25%50%75%100%

Hunold et al. FACT
Convergence Criteria (MUST STAY BELOW)

Fig. 3: Performance comparison of previous two state-of-the-
art methods (Hunold et al. [11] and FACT [30]). FACT exhibits
superior performance, staying below the convergence criteria
with far less training data than Hunold et al.’s method needs

2) Evaluation Technique: Throughout this work we fre-
quently adopt our previous performance comparison technique
to compare autotuners [30]. For this technique, we use the
average slowdown metric. Average slowdown measures the
slowdown of the model’s selected algorithms compared with
the optimal choice. The best possible average slowdown
is 1, which signifies that autotuner’s selections are completely
optimal. A higher value signifies slower (worse) performance.

We adopt the “convergence criteria” of average slowdown ≤
1.03 [30]. Convergence is a predefined standard that signifies
that an autotuner’s selections are accurate enough to end
the training process. We repeatedly train the autotuner with
increasingly smaller training datasets and record the average
slowdown. When the average slowdown becomes greater than
the convergence criteria, we have reached the point where the
autotuner’s performance is no longer “good enough.”

We include our own comparison of the previous two state-
of-the-art autotuners using this technique in Figure 3. On the
x-axis, we represent the amount of training data as a percent-
age of the possible training points. The FACT methodology
maintains an average slowdown below the convergence criteria
with far less data than Hunold et al.’s autotuner requires.

III. EXISTING CHALLENGES

A. Training Point Selection

FACT’s primary bottleneck remains training data collec-
tion. To select training points, FACT relies on another tool,
DeepHyper [3]. DeepHyper trains a surrogate model, which

is a separate ML model that also attempts to understand
collective performance. During the iterative training process,
FACT queries DeepHyper for benchmark results. DeepHyper
selects the point that will most improve the surrogate model’s
understanding. Then DeepHyper benchmarks the point and
reports the result. FACT uses the data to train its own ML
model, which is eventually used to make algorithm selections.

FACT implements this indirect approach because its own
ML model, comprising random forest regressors, does not
have a straightforward way to select points to benchmark.
FACT’s training point selections are specific to the target
environment but not to the FACT ML model, resulting in
suboptimal selections. In addition, FACT must run an entire
additional application (DeepHyper) and train two ML models.
We eliminate the inefficiency of a second ML model while
producing more accurate selections with a custom point se-
lection methodology.

B. Non-Power-of-Two Points

FACT assumes that all feature values are power-of-two
(P2). Incorporating non-power-of-two (non-P2) values greatly
increases the search space for training, requiring many more
training points and ballooning the overall collection time.

In simulation, non-P2 values can easily be avoided; but in
production, any feature values may be used by applications.
The “number of nodes” feature value is frequently non-P2
because non-P2 job sizes are common on Theta. The job
scheduler may prioritize non-P2 node counts to maximize
utilization. On the other hand, “processes per node” will rarely
be non-P2 for Theta, which has 64 hardware threads per node.
For systems with non-P2 hardware threads, training can use
fractions of their thread count, ignoring P2 versus non-P2.

The last feature value, “message size,” is less clear-cut.
Messages use datatypes such as char and int, which have
P2 bytes. However, an application may send a non-P2 count
of a datatype, making the overall message size non-P2. To
study the behavior of applications, we profiled traces from
Lawrence Livermore National Laboratory [29]. Figure 4 shows
that 15.7% of message sizes across four applications are non-
P2. For each application, the percentage is nearly the same
for both small- and large-scale jobs (1,024-node trace data

4

19
14.9

0.6

41.8

18.8
14.9

0.2

%
 o

f N
on

-P
2

M
es

sa
ge

s

0

10

20

30

40

50

FLASH LAMMPS Chombo ParaDis

64 Nodes 1024 Nodes

Fig. 4: Percentage of message sizes that are non-power-of-two
size in HPC applications (1024-node trace data is unavailable
on ParaDis): 15.7% of collective calls use non-power-of-two
message sizes, so we must consider their performance.

Size of Training Set

A
vg

 S
lo

w
do

w
n

1.00
1.03
1.05
1.08
1.10
1.13

0%20%40%60%80%

All P2 Non-P2 Message Size Non-P2 Nodes

Fig. 5: FACT performance using non-power-of-two test sets
for MPI Bcast. The model (trained only with power-of-two
values) fails to learn the performance trends in non-power-of-
two message sizes.

is unavailable for ParaDis). Because a significant portion of
application collective calls use non-P2 message sizes, we must
address our ML autotuner’s performance for these values.

To understand the previous state-of-the-art’s performance
for non-P2 nodes and messages sizes, we reevaluated
FACT using non-P2 test datasets for MPI Bcast. We
chose MPI Bcast because two of its algorithms (binomial,
scatter recursive doubling allgather) favor P2 feature
values, while the third (scatter ring allgather) does not,
making it the most interesting collective to study here.

We precollected three new test datasets from 64 nodes of
a supercomputer with similar hardware used in the evaluation
of FACT. One dataset uses all P2 values just like FACT’s
original evaluation. The other two datasets include only ran-
domly selected non-P2 numbers of nodes and message sizes,
respectively. We trained FACT (which uses only P2 points for
training data) and tested it separately on all three new test sets.

The results are shown in Figure 5. The FACT methodology
produces an ML model with significantly inferior performance
for non-P2 test points. For the “All P2” test set, FACT with
plentiful training data at 80% performs almost optimally, then
slowly deteriorates to the right. “Non-P2 Nodes” has the cor-
rect shape, while its average slowdown is always higher than
the “All P2” results. This trend appears because of the higher
performance variability of MPI Bcast algorithms for non-
P2 node counts. The ML model is learning the performance
patterns at the same rate as the “All P2” set; it just gets

7.65
6.00

11.56

7.30

Ti
m

e
(N

or
m

)

0

4

8

12

Allgather Allreduce Bcast Reduce

Training (Total = 6.9min) Testing (Total = 53min)

Fig. 6: Training set and test set data collection time for
the simulated experiments. Data collection for the test set
drastically outpaces ACCLAiM’s training data collection time.

punished more severely for incorrect selections.
“Non-P2 Message Size” shows a significant

average slowdown across the entire graph. The model
does not optimize performance for this test set, even with
large (>80%) amounts of training data. The reason is that
the model fails to learn the trends in the data. Therefore,
we focus on non-P2 message sizes, where the model shows
the least ability to learn the performance trends. To address
this challenge, we incorporate non-P2 message sizes into our
training data selection methodology.

C. Model Testing
In each iteration of active learning, the ML model is

measured to check whether the overall performance has “con-
verged.” For convergence testing, FACT uses metrics such as
average slowdown to measure the model’s prediction qual-
ity. To calculate average slowdown, FACT needs additional
points to test, aptly called the “test set.” Previous simulated
experiments ignore the test data collection time [12], [11],
[30]. In production, test data points are benchmarked like
training points, but the results must be kept separate. Test
points consume critical data collection time but cannot be used
to train or improve the model.

FACT reduced the required training set size to ∼1% of the
feature space. However, the testing set size needs to cover 20%
of the feature space for machine learning methods to work
correctly. Consequently, the time to collect test data dwarfs
the time to collect training data, drastically inflating the overall
data collection time. In Figure 6, we plot the data collection
time of a 20% test set compared with the training data
collection time. We normalize the values to the training data
collection time for each collective. Each collective requires 6–
11x more time to collect test data than training data. FACT’s
24-hour training time estimate completely ignores test data
collection, so this component has the potential to consume
a week or more of machine time in production, which is far
too large. In this paper we propose a novel strategy to evaluate
model performance, eliminating the need for a test set entirely.

D. Data Collection
Previous works collect all data points sequentially. This

process is important because HPC networks may route packets
indirectly to increase the effective bandwidth between nodes.
This policy can create unexpected network congestion between
communications, which must be avoided in order to accu-
rately measure collective performance. While safe, a sequential

5

collection strategy is very inefficient, particularly for larger
machines. We avoid network congestion and run benchmarks
in parallel, up to 100% node utilization, collecting the same
training data in significantly less time.

IV. TRAINING PROCESS IMPROVEMENTS

In this section we describe our improvements that address
each of the challenges identified in the preceding section.

A. Training Point Selection Improvements

As described in Section III-A, the FACT approach generates
training point selections using a second, separate ML model.
To simplify the process, we use jackknife variance calculations
to derive training points from a single ML model.

The jackknife technique calculates summary values through
resampling [6]. Suppose we wish to find the variance of n
values. The values are p = (p1, p2, ..., pn), where pi is the ith
value. Let xp equal the mean of p. We perform a jackknife
by creating jackknife samples. For a jackknife with n values,
there are n jackknife samples. The ith jackknife sample equals
the mean of p with pi removed. By removing single values, we
generate n unique samples. Let x be the means of the jackknife
samples, where x = (x1, x2, ..., xn) and xi is the mean of p
with pi removed. Then the variance (σ2) is calculated as

σ2 =

∑n
i=1 (xp − xi)2

n− 1

We use the jackknife technique to calculate the variance
of potential training points. We adopt the use of random
forest regressors [30]. Applying the jackknife technique to a
random forest regressor was first proposed by Wager et al.
[28]. Random forest is an ensemble machine learning model,
meaning its predictions are the average of an ensemble of
individual ML models. Random forests consist of decision
trees. We use the jackknife technique as follows:

1) Let n = the number of decision trees in the random
forest.

2) Let p = the set of predictions from the decision trees. pi
is the prediction from the ith decision tree in the forest.

3) Let xp = the mean of p.
4) Calculate xi by removing each pi one a time.
5) Input xp and xi into the jackknife variance equation.
We repeat this process for every possible training point.

Then we select the point with highest variance as the next
training point. By selecting points with high variance, we
are providing the ML model with data that fills gaps in its
understanding, minimizing the number of points required to
train a well-formed model. We include P2 feature values only
when using jackknife to limit the number of calculations.

B. Non-Power-of-Two Point Improvements

To address non-P2 points from Section III-B, we incorporate
an extra step in the training point selection. Every fifth training
point, instead of choosing the exact point with the highest
variance, we instead select a point with a random non-P2
message size where the selected message size is the closest

Training Time (Seconds)

Va
ria

nc
e·

10
⁷

A
vg

. S
lo

w
do

w
n

0.00

0.25

0.50

0.75

1.00

1.00
1.03
1.05
1.08
1.10
1.13

0 250 500 750 1000 1250

Variance·10⁷ Average Slowdown

Fig. 7: Variance and average slowdown as a function of
training time for ACCLAiM. Average slowdown converges as
variance converges.

P2 value. For example, if the highest variance point has a
message size equal to 8, we would select a new message
size between 6 and 12 that is not 8. We do so because
we experimentally determined that it best balances P2 and
non-P2 performance (Section VI-B). By incorporating non-P2
variants, the ML model learns to accurately predict non-P2
points without additional data collection time.

C. Model Testing Improvements

As described in Section III-C, previous approaches calculate
metrics using a costly set of test points. We wish to estimate
model performance without a test set, which means we cannot
calculate any performance metrics. We instead need a quantity
that is measurable during training with minimal overhead
and correlates with model performance. To achieve this, we
reapply the jackknife technique. We sum the variance from
every point to form the correlated quantity.

To test whether this variance measure correlates with model
performance, we performed a simulated experiment tracking
both the traditional convergence metric (average slowdown)
and variance. In Figure 7 we see that variance correlates
with Average Slowdown. We observe that both metrics trend
downward over the same time interval. At around 400 seconds,
the spike in average slowdown is matched with a spike in vari-
ance. This event tells us that variance is capable of mimicking
fine-grain changes in performance. With these observations in
hand, we can proceed with cumulative variance as a proxy for
average slowdown and therefore our convergence criterion. We
provide further evaluation of this technique in Section VI-C.

D. Data Collection Improvements

As described in Section III-D, previous approaches collect
training data points sequentially to avoid potential network
congestion. To enable parallel data collection, we leverage
the network topology of our target hardware system.

Figure 8 shows a simplified version of the topology. Nodes
are numbered sequentially within a rack and across racks.
The network has three layers. The first layer connects nodes
within a rack. Layer two pairs every two racks. The third
layer connects the rack pairs. Network congestion will occur
if benchmarks share a single instance of a layer. For example,
we cannot allow two benchmark runs on nodes in a single
rack. Similarly, if a run is using nodes on both rack 0 and
rack 1, we cannot use any remaining nodes on those racks.

6

Node Node Node

Switch

...

Rack 0

Node Node Node

Net. Layer 1

... Node Node Node

Switch

...

Rack 1

Node Node Node

Net. Layer 1

...

Net. Layer 2

Node Node Node

Switch

...

Rack 2

Node Node Node

Net. Layer 1

... Node Node Node

Switch

...

Rack 3

Node Node Node

Net. Layer 1

...

(Additional Rack Pairs)Net. Layer 2

Net. Layer 3

Fig. 8: Simplified topology for our target network (Aries
Dragonfly). Jobs must be scheduled to minimize network
congestion in the first two layers.

We propose a greedy algorithm to run many benchmarks
in parallel. Instead of selecting a single training point, we
generate a list of potential training points sorted by variance.
Then we generate a “schedule,” assigning benchmarks to run
on disparate nodes in parallel. The algorithm works as follows:

1) Select the highest-variance uncollected point p, which
requires n nodes.

2) Attempt to schedule p on the next n “unused” sequential
nodes.

3) If n can fit in the eligible nodes, schedule p on the next
n “unused” nodes, mark those nodes and any remaining
nodes in the same racks as “used,” and repeat.

4) If n cannot fit, exit and run all scheduled benchmarks
in parallel.

This algorithm avoids network congestion by disallowing
different benchmarks to run in the same rack and scheduling
on sequential nodes. By disallowing shared racks, we prevent
congestion on the first network layer. Scheduling on sequen-
tial nodes prevents congestion on the second network layer
because multi-rack benchmark runs cannot simultaneously
schedule across the same racks. If a run needs nodes on
another rack, it must first fill its original rack, preventing a
second run from also being scheduled across those racks.

If two runs schedule across multiple rack pairs and the
first run ends within the same pair as the second run begins,
the third network layer may see slight congestion. However,
because the third network layer is implemented using direct,
high-bandwidth connections, we expect incidental congestion
to be relatively low. Also, because Theta is an active pro-
duction environment, congestion in the third layer is expected
from other applications. We account for third-layer congestion
by measuring each collected point multiple times.

This solution is specific to the Dragonfly topology used by
Theta. Parallel data collection on non-Dragonfly supercomput-
ers may require methodology tweaks for the new environment.

V. ACCLAIM SYSTEM

To evaluate our improvements, we create ACCLAiM, our
ML autotuner prototype. Here we describe how a user interacts
with ACCLAiM and the implementation details. ACCLAiM
uses an “offline” ML approach, meaning that we train our ML
models prior to application execution. Because we retrain the
model for every job, however, training consumes execution
time during a job’s allocation. Figure 1(b) shows how AC-
CLAiM is designed to be used in a production environment.

User Input: The user submits a job to the HPC system
through ACCLAiM. The only additional information required
is a list of collectives predominantly used in the application.
We expect this collective list to be common knowledge for
highly optimized applications. If not, users can provide a
conservative list including every collective that might require
autotuning or use a tool such as Intel’s APS [14].

Training: When a job is scheduled in the production
environment, instead of immediately running the application,
ACCLAiM trains ML models for the specified collectives.
To collect training points, we use the Ohio State University
microbenchmark suite [2]. For our random forest model, we
use the RandomForestRegressor from the scikit-learn Python
package [20]. We use a single random forest model per
collective and enumerate “algorithm” as an additional feature.

Configuration File Generation: Once the models have
converged, we generate an edited version of the default algo-
rithm selection .json file with our models’ selections. The
.json file is a list of logic rules that indicate which algorithm
to select. An example rule is if(message_size ≤ 32)
{algorithm = binomial}. The rule set must be “com-
plete,” meaning that every possible input must resolve to a
selection. The rules also must be pruned such that no two
consecutive rules resolve to the same prediction. This step
minimizes the selection delay during execution.

To create a list of rules, we collect the ML model’s
algorithm selections for every P2 point. Naively, we could
iterate through the selections and create a rule every time the
selection value changes. However, this method abandons the
model’s non-P2 point selections. Instead, we iterate through
the ML model’s algorithm selections and detect when the se-
lection changes. When there is a change in algorithm selection
between two points A and C with A < C, we requery the
model for a selection at B. Point A is the last point with the
old algorithm selection. Point C is the first point with the
new algorithm selection. Point B is the non-P2 point halfway
between A and C. We refer to the selected algorithm at each
as “ALG-(Point)” (e.g., ALG-A is the selection at A).

We generate rules based on the change in selected algorithm,
as shown in Figure 9. We create three rules: all values below A
(inclusive) use ALG-A, all values between A and C (exclusive)
use ALG-B, and all values above C (inclusive) use ALG-
C. These rules enable unique selections for non-P2 points
between A and C. Then, to optimize the rule set and minimize
selection delay, we prune these rules. If ALG-A = ALG-B, we
can merge the first two rules into a single rule for all values
less than C. If ALG-B = ALG-C, we can merge the last two
rules into a single rule for all values greater than A.

Application Execution: We direct MPICH to the new
.json file using an environment variable. Then we run the
application and output its results, completing the job.

Neither of the previous state-of-the-art works created a
prototype that combines the ML autotuning with job execution.
ACCLAiM, on the other hand, completes the entire process
while remaining transparent to the user.

7

Param Space (B is Non-P2)

ALG-C

ALG-A

ALG-B

A C B

Fig. 9: Rule creation logic. We generate new rules in the
configuration file to communicate the ML model’s selections
to the MPICH library. Each color represents a different rule.

VI. EVALUATION

We first compare ACCLAiM with FACT to analyze our
individual improvements. For all comparative results, we per-
form simulated experiments as described in Section II-A to
provide the fairest comparison. Then we show ACCLAiM’s
capabilities on a leadership-class supercomputer, Theta.

A. Training Point Selection: Up to 2.3x Faster

We begin with the reduction in training point collection
time created by our jackknife-based training point selection
methodology. We compare our selection approach vs. FACT’s
previous state of the art. Figure 10 shows average slowdown
vs. training time graphs for each collective. For the x-axis,
we calculate training data collection time by summing the
benchmark execution times. Both training methodologies want
to decrease their average slowdown as quickly as possible.
We mark when each training methodology reaches the conver-
gence criterion, which is the point where we accept the model
performance as “good enough” to stop training. We adopt a
convergence criterion of Average Slowdown < 1.03 [30].

ACCLAiM converges for all four collectives in up to
2.3x less time than the previous state of the art (FACT).
MPI Allgather is the most expensive collective to tune and
also ACCLAiM’s biggest win at 2.3x. The previous state of the
art performs slightly better for MPI Allreduce and MPI Bcast,
by 1.37x and 1.46x, respectively. Both methodologies con-
verge almost instantly for MPI Reduce. Overall, ACCLAiM’s
model-specific selections create a significant reduction in train-
ing data collection time. The reported speedups do not account
for the additional acceleration from simplifying the point
selection process by eliminating the secondary (surrogate) ML
model. In practice, we expect even greater speedups.

For both Figure 10 and Figure 12 (which we explore in
Section VI-C), a few visual oddities are important to under-
stand. First, all lines do not begin 0 on the x-axis. To evaluate
model performance, we must collect and supply at least one
point for training. If the first training point takes a significant
amount of time to collect, a ”gap” may appear on the left side
of the graph. This behavior is normal and expected; it just
indicates that the first training point was expensive to collect.
Additionally, large flat sections appear in some graphs. Note
that these graphs are discrete, since there cannot be partially
collected data points. The lines between points are included
to indicate trends. If a point takes a long time to collect and

does not greatly affect the model’s understanding, a flat section
appears on the graph. However, these sections do not represent
potential convergence, just expensive point collection.

B. Non-Power-of-Two Points: Now Modeled

Next we evaluate the effects of incorporating non-P2 points
in our sampling process. We re-evaluate the “All P2” and
“Non-P2 Message Size” test datasets from Figure 5 incorpo-
rating various amounts of non-P2 training data.

The goal is to maintain an average slowdown as close to 1.0
as possible with minimal training data. We consider training
sets with all P2 data, a 50-50 selection split, and ACCLAiM’s
80-20 data selection split. Each training point includes the
same total number of training points. Selecting 50% of the
non-P2 points means that we remove half of the P2 points.

From Figure 11(b), a 50-50 split maximizes non-P2 per-
formance. However, it sacrifices P2 performance, as shown
in Figure 11(a). ACCLAiM’s 80-20 split preserves P2 perfor-
mance while significantly improving non-P2 performance. By
selecting every fifth point as non-P2, ACCLAiM maintains the
“Goldilocks” performance balance.

C. Model Testing: Avoid 6–11x Test Set Collection Slowdown

Here we compare cumulative variance as a convergence
criterion vs. average slowdown. Our variance convergence
criterion is that four consecutive training iterations must have a
difference in variance less than 10−9. We selected this criterion
from prior tuning experience. It works well for both simulation
and the production system (discussed in the next section).

In Figure 12 we graph the cumulative variance values
on the left vertical axis and average slowdown from Fig-
ure 10 on the right vertical axis. We mark when both met-
rics meet their respective convergence criterion. An ideal
variance convergence would occur at the same time as the
average slowdown convergence because the goal is to pre-
cisely model average slowdown. We accept variance conver-
gences close to the average slowdown convergence point if
both points produce ML models of nearly equal performance.

For all collectives, Figure 12 shows that the vari-
ance convergence criterion consistently produces trained
models with low Average Slowdown. MPI Allreduce and
MPI Reduce have variance convergence points after the orig-
inal average slowdown points, adding an extra 1.007x to the
cumulative training time for all collectives. However, the
overall training time is actually reduced by 1.19x because of
the other two collectives.

For MPI Allgather and MPI Bcast, the variance conver-
gence point is before the average slowdown point. In both
cases, the model-tested variance has an average slowdown
of 1.04. While this value is above the average slowdown
convergence criterion, we believe this slight uncertainty is well
worth the trade-off of eliminating the testing set. Overall, we
avoid the potential 6–11x slowdown from Figure 6 without
sacrificing convergence accuracy.

8

FA
C

T
C

on
ve

rg
en

ce

A
C

C
LA

iM
 C

on
ve

rg
en

ce

Training Time (Seconds)

A
ve

ra
ge

 S
lo

w
do

w
n

1.00

1.03

1.05

1.08

1.10

1.13

0 250 500 750 1000 1250

Previous State of the Art ACCLAiM

(a) MPI Allgather

FA
C

T
C

on
ve

rg
en

ce

A
C

C
LA

IM
 C

on
ve

rg
en

ce

Training Time (Seconds)

A
ve

ra
ge

 S
lo

w
do

w
n

1.00

1.05

1.10

1.15

1 2 3 4 5 6

Previous State of the Art ACCLAiM

(b) MPI Allreduce

FA
C

T
C

on
ve

rg
en

ce

A
C

C
LA

iM
 C

on
ve

rg
en

ce

Training Time (Seconds)

A
ve

ra
ge

 S
lo

w
do

w
n

1.02

1.04

1.06

1.08

0 0.5 1 1.5 2 2.5

Previous State of the Art ACCLAiM

(c) MPI Bcast

FA
C

T
&

 A
C

C
LA

iM
 C

on
ve

rg
en

ce

Training Time (Seconds)

A
ve

ra
ge

 S
lo

w
do

w
n

1.000

1.005

1.010

1.015

1.020

0 2 4 6

Previous State of the Art ACCLAiM

(d) MPI Reduce
Fig. 10: Comparison of training data collection time using ACCLAiM’s training point selection methodology and the previous
state of the art for the most popular collectives. Cumulatively, ACCLAiM converges in 2.25x less time.

Size of Training Set

A
vg

 S
lo

w
do

w
n

1.00
1.01
1.01
1.02
1.02
1.03

0%20%40%60%80%

All P2 80-20 P2/Non-P2 50-50 P2/Non-P2

(a) All P2 Test Dataset
Size of Training Set

A
vg

 S
lo

w
do

w
n

1.00
1.01
1.01
1.02
1.02
1.03

0%20%40%60%80%

All P2 80-20 P2/Non-P2 50-50 P2/Non-P2

(b) Non-P2 Message Size Test Dataset
Fig. 11: Performance of ACCLAiM’s P2 training data incorporation for P2 and non-P2 message size test datasets for MPI Bcast.
ACCLAiM’s 80-20 split maintains P2 performance while dramatically improving non-P2 performance.

Va
ria

nc
e

C
on

ve
rg

en
ce

A
vg

 S
lo

w
 C

on
ve

rg
en

ce

Training Time (Seconds)

Va
ria

nc
e·

10
⁷

A
ve

ra
ge

 S
lo

w
do

w
n

0.00

0.25

0.50

0.75

1.00

1.00

1.03

1.05

1.08

1.10

1.13

0 250 500 750 1000 1250

Variance·10⁷ Average Slowdown

(a) MPI Allgather

A
vg

 S
lo

w
 C

on
ve

rg
en

ce

Va
ria

nc
e

C
on

ve
rg

en
ce

Training Time (Seconds)

Va
ria

nc
e·

10
⁷

A
ve

ra
ge

 S
lo

w
do

w
n

0.00

0.10

0.20

0.30

0.40

1.000

1.025

1.050

1.075

1.100

1.125

1 2 3 4 5 6

Variance·10⁷ Average Slowdown

(b) MPI Allreduce

Va
ria

nc
e

C
on

ve
rg

en
ce

A
vg

 S
lo

w
 C

on
ve

rg
en

ce

Training Time (Seconds)

Va
ria

nc
e·

10
⁷

A
ve

ra
ge

 S
lo

w
do

w
n

0.00

0.25

0.50

0.75

1.00

1.00

1.02

1.04

1.06

1.08

0 0.5 1 1.5 2 2.5

Variance·10⁷ Average Slowdown

(c) MPI Bcast

A
vg

 S
lo

w
 C

on
ve

rg
en

ce

Va
ria

nc
e

C
on

ve
rg

en
ce

Training Time (Seconds)

Va
ria

nc
e·

10
⁷

A
ve

ra
ge

 S
lo

w
do

w
n

0.00

0.03

0.05

0.08

0.10

1.000

1.002

1.004

1.006

1.008

0 2 4 6

Variance·10⁷ Average Slowdown

(d) MPI Reduce
Fig. 12: Comparison of convergence time using ACCLAiM’s cumulative variance and average slowdown. Using cumulative
variance as a proxy for average slowdown, ACCLAiM detects convergence 1.19x faster while avoiding a potential 6–11x
slowdown caused by test set data collection.

D. Data Collection: 1.4x Faster Using Parallelism

To evaluate our parallel data collection strategy, we schedule
the simulation dataset across four different simulated topolo-
gies: all 64 nodes on a single rack, 32 nodes each on two
racks in a pair, 16 nodes each on four racks in two pairs, and
single nodes on different racks all from separate pairs (1-0-1-
0...). The “separate pairs” topology represents the maximum
parallelism potential, so we henceforth refer to it as “Max
Parallel.” These topologies represent a range of situations from
no/minimal parallelism (Single Rack, Single Rack Pair) to
“Max Parallel.” The results are shown in Figure 13.

Data collection is accelerated by up to 1.4x by running 1–4
benchmarks simultaneously. Even for topologies with modest
parallelism opportunities, we see significant speedups (∼1.3x).

An interesting data point occurs in Figure 13(a) for the
“Max Parallel” topology for MPI Allgather. Here, the
parallelization speedup decreases compared with the other
topologies. During scheduling, “Max Parallel” enables a low-
latency benchmark to run in parallel with a high-latency,
succeeding benchmark. The high-latency benchmark is now

unable to be parallelized with the next benchmark, which also
has a high latency. Running the two high-latency benchmarks
sequentially more than eliminates the original advantage. The
other topologies disallow the first parallelism opportunity,
which coincidentally enables the second. This situation high-
lights the suboptimal nature of greedy algorithms.

E. Production Practicality: Benefits Typical Jobs on Theta

Now that we have evaluated our contributions individually,
we apply ACCLAiM to Theta, a leadership-class supercom-
puter. For these experiments, ACCLAiM selects algorithms up
to 128 nodes, 16 processes per node, and 1 MB message size.

The training time is shown in Figure 14. In the larger-scale,
production environment, ACCLAiM converges in a matter
of minutes, compared with the many hours estimated by
the previous state-of-the-art [30]. We cannot make a direct
performance comparison because FACT is unable to function
in this “real” (not simulated) setting.

We now consider ACCLAiM’s impact on application perfor-
mance. Collective performance is critical to the performance
of many HPC applications [27], [5]. Previous works have

9

Collective

Sp
ee

du
p

0.9
1.0
1.1
1.2
1.3
1.4

Allgather Allreduce Bcast Reduce

Single Rack Single Rack Pair
Two Rack Pairs Max Parallel

(a) Speedup
Collective

A
vg

 P
ar

al
le

l R
un

s

0

1

2

3

4

Allgather Allreduce Bcast Reduce

Single Rack Single Rack Pair
Two Rack Pairs Max Parallel

(b) Average number of
benchmarks ran in parallel

Fig. 13: Average speedup and parallelism exposed by AC-
CLAiM’s parallel data collection. ACCLAiM achieves a 1–
1.4x speedup by running 1–4 benchmarks in parallel.

5.62

3.87

5.53

3.93

Collective

Tr
ai

n
Ti

m
e

(M
in

ut
es

)

0.00

2.00

4.00

6.00

Allgather Allreduce Bcast Reduce

Fig. 14: ACCLAiM training time for up to 128 nodes on a
leadership-class supercomputer. By reducing the training time
to a number of minutes, we achieve production practicality.

provided examples of how autotuning collective algorithm
selections can improve application performance [22], [16].
To assess the broader applicability for our work, we show
in Figure 15 the minimum application runtimes required to
gain an overall speedup when using ACCLAiM. We present a
range of application speedups, which vary depending on the
quality of the default selections and the percentage of time
the application spends on collective calls. Applications that
run for more than a few hours and are slowed even slightly
by the default algorithm selections are great candidates for
ACCLAiM. For example, an application with a 1.01x speedup
from improved algorithm selections only has to run for 6.4–
9.5 hours, which is well within the common duration for jobs
on Theta. By showing that ACCLAiM can accelerate appli-
cations with moderate runtimes, we demonstrate ACCLAiM’s
practicality for large-scale production systems.

VII. RELATED WORK

Collective optimization dates back more than 20 years [26],
[9]. Many others have proposed methodologies for selecting
collective algorithms besides machine learning. The popular
approach is analytical models [27], [7], [24], [23], [16], [18].
The most recent of these proposals is by Luo et al. [16].
They create submodules that represent lower-level portions of
a collective task, some of which can be mapped to specific
hardware components. Analytical models suffer from other
minor concerns, but we believe their ultimate downfall is de-
velopment cost. Compared with the effort required to maintain
handcrafted models and analyze new algorithms, ML provides
a black-box solution with automatic expandability.

Another approach is exhaustive benchmarking. Chaarawi et
al.’s OPTO tool tunes individual scenarios in Open MPI using

Application Speedup

M
in

. A
pp

. R
un

tim
e

(H
ou

rs
)

0

2

4

6

8

10

1 1.025 1.05 1.075 1.1

Allgather Allreduce Bcast Reduce

Fig. 15: Minimum application runtime for overall acceleration
when using ACCLAiM. In many cases, applications must run
for only a few hours to recover ACCLAiM’s training time.

a complete search [4]. Tools such as OPTO, however, require
far too much data collection time to compete with ML models.

Faraj et al. proposed STAR-MPI, an “online” autotuner
that builds a statistical model during program execution and
dynamically selects MPI parameters [8]. In general, online
approaches are rare because of their complex implementa-
tion and runtime overhead. Performance modeling/guideline
approaches are simpler and also use runtime information to
make selections dynamically [13], [25]. However, these tools
are restrained by the models/heuristics that guide them, similar
to the existing solutions in production MPI libraries.

Machine learning is becoming a prominent optimization tool
across HPC. Pellegrini et al. optimized other MPI runtime
parameters using ML [21]. Isaila et al. built an ML model
to tune I/O tasks [15]. Mohammed et al. used ML to predict
failures in a virtualized system/application [17]. Zhang et al.
scheduled HPC batch jobs with an ML model [31].

VIII. CONCLUSIONS

In this work we presented contributions that overcome
multiple significant bottlenecks in ML collective autotuners:
training point selection, non-power-of-two data points, model
testing, and data collection. Combining our contributions, we
developed ACCLAiM, the first practical ML autotuner for
MPI collective algorithm selection that accelerates applications
even when accounting for its training overhead. We applied
ACCLAiM on a leadership-class supercomputer to showcase
its practicality in a large-scale production setting.

IX. ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration, by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357, and
by the U.S. National Science Foundation via award CCF-
2119069.

This research used Bebop, a high-performance computing
cluster operated by the Laboratory Computing Resource Cen-
ter at Argonne National Laboratory, and the resources of the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-
AC02-06CH11357.

10

REFERENCES

[1] “MPICH.” [Online]. Available: https://www.mpich.org
[2] “OSU micro-benchmarks.” [Online]. Available: https://mvapich.cse.

ohio-state.edu/benchmarks/
[3] P. Balaprakash, M. Salim, T. D. Uram, V. Vishwanath, and S. M.

Wild, “DeepHyper: Asynchronous hyperparameter search for deep neu-
ral networks,” in 2018 IEEE 25th international conference on high
performance computing (HiPC). IEEE, 2018, pp. 42–51.

[4] M. Chaarawi, J. M. Squyres, E. Gabriel, and S. Feki, “A tool for
optimizing runtime parameters of Open MPI,” in European Parallel
Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 2008, pp. 210–217.

[5] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Char-
acterization of MPI usage on a production supercomputer,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 386–400.

[6] B. Efron and C. Stein, “The jackknife estimate of variance,” The Annals
of Statistics, pp. 586–596, 1981.

[7] G. E. Fagg, J. Pjesivac-Grbovic, G. Bosilca, T. Angskun, J. Dongarra,
and E. Jeannot, “Flexible collective communication tuning architecture
applied to Open MPI,” in Euro PVM/MPI, 2006.

[8] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive
routines for MPI collective operations,” 01 2006, pp. 199–208.

[9] S. Gorlatch, C. Wedler, and C. Lengauer, “Optimization rules for pro-
gramming with collective operations,” in Proceedings 13th International
Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing. IPPS/SPDP 1999. IEEE, 1999, pp. 492–499.

[10] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca,
and A. Lumsdaine, “Open MPI: A high-performance, heterogeneous
MPI,” in 2006 IEEE International Conference on Cluster Computing.
IEEE, 2006, pp. 1–9.

[11] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting MPI
collective communication performance using machine learning,” in 2020
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2020, pp. 259–269.

[12] S. Hunold and A. Carpen-Amarie, “Algorithm selection of MPI collec-
tives using machine learning techniques,” in 2018 IEEE/ACM Perfor-
mance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE, 2018, pp. 45–50.

[13] ——, “Autotuning MPI collectives using performance guidelines,” in
Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, 2018, pp. 64–74.

[14] Intel, “Intel application performance snapshot (aps).” [On-
line]. Available: https://software.intel.com/sites/products/snapshots/
applicationsnapshot

[15] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross,
and P. Hovland, “Collective I/O tuning using analytical and machine
learning models,” in 2015 IEEE International Conference on Cluster
Computing. IEEE, 2015, pp. 128–137.

[16] X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao, T. Patinyasakdikul,
D. Zhong, and J. Dongarra, “HAN: A hierarchical autotuned collective
communication framework,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER), 2020, pp. 23–34.

[17] B. Mohammed, I. Awan, H. Ugail, and M. Younas, “Failure prediction
using machine learning in a virtualised HPC system and application,”
Cluster Computing, vol. 22, no. 2, pp. 471–485, 2019.

[18] E. Nuriyev and A. Lastovetsky, “Accurate runtime selection of optimal
MPI collective algorithms using analytical performance modelling,”
arXiv preprint arXiv:2004.11062, 2020.

[19] D. K. Panda, K. Tomko, K. Schulz, and A. Majumdar, “The MVAPICH
project: Evolution and sustainability of an open source production
quality MPI library for HPC,” in Workshop on Sustainable Software
for Science: Practice and Experiences, held in conjunction with Int’l
Conference on Supercomputing (WSSPE), 2013.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] S. Pellegrini, J. Wang, T. Fahringer, and H. Moritsch, “Optimizing MPI
runtime parameter settings by using machine learning,” in European Par-
allel Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 2009, pp. 196–206.

[22] J. Pjesivac-Grbovic, “Towards automatic and adaptive optimizations of
MPI collective operations,” 2007.

[23] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127–143, 2007.

[24] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg, T. Angskun, and J. J.
Dongarra, “MPI collective algorithm selection and quadtree encoding,”
Parallel Computing, vol. 33, no. 9, pp. 613–623, 2007.

[25] S. Shudler, Y. Berens, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf,
“Engineering algorithms for scalability through continuous validation
of performance expectations,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 8, pp. 1768–1785, 2019.

[26] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High-
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, Spring
2005.

[27] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically tuned col-
lective communications,” in SC’00: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing. IEEE, 2000.

[28] S. Wager, T. Hastie, and B. Efron, “Confidence intervals for random
forests: The jackknife and the infinitesimal jackknife,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1625–1651, 2014.

[29] C. Wang, M. Snir, and K. Mohror, “High performance computing
application I/O traces. in Lawrence Livermore National Laboratory
(LLNL) Open Data Initiative,” 2020. [Online]. Available: http:
//library.ucsd.edu/dc/object/bb95276921

[30] M. Wilkins, Y. Guo, R. Thakur, N. Hardavellas, P. Dinda, and M. Si, “A
FACT-based approach: Making machine learning collective autotuning
feasible on exascale systems,” in 2021 Workshop on Exascale MPI
(ExaMPI). IEEE, 2021, pp. 36–45.

[31] D. Zhang, D. Dai, Y. He, F. S. Bao, and B. Xie, “RLScheduler: An
automated HPC batch job scheduler using reinforcement learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC20). IEEE Press,
2020.

11

https://www.mpich.org
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://software.intel.com/sites/products/snapshots/applicationsnapshot
https://software.intel.com/sites/products/snapshots/applicationsnapshot
http://library.ucsd.edu/dc/object/bb95276921
http://library.ucsd.edu/dc/object/bb95276921

	Introduction
	Background
	Evaluation Environments
	Collective Algorithm Selection
	Importance
	Difficulty
	Dynamicity of Non-Programmatic Values

	Existing ML Autotuner Approaches
	Baseline Design
	Evaluation Technique

	Existing Challenges
	Training Point Selection
	Non-Power-of-Two Points
	Model Testing
	Data Collection

	Training Process Improvements
	Training Point Selection Improvements
	Non-Power-of-Two Point Improvements
	Model Testing Improvements
	Data Collection Improvements

	ACCLAiM System
	Evaluation
	Training Point Selection: Up to 2.3x Faster
	Non-Power-of-Two Points: Now Modeled
	Model Testing: Avoid 6–11x Test Set Collection Slowdown
	Data Collection: 1.4x Faster Using Parallelism
	Production Practicality: Benefits Typical Jobs on Theta

	Related Work
	Conclusions
	Acknowledgments
	References

