
Automated Construction of Fast and Accurate
System-Level Models For Wireless Sensor Networks

Lan S. Bai† Robert P. Dick† Pai H. Chou‡ Peter A. Dinda*
{lanbai, dickrp}@umich.edu phchou@uci.edu pdinda@northwestern.edu
†University of Michigan ‡University of California, Irvine *Northwestern University

Abstract—Rapidly and accurately estimating the impact of design
decisions on performance metrics is critical to both the manual and
automated design of wireless sensor networks. Estimating system-level
performance metrics such as lifetime, data loss rate, and network
connectivity is particularly challenging because they depend on many
factors, including network design and structure, hardware characteristics,
communication protocols, and node reliability. This paper describes a
new method for automatically building efficient and accurate predictive
models for a wide range of system-level performance metrics. These
models can be used to eliminate or reduce the need for simulation
during design space exploration. We evaluate our method by building
a model for the lifetime of networks containing up to 120 nodes,
considering both fault processes and battery energy depletion. With our
adaptive sampling technique, only 0.27% of the potential solutions are
evaluated via simulation. Notably, one such automatically produced model
outperforms the most advanced manually designed analytical model,
reducing error by 13% while maintaining very low model evaluation
overhead. We also propose a new, more general definition of system
lifetime that accurately captures application requirements and decouples
the specification of requirements from implementation decisions.

I. INTRODUCTION

Any sensor network design process, whether manual or automated,
requires that the designer or synthesis toolchain estimate the quality
of prospective designs. Many performance metrics exist, and the
relevant quality metric is often application-dependent. The faster the
metric can be estimated for a prospective design, the better, as this
permits more of the solution space to be evaluated in the same amount
of time. However, the estimate must also have sufficient accuracy and
fidelity to support appropriate design decisions.

The modeling work in this paper is part of a project on automated
synthesis of sensor networks driven by very high-level specifications
written by application domain experts. The goal of the synthesis
process is to produce a sensor network implementation that meets
the specifications and optimizes or bounds system-level performance
metrics such as lifetime, price, and sampling resolution. Our work
and related automated synthesis research [1], [2] share the need to
rapidly and accurately estimate such metrics for prospective designs
in the “inner loop” of the synthesis process. Accurate system-level
performance models can be used to rapidly evaluate a multi-objective
optimization function and find Pareto-optimal designs.

There are currently three approaches to estimating system-level
performance metrics; each has a different tradeoff between efficiency
and accuracy. Measurement-based approaches are based on data from
real wireless sensor network deployments. They are accurate, but
also the most costly in terms of hardware and human effort, and
are particularly challenging to use for metrics relevant to long-term
behavior. Simulation-based approaches are based on simulation of the
prospective design. Detailed network simulation can handle numerous
performance metrics but is so slow that relying solely on simulation
for design space exploration is impractical. Analytical approaches are
based on manually constructed models that quickly compute specific

This work was supported in part by the National Science Foundation under
awards CNS-0721978, CNS-0910816, and CNS-0347941.

978-3-9810801-7-9/DATE11©2011 EDAA

performance metrics for a prospective design. However, such models
are less accurate than measurement or simulation because simplifying
assumptions must be made in their construction, particularly in
regards to network and environment behavior.

We have developed a technique for the automated construction
of fast and accurate models for estimating system-level sensor net-
work performance metrics. Our technique combines the accuracy
of simulation-based approaches with the rapid evaluation time of
analytical approaches. The key idea is to automatically derive a model
for a system-level performance metric from measured component
behavior and detailed simulation results. Model construction is done
offline and may be time-consuming without cause for concern, as it
needs not be repeated during the design or synthesis process. Once
the model is constructed, it can be rapidly and repeatedly evaluated.

Automated Model Construction: Our technique is based on
fitting a statistical model to the multidimensional simulated quality
metric data that characterize a design space. The black-box technique
we propose can be readily automated and permits rapid evaluation of
the resulting models. Numerous stochastic processes influence met-
rics such as system lifetime. Models constructed with the proposed
process support prediction of the values of deterministic variables,
and the distributions of stochastic variables. This allows a variety
of metrics to be computed. In our system lifetime example, metrics
such as mean time to system failure or time to n-probability of
system failure can also be readily computed. As more simulation
data are included, the model improves at the cost of increased model
construction time. Our iterative sampling technique allows desired
model accuracy to be achieved with few simulation runs. We have
considered a range of alternative modeling techniques, and have
found that Kriging (an interpolation method) is most appropriate [3].

Our technique also incorporates known component time-dependent
characteristics into the models it builds for system-level metrics.
This makes it possible to capture long-term behavior that might
not be observed in measurement or simulation spanning short time
intervals. One important behavior is component failure. Node failures
are common in deployed wireless sensor networks because sensor
nodes are generally constructed using inexpensive components and
often operate in harsh environments. However, node fault processes
are often ignored when considering system-level metrics, such as life-
time. Most previous work equates node lifetime and battery lifetime.
In our system lifetime example, our model considers both node-level
fault processes and battery depletion. We conducted experiments in
which device faults were measured for a specific sensor network
platform. The node temporal fault distribution we use is consistent
with our 21 months of measurement data.

Definition of system lifetime: We evaluate our model con-
struction technique using the system lifetime performance metric.
System lifetime has generally been defined as the duration from
the start of operation until the sensor network ceases to meet
its operating requirements, but most existing work uses a limited
definition of “operating requirements” to simplify the system lifetime
estimation problem. Past work has defined network failure as (1)

first node failure [4], (2) first link disconnection, (3) failure of a
specific number or percentage of nodes [5], and (4) disconnection
of a specific number or percentage of nodes. These definitions have
unfortunate implications for system design because they are often
poorly related to specific application requirements. More importantly,
lifetime metrics based on such criteria conflate specification and
implementation decisions. Consider an application in which one
must sample temperature with a spatial resolution of one sample
per square meter. The common metrics would not appropriately
capture the lifetimes of implementations that use redundant nodes
for fault tolerance because the failure of a number or percentage of
nodes differs from the inability to gather data at the required spatial
resolution. Coupling specification and implementation is especially
troublesome if the application domain expert, e.g., a geologist or
biologist, is not an expert in embedded system design. Reasoning
about the relationship between network-level and application-level
behaviors requires understanding the low-level system components
and how they interact with each other. Domain experts rarely have
the time or inclination to develop this understanding.

We believe that the definition of system lifetime should capture
the requirements of application domain experts while limiting ties
to implementation decisions. The definition should also be flexible
enough to support a class of applications instead of a specific applica-
tion. Section V-B presents and provides support for such a definition
of sensor network lifetime, which can be summarized as follows:
system lifetime is the duration from the start of operation until the
sensor network ceases to meet the specified application-dependent
but implementation-independent data gathering requirements. More
generally, our automated construction process makes it possible to
generate a model based on the application domain expert’s preferred
system lifetime metric.

Using our proposed definition of system lifetime, we applied our
automatic model construction technique to modeling system lifetime
for data gathering applications. Our iterative sampling technique
supports construction of a predictive model with 3.6% error relative
to exhaustive simulation based on simulation of only 0.27% of the
design space.

Contributions: Our work makes the following contributions.
1. We are the first to propose an automatic method to construct
fast and accurate models of multiple system-level metrics in wireless
sensor networks.
2. We evaluate our framework by using it to build a model of system
lifetime, and comparing this model with the most advanced analytical
model in the literature, which it surpasses in accuracy. The resulting
model itself is therefore a contribution.
3. We propose a new definition for system lifetime that better rep-
resents application requirements than current definitions and allows
sensor network specification be decoupled from implementation.
4. We present a measurement-based model for node-level fault
processes, and use it for system-level reliability modeling.
Those interested in using the techniques described in this paper can
find more information at the associated project website [6].

II. RELATED WORK

Model construction from simulation or measurements with statisti-
cal methods or machine learning techniques has been used to model
processor design spaces [7], [8], [9]. Previous work has demonstrated
that accurate predictive models can be built by sampling a small
percentage of points in the design space. We are the first to apply
simulation-based model generation methods to system-level sensor
network performance metrics. We focus on defining appropriate
system-level performance metrics and developing a framework to
automatically construct models to estimate them.

Researchers have previously proposed definitions and models for
system lifetime [4], [5], [10]. Generally, node-level fault processes
have been ignored. However, a lifetime model that considers only bat-
tery lifetime is insufficient, because node-level faults can occur before
battery depletion and they also influence system performance [11],
[12]. Our problem is formulated using a system lifetime definition
that, as we will later argue, is more general and better suited for use
by application designers. Lee et al. constructed analytical models
for sensor network aging analysis using a network connectivity
metric [13]. They consider node fault processes in addition to
battery depletion. In contrast, we use a definition of system lifetime
that decouples specification from implementation and describe a
regression technique to automatically construct system-level lifetime
models based on node-level characteristics. We also provide evidence
that our automatically derived model is more accurate than their
manually constructed analytical model when evaluated using their
system lifetime definition.

Node-level lifetime models can be used as a foundation for esti-
mating system-level lifetime. Most work assumes that node lifetime
equals battery lifetime, which is estimated by computing time spent
in each power state [14]. A few researchers directly measured device
fault processes. The developers of the ZN1 sensor node module [15]
accelerated aging by inducing rapid thermal cycling in order to
estimate node lifetime. Our work considers both factors, battery
depletion and device faults.

III. NODE-LEVEL MODELING

This section describes methods of building models for device fault
processes and battery energy depletion. They are two key factors that
determine the lifetimes of individual wireless sensor network nodes.

III.A. Fault Modeling

Node-level fault models relate functionality to time, node charac-
teristics, and node operating modes; they may be used as building
blocks to estimate system-level lifetime. Models for node-level fault
processes can be obtained in three ways. (1) The node manufacturer
may evaluate the reliability of sensor node modules via direct testing
and provide a fault model to users [15]. Models obtained in this way,
however, may not characterize the in-field behavior if the deployment
environment differs from the expected operating environment. (2)
Node-level lifetime models may be derived from reports on prior
deployments of the nodes under consideration. (3) Finally, it is
possible for application developers to experimentally characterize the
sensor nodes being considered. This approach allows a controlled
testing environment and workload.

We conducted experiments to model the lifetime fault distribution
of ultra-compact Eco wireless sensor node [16]. The nodes were
used for various wearable applications including infant monitoring,
gesture-based input devices, and water pipe monitoring. We wrote
programs to test the ADC, radio, and EEPROM node components
in the field, and tracked the status of 250 Eco nodes manufactured
during June 2007 for 21 months.

Figure 1 shows the accumulated failure rate. Seven global node
status evaluations were conducted during this study. Almost half
of the nodes failed after 20 months. The Weibull extreme value
distribution is widely used in reliability models, and is the ap-
propriate distribution for modeling the first component fault in a
node composed of many components with arbitrary temporal fault
distributions [17]. We tentatively fit a Weibull distribution to the
measured data. Figure 2 shows the log plot of time and 1/R(t). R(t)
is the reliability function. The Weibull distribution implies a linear
relationship between ln(t) and ln(ln(1/R(t))). The resulting Weibull
distribution has shape parameter 0.33 and scale parameter 0.02. Its

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 5 10 15 20 25

F
a
ilu

re
 r

a
te

Time (month)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 0.5 1 1.5 2 2.5 3 3.5

lo
g
(l
o
g
(1

/R
))

log(t)

Fig. 1. Device failure of Eco
nodes.

Fig. 2. Fit failure data to Weibull
distribution.

Fig. 3. Overview of the model
construction technique.

Fig. 4. Monte Carlo simulation for
system lifetime distribution compu-
tation.

standard residual error is 0.08 and its R2 is 0.96. The statistical
significance test shows that the result is significant (p-value 0.04%).
These results indicate that the measured data are consistent with those
that would be produced by a fault process with a Weibull distribution.
We use the resulting model in our characterization of system-level
lifetime.

III.B. Battery Energy Dissipation Modeling

Battery models are used to predict the remaining energy of a
battery and node failure time due to battery depletion. We adopt
a simple battery model that assumes a constant deliverable energy
capacity that is independent of variation in discharge rate. A battery
is depleted when the total consumed energy equals the rated battery
capacity. This model is accurate when the battery’s internal resistance
and the device current are low [18]. Most sensor nodes meet these
conditions. The proposed model generation technique could easily be
used with more complex battery models.

IV. AUTOMATIC MODEL CONSTRUCTION

This section describes our framework to automatically generate
models for system-level sensor network performance metrics.

IV.A. Overview

Figure 3 gives an overview of the automatic model construction
process, which takes four types of inputs: performance metrics to
be modeled (response variables), constraints on prediction error
associated with the performance metrics, design parameters (predictor
variables), and their associated ranges. It outputs a model for each
performance metric. Our model construction technique starts with a
sparse and uniformly distributed sample set. It then incrementally
adds more samples in rough regions (regions where the magnitude
of cost differences for adjacent points are large) according to prior
simulation results. The process is iterative and contains two loops.
As shown in Figure 3, the first loop iteratively augments the sample

set until differences in response variables of already sampled points
that are close in the design space are below a threshold. The second
loop adjusts the bound parameter if currently derived models do not
meet accuracy requirements. Each sample represents a possible value
assignment to design parameters. The values of performance metrics
for each design are determined with Monte Carlo trials based on
detailed sensor network simulations. Statistical modeling is used to
fit the simulation results for the sampled points. Cross-validation is
used to estimate the prediction errors for the derived models. The
procedure terminates when the estimated prediction errors meet the
specified requirements. The steps in this procedure will be explained
later in this section.

Our framework models multiple performance metrics simultane-
ously in order to reduce total simulation time. Response surfaces for
different metrics may have different shapes. As a consequence, the
minimum sample set required to model different metrics may differ.
The model may be used by designers with different multiobjective
cost functions, making it necessary to consider the surface roughness
associated with each metric. However, all the metrics are modeled
with the same set of samples. We choose this option for two reasons.
(1) The total number of simulation runs depends on the metric that
requires the largest number of samples. This technique better utilizes
the available simulation results and can therefore generate more accu-
rate models than an alternative technique using subsets of available
samples to model different metrics. (2) It reduces implementation
complexity. The only disadvantage is that model construction time for
some metrics may be longer than necessary. However, since modeling
is done offline, this is acceptable.

A wireless sensor network design can be evaluated with various
performance metrics. We are interested in developing design tools
that are accessible to domain experts who are generally not embedded
system experts. To this end, we focus on system-level performance
metrics that directly reflect application requirements from a domain
expert’s perspective. For example, domain experts may have specific
requirements for end-to-end data delivery latency, but are rarely
interested in node-to-node data transmission latency. System-level
performance metrics such as data delivery rate, event miss rate, query
response time, and unattended lifetime are affected by numerous
factors. Some are specified by domain experts to characterize func-
tionality, requirements, and the operating environment. They are fixed
for the application and cannot be adjusted by design tools. Examples
are size of deployment field and required sensor readings. Other
factors, defined as design parameters (e.g., communication protocols,
network size, and node positions) are implementation options that can
be determined either manually by the designer or automatically by
a design tool. The interdependencies among these factors and their
complex impact on system-level performance metrics make deriving
accurate closed-form analytical models for them a challenging or
intractable problem.

Our technique has the following beneficial features.
1. Using a detailed sensor network simulator allows the use of
realistic simulation models, e.g., wireless communication models that
consider signal attenuation, interference, and contention.
2. Adaptive sampling and statistical modeling allows production
of models that have accuracies comparable to exhaustive on-line
simulation. However, only a small part of the design space must
be simulated.
3. Our technique can be used to model any system-level performance
metric. Our examples consider system lifetime and data latency.
4. The constructed models can be reused by multiple application
developers and synthesis tools. The pool of models can be expanded
to support new hardware platforms or deployment environments.

IV.B. Sampling Technique

The sampling procedure determines which design points to simu-
late. Using fine-grained sampling results in a long simulation time,
while coarse-grained sampling results in inaccurate models. Adap-
tively increasing the number of samples can reduce simulation time
without sacrificing model accuracy. A straightforward approach is to
increase the uniform sampling resolution until accuracy requirements
are met. However, this approach has significant drawbacks. Increasing
the resolution for any parameter requires either invalidating all
prior samples due to the new inter-sample spacing, or requires the
resolution for the parameter to double. If uniform sampling is used,
doubling the resolution of any parameter is very costly; even adding
a single new parameter value requires m new samples, where m
is the product of value counts for all other parameters. Finally,
uniform sampling may introduce new samples in smooth regions of
the parameter space, which will have little impact on accuracy.

We propose an algorithm that starts with sparse uniform sampling
and incrementally adding samples to the rough regions. The iteration
terminates when the difference in each response variable between
adjacent samples is smaller than a threshold. Each iteration of
the algorithm does the following. (1) For each sample point, the
differences (delta) of output values between its K nearest neighbors
and itself are computed. K is an empirically determined variable.
(2) If the difference in output value between the sample point and
any of its neighbors is larger than the given bound, a new sample
is added between them. If there exists no point at the exact middle
position due to discretization of some design parameters, the nearest
unsimulated point is added. After normalizing each design parameter
component of the vector to its range, the Euclidean distance between
two samples is used to determine the nearest neighbors.

IV.C. Modeling Technique

We consider two types of modeling methods: global polynomial
regression and Kriging.

A polynomial model has the form y = β0+β1t1+· · ·+βmtm+ε,
where y is the response variable, variable tj is either a single predictor
variable or a product of multiple predictors, and each tj can be raised
to a positive power. ε is a random error with zero mean. The order
of a polynomial model is determined by the maximum of the sum
of the powers of the predictor variables in each term of the model.
Least-squared error minimizing linear regression is used to estimate
coefficients βj .

Kriging [3] is an interpolation method that minimizes the error of
estimated values based on the spatial distribution of known values. A
Kriging model is defined as y(x) =

PN
j=1 βjBj(x) + z(x), where

Bj(x) is basis function over the experimental domain and z(x) is a
random error modeled as a Gaussian process. The general formula is
a weighted sum of the data, y(s0) =

PN
i=1 λiy(si), where s0 is the

prediction location, y(si) is the measured value at the ith location,
λi is an unknown weight for the measured value at the ith location,
and N is the number of measured values.

The above modeling techniques are implemented in R, open-source
software for statistical computing. The following functions are used
in our technique: lm (linear regression), Krig (Kriging), and cv.lm
(cross-validation).

IV.D. Test of Model Adequacy

The prediction error of the model is estimated with 10-fold
cross-validation. The sample set is randomly divided into 10 equal-
sized groups. Nine are used as training data and one is used as
testing data. We run the 10-fold cross-validation 50 times with
different random seeds and average the results. The prediction error
for a particular set of testing data is computed with the equation

E =
qP

i∈T (yp
i − ys

i)
2/|T |, where E is the estimated error, T is

the testing data set, yp
i is the predicted value for data point i using

a model constructed with the training data, and ys
i is the simulated

value for data point i. When the average error of the 50 tests is smaller
than the required maximum error, we deem the model adequate.

IV.E. Wireless Sensor Network Simulation

We use the SIDnet-SWANS simulator [19]. Simulator validation
is important because the accuracy of the simulator directly affects
the accuracies of the models it is used to build. The simulator itself
contains a collection of component models that can be separately
validated. The following simulation models have major effects on
typical system-level performance metrics: radio propagation model,
power consumption model, and network protocol models. SIDnet-
SWANS uses an SNR-based reception model validated by Halkes
and Langendoen [20]. The error rates for delivery ratio and energy
consumption are lower than 5%. The IEEE 802.15.4 implementation
in SIDnet-SWANS is ported from ns-2 and was validated by Ivanov
et al. [21]. The packet delivery ratio, connectivity graph, and packet
latencies have average errors of 0.3%, 10%, and 57%. The power
consumption model is based on the power states of MicaZ nodes.

Note that our model construction framework can be used with any
sensor network simulator. The accuracies of derived models depend
on the accuracy of the simulator in use. However, the focus of our
work is not on developing accurate simulators for sensor networks.
We therefore assume the error of underlying simulator is ignorable for
the remaining analysis and focus on system-level modeling accuracy.

V. SYSTEM LIFETIME MODELING

This section describes the use of the proposed technique to generate
a model of system lifetime.

V.A. Domain of Applications and Assumptions

Sensor network applications span a wide domain. Different ap-
plications may have very different goals (e.g., data collection vs.
object tracking) as well as different performance metrics (e.g., data
delivery rate vs. event miss rate). Building one model for each specific
application is infeasible since there are numerous applications. We
therefore propose to divide the application domain into classes with
shared characteristics. In order to select a class of applications for
which to generate a system lifetime model, we start with the most
frequently encountered type of application: periodic data gathering in
a stationary network. Our prior survey of 32 sensor network applica-
tions provides evidence that this is the most frequently deployed type
of sensor network application [22]. We evaluate our model generation
technique for this class of applications. Note that the proposed
technique is general enough for use in other domains. Longer model
construction time is expected for more complex applications because
they require more parameters to represent (e.g., mobile sensor net-
works need extra parameters to describe motion). We now list our
other assumptions. (1) Sensor nodes are homogeneous and have the
same lifetime fault model. (2) Sensor node temporal fault distributions
are modeled by independent Weibull processes. (3) Sensor nodes are
uniformly distributed in a 2D field. (4) A node failure disconnects
the affected node from the network. (5) Data from the network are
gathered at a sink node located in the center of the field. (6) Data from
sensor nodes are routed to the sink using a dynamic data gathering
tree. When a parent node fails, its children select other nodes in their
communication range with the minimum hop count from the root
node as their new parent nodes. (7) We consider two data aggregation
cases: perfect aggregation and no aggregation. In the case of perfect
aggregation, a single unit of data is transmitted up the routing tree
regardless of the number of units of data received from children. In

Lifetime (hour)

F
re

q
u

e
n

c
y

1500 2000 2500 3000

0
5

1
0

1
5

2
0

2
5

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Fig. 5. Histogram of lifetime. Fig. 6. Quantile-quantile plot of
lifetime.

the case of no aggregation, each node transmits a quantity of data
equal the sum of received and sensed data quantities. Relaxing these
assumptions only requires changing the simulated programs.

V.B. System Lifetime Definition

We define system lifetime as the time elapsed since the start
of operation until the spatial density of promptly delivered data
drops below a threshold specified by the application developer. This
definition allows developers to view the system from a data-oriented
perspective relevant to their application requirements, while ignoring
implementation details such as network structure, communication
protocols, and use of redundant nodes. For example, to monitor a
field with a large amount of spatial variation in data, the developer
may require a higher sampling density. The sampling density criterion
cannot be represented with or trivially mapped to other existing
criteria. For example, the percentage of functioning nodes or the
percentage of connected nodes alone cannot determine the density of
data acquisition, because they do not indicate network size, network
structure, and packet drop rate.

V.C. Predictor and Response Variables

The system lifetime of a sensor network is affected by many
factors, including sensor node reliability, total number of nodes, node
positions, node activities, network protocol, battery capacities, power
consumptions of components in different power states, etc.

As a case study, we will build a lifetime model for a specific type of
hardware platform and assume an outdoor deployment environment.
Consequently, some parameters can be assumed to be fixed, e.g.,
those for radio communication and node lifetime distribution. The
proposed technique can be used to build system-level models for
various hardware platforms by adjusting the appropriate simulation
parameters. Six design parameters are evaluated during simulation:
sampling period, network size, distance between adjacent nodes,
battery capacity, aggregation, and threshold for desired data delivery
density. The predictor variables are independent. They can be sepa-
rately controlled without affecting each other. However, their impacts
on system lifetime are interdependent. We focus on a sub-region of
the design space that contains most previously deployed applications.
The sub-region further determines the range of each design factor:
network size ranges from 9–121 nodes; sampling density threshold
ranges from 27–1,000 samples per square kilometer; sampling period
ranges from 10 minutes to 1 hour; and inter-node distance ranges
from 100–500 feet.

For a specific network design, the system lifetime is best described
using a distribution. The network may fail at different times de-
pending on the failure times of individual nodes. Modeling lifetime
with a single number, such as mean time to failure, is unnecessarily
restrictive. Using a distribution within the model allows application
developers to specify confidence levels for lifetime lower bounds.

The Monte Carlo simulation results suggest that system lifetime
has a Gaussian distribution. Figures 5 and 6 show the histogram
and the quantile–quantile plot of the lifetime for a specific network
setting. Results of other network settings show a similar trend and

were verified with statistical tests. We therefore assume a Gaussian
distribution. We further tested our hypothesis with normality tests,
a type of goodness-of-fit test that indicates whether it is reasonable
to assume that random samples come from a normal distribution.
The average p-value is 0.54 for tests on lifetimes of 100 different
design points. According to the test results, we can accept the null
hypothesis that the sample data belong to a Gaussian distribution.
After determining the distribution of system lifetime, two parameters
are sufficient to describe it: mean and standard deviation. These are
used as our response variables.

V.D. Monte Carlo Simulation

For each combination of predictors corresponding to a specific
network design, we use Monte Carlo simulation to obtain the system
lifetime distribution. This procedure is shown in Figure 4. The state
of the system corresponds to a particular network topology. A state
change in network topology occurs upon each node failure. Each
state is associated with a power profile indicating the average power
consumption of each node in this state, a residual energy profile
indicating the remaining battery energy for each node, and a data
delivery ratio indicating the percentage of promptly delivered data.
The power profile and data delivery ratio are generated using the
SWANS simulator. The remaining battery lifetime of each node is
then computed, allowing estimation of the time of the next node
failure due to battery depletion. The next battery depletion or node
failure event causes a state change. Every time a node fails, it is
removed from the network and the updated network placement is
used for the next simulation run. Each Monte Carlo trial marches the
system through states with decreasing node counts and data delivery
ratios. Note that the run does not terminate at a user-specified data
delivery ratio. Instead, sufficient data are gathered to build a model
that can be evaluated for arbitrary data delivery ratios specified during
model evaluation. Trials are repeated (with new, randomized, node
fault failure sequences) until the mean lifetime converges.

If it were necessary to do prolonged network simulation for each
network state, simulation time would be excessive, rendering the tech-
nique impractical. Fortunately, we observe that with a fixed network
topology, the power consumption stabilizes within a few sampling
periods in the simulated system. Therefore, it is not necessary to run
the detailed network simulator until the next node failure. Instead,
the network simulator is run long enough to determine average node
power consumptions for the current network state. We found that
power consumptions converge within three sampling periods for the
simulated network. To be conservative, we simulated for five periods.

A Python script coordinates the use of the detailed network
simulator for multiple Monte Carlo trials to calculate the system life-
time distribution. Many predictor variable combinations and Monte
Carlo trials are required for model construction. Therefore, we run
the simulations in parallel on a cluster of machines composed of
over 3,500 Opteron cores. The total CPU time required for model
construction was approximately 8 weeks, although the task was
completed in much less time due to parallelization of the parameter
study. The model can be rapidly evaluated on a laptop computer:
model use is not computationally demanding.

V.E. Comparison of Modeling Technique Accuracies and Efficiencies

We first compare the performance of polynomial regression and
Kriging. Figure 7 shows the relationship between the prediction
error and the sample count for applications with and without data
aggregation. The x-axis represents the size of the sample set. The
y-axis represents the estimated prediction error. The lines labeled
“Adaptive regression” and “Adaptive Kriging” represent the errors
of a 2nd-order polynomial model and a Kriging model, derived from

 0

 100

 200

 300

 400

 500

 300 350 400 450 500 550 600

M
o
d

e
l
e
rr

o
r

(h
o
u
r)

Sample count

Without aggregation

Adaptive regression
Adaptive Kriging

 0

 20

 40

 60

 80

 100

 120

 140

 300 350 400 450 500 550 600

M
o
d

e
l
e
rr

o
r

(h
o
u
r)

Sample count

With aggregation

Adaptive regression
Adaptive Kriging

Fig. 7. Model error and sample size.

identical sample sets determined by our adaptive sampling technique.
Each point on the lines corresponds to a model generated at the end
of a sampling and modeling iteration. Note that the prediction error
is estimated with cross validation and is affected by how the data
are partitioned. Therefore, the resulting curve is not monotonic. The
errors of the polynomial regression models are always larger than
those of the Kriging models. On average, the polynomial regression
models have 42% larger error than the Kriging models. We conclude
that Kriging is more appropriate.

The design space we consider in this case contains 405,790
potential solutions (31 battery capacity levels, 5 network sizes, 11
sampling periods, 17 network densities, 7 thresholds, and 2 aggrega-
tion options). Our modeling technique was able to build models with
3.6% average error (absolute error divided by average lifetime) based
on approximately 1,100 simulations, i.e., 0.27% of the design space.
This demonstrates that the proposed model generation technique is
very efficient.

V.F. Comparison with an Analytical Model

To the best of our knowledge, the most relevant is the aging
analysis of wireless sensor networks by Lee et al. [13], which focuses
on analyzing the degradation in network connectivity due to node-
level faults and battery depletion. Their work uses a disc graph model
of radio communication and ignores MAC-level behaviors, e.g., con-
tention and collision. Unfortunately, no existing work analyzes system
lifetime using our proposed definition. For the sake of comparison,
we revert to a definition in past work [13], where lifetime is defined
as the time until the percentage of nodes transitively connected to the
sink node drops below a threshold. The resulting model has an error
of 72 hours (2.1% of average lifetime). In comparison, the average
prediction error of the analytical model proposed by Lee et al. is 525
hours (15% of average lifetime).

VI. CONCLUSIONS AND CAVEATS

This paper has described an automated technique for generating
system performance models for wireless sensor networks, and ex-
plained its use to build a system lifetime model for distributed,
periodic data gathering applications. We have also proposed a system
lifetime definition that captures application-level requirements and
decouples specification and implementation. It considers battery life-
times and node-level fault processes. The proposed adaptive sampling
technique allows the generation of lifetime models with only 3.6%
error, despite simulating only 0.27% of the solutions in the design
space. Taking advantage of more realistic models in sensor network
simulators and offline model construction, our modeling technique
reduces error by 13% compared with the most advanced analytical
model, while supporting rapid model evaluation. Our modeling tech-
nique can be applied to other performance metrics. We must comment
that the effectiveness of the proposed technique relies on the ability to
accurately estimate relevant quality metrics for a number of potential
designs, either through simulation or measurement. In future work,
we plan to use this modeling technique in automated design of sensor
networks.

REFERENCES

[1] A. Bakshi and V. K. Prasanna, “Algorithm design and synthesis for
wireless sensor networks,” in Proc. Int. Conf. Parallel Processing,
Aug. 2004, pp. 423–430.

[2] A. Bonivento, L. P. Carloni, and A. Sangiovanni-Vincentelli, “Plat-
form based design for wireless sensor networks,” Mobile Networks
and Applications, vol. 11, no. 4, pp. 469–485, Aug. 2006.

[3] J. Kleijnen, “Kriging metamodeling in simulation: A review,”
Tilburg University, Center for Economic Research, Tech. Rep., 2007.

[4] D. E. J. Melo and M. Liu, “Analysis of energy consumption and
lifetime of heterogeneous wireless sensor networks,” in Proc. Global
Telecommunications Conf., vol. 1, Nov. 2002, pp. 21–25.

[5] V. Rai and R. N. Mahapatra, “Lifetime modeling of a sensor
network,” in Proc. Design, Automation & Test in Europe Conf., Mar.
2005, pp. 202–203.

[6] 2009, http://absynth-project.org.
[7] B. C. Lee and D. M. Brooks, “Accurate and efficient regression mod-

eling for microarchitectural performance and power prediction,” in
Proc. Int. Conf. Architectural Support for Programming Languages
and Operating Systems, Oct. 2006, pp. 185–194.

[8] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Efficient system
design space exploration using machine learning techniques,” in
Proc. Design Automation Conf., Jun. 2008, pp. 966–969.

[9] H. Cook and K. Skadron, “Predictive design space exploration
using genetically programmed response surfaces,” in Proc. Design
Automation Conf., Jun. 2008, pp. 960–965.

[10] L. Mounier, L. Samper, and W. Znaidi, “Worst-case lifetime com-
putation of a wireless sensor network by model-checking,” in Proc.
Wkshp. on Performance Evaluation of Wireless Ad Hoc, Sensor, and
Ubiquitous Networks. ACM, Oct. 2007, pp. 1–8.

[11] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
from a sensor network expedition,” in Proc. European Wkshp. on
Sensor Networks, Jan. 2004.

[12] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes:
Experiences from a pilot sensor network deployment in precision
agriculture,” in Proc. Int. Wkshp. Parallel and Distributed Real-Time
Systems, Apr. 2006, pp. 1–8.

[13] J.-J. Lee, B. Krishnamachari, and C.-C. J. Kuo, “Aging analysis
in large-scale wireless sensor networks,” Ad Hoc Networks, vol. 6,
no. 7, pp. 1117–1133, Sep. 2008.

[14] D. Jung, T. Teixeira, and A. Savvides, “Sensor node lifetime
analysis: Models and tools,” ACM Trans. on Sensor Networks, vol. 5,
no. 1, pp. 1–33, Feb. 2009.

[15] S. Yamashita, T. Shimura, K. Aiki, K. Ara, Y. Ogata, I. Shimokawa,
T. Tanaka, H. Kuriyama, K. Shimada, and K. Yano, “A 15 ×
15 mm, 1 µA, reliable sensor-net module: enabling application-
specific nodes,” in Proc. Int. Conf. Information Processing in Sensor
Networks, Apr. 2006, pp. 383–390.

[16] C. Park, J. Liu, and P. H. Chou, “Eco: an ultra-compact low-power
wireless sensor node for real-time motion monitoring,” in Proc. Int.
Conf. Information Processing in Sensor Networks, Apr. 2005, pp.
398–403.

[17] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Reliability mod-
eling and management in dynamic microprocessor-based systems,”
in Proc. Design Automation Conf., Jul. 2006, pp. 1057–1060.

[18] D. Linden and T. B. Reddy, Handbook of Batteries. MacGraw-Hill,
2002.

[19] O. C. Ghica, G. Trajcevski, P. Scheuermann, Z. Bischof, and
N. Valtchanov, “SIDnet-SWANS: a simulator and integrated devel-
opment platform for sensor networks applications,” in Proc. Int.
Conf. Embedded Networked Sensor Systems, Nov. 2008, pp. 385–
386.

[20] G. Halkes and K. Langendoen, “Experimental evaluation of simula-
tion abstractions for wireless sensor network MAC protocols,” Delft
University of Technology, Tech. Rep., Jan. 2009.

[21] S. Ivanov, A. Herms, and G. Lukas, “Experimental validation of the
ns-2 wireless model using simulation, emulation, and real network,”
in Proc. on Mobile Ad-Hoc Networks, 2007.

[22] L. S. Bai, R. P. Dick, and P. A. Dinda, “Archetype-based design:
sensor network programming for application experts, not just pro-
gramming experts,” in Proc. Int. Conf. Information Processing in
Sensor Networks, Apr. 2009, pp. 85–96.

