
Measuring and Understanding User Comfort With Resource Borrowing

Ashish Gupta Bin Lin Peter A. Dinda
{ashish,binlin,pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

Resource borrowing is a common underlying approach
in grid computing and thin-client computing. In both cases,
external processes borrow resources that would otherwise
be delivered to the interactive processes of end-users, creat-
ing contention that slows these processes and decreases the
comfort of the end-users. How resource borrowing and user
comfort are related is not well understood and thus resource
borrowing tends to be extremely conservative. To address
this lack of understanding, we have developed a sophis-
ticated distributed application for directly measuring user
comfort with the borrowing of CPU time, memory space,
and disk bandwidth. Using this tool, we have conducted a
controlled user study with qualitative and quantitative re-
sults that are of direct interest to the designers of grid and
thin-client systems. We have found that resource borrowing
can be quite aggressive without creating user discomfort,
particularly in the case of memory and disk. We also de-
scribe an on-going Internet-wide study using our tool.

1 Introduction

Many widely used distributed computing platforms and
applications use available resources on existing host com-
puters, exploiting the fact that most of these systems are
dramatically under-utilized [20, 5, 1], a technique we refer
to as resource borrowing. Examples in scientific computing
include Condor [19, 11], Entropia [3], SETI@Home [30],
Protein Folding at Home [18], DESChall [4], and the
Google Toolbar [12]. The majority of such systems and
applications run on Microsoft Windows platforms, and they
are deployed on hundreds of thousands (SETI@Home) to
millions (Google) of hosts. Examples in peer-to-peer con-
tent distribution systems include commercial tools such

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-0224449.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views
of the National Science Foundation (NSF).

as Kazaa [28] and Gnutella [22], as well as academic
projects [29, 23, 15, 14]. Some of these systems are de-
ployed on millions of Windows hosts.

There have also been numerous proposals to consolidate
desktop computers and servers onto clusters [26, 10] to sim-
plify their administration and exploit their dramatic under-
utilization to make computing more economical. Interactive
users would then use thin clients [27] to access their pro-
cesses. In effect, each user will see a slowed machine due
to resources borrowed for other users.

In both cases, several fundamental questions arise about
user’s interaction with resource borrowing:

1 What level of resource borrowing leads to user discomfort
for a significant fraction of users?

2 How does the level depend on which resource or
combination of resources is borrowed?

3 How does the level depend on the user’s context (the
foreground task)?

4 How does the level depend on the user, factoring out
context?

5 How does the level depend on the time dynamics of
resource borrowing?

6 How does the level depend on the raw power of the host?

Current systems assume very conservative answers to these
questions because if they cause the user to feel that the ma-
chine is slower than is desirable, the user is likely to dis-
able them. For example, the default behavior in Condor,
Sprite [7] and SETI@Home is to execute only when they
are quite sure the user is away, when the screen saver has
been activated. Other systems run at a very low priority, or
they simply ask the user to specify constraints on resource
borrowing, something that few ordinary users understand.
If less conservative resource borrowing does not lead to
significantly increased user discomfort, the performance of
current systems could be increased through techniques such
as linger-longer scheduling [24].

There is indirect evidence that resource borrowing need
not be especially conservative in that many users are will-
ing to install peer-to-peer tools, and run services such as
Microsoft’s IIS and Kazaa, Gnutella, etc, on their desktop
computers. Certainly, the extremely low utilization of avail-
able CPU cycles, which has held true for over 10 years, sug-

gests that if the “right” cycles were used, those “in between”
the cycles the user is using, there would be little for the user
to perceive. The priority-based schedulers of modern oper-
ating systems approximate this.

Despite indirect evidence, there exist no quantitative,
empirical measurements that could be used to answer the
above questions. This may seem surprising to some readers,
as this would appear to be an excellent problem in human-
computer interaction or psychology. However, the work in
those areas has concentrated on the impact of latency on
user-perceived utility of the system [17, 8], and on user
frustration to different user interfaces [16, 21]. Within the
systems community, related work has examined the perfor-
mance of end-user operating systems using latency as op-
posed to throughput [9], and suggested models for interac-
tive user workload [2].

In response to this lack of information, we have devel-
oped a system, the Understanding User Comfort System
(UUCS). UUCS is a distributed Windows application sim-
ilar to SETI@Home in design. A UUCS client emulates
resource borrowing of CPU, memory and disk on the user’s
machine in a controlled manner encoded in a testcase pro-
vided by a server. The user operates the machine as normal,
but if his interactivity gets affected, he may express discom-
fort by clicking on an icon or pressing a hot-key. Resource
borrowing stops immediately if discomfort is expressed or
when the testcase is finished. The point of discomfort, if
any, is returned to the server along with contextual infor-
mation. By analyzing the results of applying a particular
set of testcases to a particular set of users, we can quali-
tatively and quantitatively characterize user comfort. Note
that a background application has full control over the re-
sources that it borrows, but a mapping between resource
borrowing and interactivity metrics like system latency or
jitter is difficult to obtain. This study is intended to directly
study the end-to-end relationship between resource borrow-
ing and user comfort.

Using UUCS, which we describe in detail in Section 2,
we have conducted a carefully controlled user study at
Northwestern University to address the questions raised
earlier. We describe this study and its results in de-
tail in Section 3, while Section 4 describes our ongo-
ing Internet-scale study. Finally, in Section 5, we pro-
vide advice to implementors based on our study results.
More information about the UUCS system can be found
in a separate technical report [13]. To examine our soft-
ware, flyers and questionnaires, or to participate visit
http://comfort.cs.northwestern.edu.

2 System design

UUCS consists of a server and a client, as shown in Fig-
ure 1. Both are Windows applications that store testcases

ServerClient

Registration (Machine info)

Hot Sync (Result Post)

Hot Sync (Testcase Request)

Hot Sync (Testcases)

Local Result
Store

Local Testcase
Store

Global Result
Store

Global Testcase
Store

Server

Figure 1. Structure of UUCS.

Database Analysis

Conclusions

Global Result
Store

Global Testcase
Store

Figure 2. The Analysis Phase.

and results on permanent storage in text files. A testcase
contains functions that describe how to “exercise” a collec-
tion of resources.

Using its local testcase and result stores, the client can
operate disconnected from the server. There are two inter-
actions between the two, both initiated by the client. When
the client is initially run, it registers with the server, provid-
ing it with a detailed snapshot of the hardware and software
of the client machine, and allowing the server to associate
a globally unique identifier with the client. Subsequently,
at particularly selected times when the client is connected
to the network, the client initiates a “hot sync” with the
server. New testcases, which can be added to the server
at any time, are downloaded by the client, while new results
are uploaded back to the server.

Hot syncing operates at user-defined intervals and ac-
quires a growing random sample of testcases from the
server. This, combined with local random choice of test-
cases and Poisson arrivals of testcase execution, is designed
to make a collection of clients execute a random sample
with respect to testcases, users, and times. This is the mode
of operation that we use in our Internet-wide study. A
UUCS client can also be configured to behave deterministi-
cally, executing a predefined set of commands from a local
file. We use this feature in our controlled study.

In addition to the client and server, we have developed
a set of tools for creating, viewing, and manipulating test-
cases, and for importing testcase results into a database
(Figure 2). An additional set of tools is then used to ana-
lyze the results and guide us to other interesting testcases.

Name Description

step(x, t, b) contention of zero to time b, then x to time t
ramp(x, t) ramp from zero to x over times 0 to t

sin sine wave
saw sawtooth wave

expexp Poisson arrivals of exponential-sized jobs (M/M/1)
exppar Poisson arrivals of Pareto-sized jobs (M/G/1)

Figure 3. Exercise functions.

Step (2.0,120,40)

40 sec 120 sec

2.0

1.0

(a) Step testcase

120 sec

2.0

1.0

Ramp (2.0,120)

(b) Ramp testcase

Figure 4. Step and ramp exercise functions.

2.1 Testcases and exercise functions

Testcases encode the details of resource borrowing for
various resources. A testcase consists of a unique identi-
fier, a sample rate, and a collection of exercise functions,
one for each resource that will be used during the execu-
tion of the testcase (the run). An exercise function is a
vector of values representing a time series sampled at the
specified rate. Each value indicates the level of contention
(the extent of resource borrowing, described in Section 2.2)
for a resource at the corresponding time into the testcase.
For example, consider a sample rate of 1 Hz, and the vec-
tor [0, 0.5, 1.0, 1.5, 2.0] for the CPU resource. This exercise
function persists from 0 to 5 seconds from the start of the
testcase. From 3 to 4 seconds into the testcase, it indicates
that contention of 1.5 should be created and subsequently
2.0 in the next second.

Our testcase tools let us generate testcases containing ex-

User Interface

Resource Controller

CPU MEM DISK

Resource Exercisers

User feedback

Exerciser Testcases

Results

System Monitoring
Agent

Figure 5. Client design.

ercise functions of many different kinds, as summarized in
Figure 3. In our controlled study, we use a small set of test-
cases that contain step or ramp exercise functions with dif-
ferent parameters for single resources. Figure 4 shows ex-
amples for step(2.0, 120, 40) and ramp(2.0, 120) respec-
tively. In our Internet-wide study, we currently have over
2000 testcases. The large number of testcases are designed
to study a wide variety of resource borrowing behavior with
a range of parameters for each exercise function type, pre-
dominantly from the M/M/1 and M/G/1 models. Note that
each testcase may be run multiple times by different users.

2.2 Resource exercisers

Resource exercisers are important components of the
client that apply the contention described by an exercise
function. There are three exercisers: CPU, memory, and
disk. They run at the same priority as other threads.

The CPU exerciser implements time-based playback of
the exercise function, as we describe and evaluate in detail
in earlier work [6]. Consider the previous example, where
we are asked to create a contention of 1.5 from 3 to 4 sec-
onds. Two threads with carefully calibrated busy-wait loops
will execute for one second. These loops split the one sec-
ond interval into a number of subintervals, whose duration
is computed by calibration, each larger than the scheduling
resolution of the machine. The first loop will only execute
busy subintervals,with no sleeps. The second executes busy
subintervals with probability 0.5, calling ::Sleep in other
subintervals. The stochastic borrowing is intended to em-
ulate a fluid model, but is limited by the time quantum of
the underlying scheduling mechanism. This depends on the
OS and its version. The effect is that if there is another
busy thread in the system (the display loop of a first person
shooter game, for example), that thread will execute at a
rate 1/(1.5 + 1) = 40 % that of the maximum possible rate
on the system, the CPU exerciser having borrowed 60% of
the CPU. This exerciser is experimentally verified to a con-
tention level of 10 for equal priority threads.

The disk exerciser operates nearly identically to the CPU

exerciser, except that its goal is to create contention for disk
bandwidth. The busy operation here is a random seek in
a large file (2x the memory of the machine) followed by a
write of a random amount of data. The write is forced to
be write-through with respect to the windows buffer cache
and synced with respect to the disk controller. Contention
here has the effect of slowing down the I/O of another I/O-
busy thread similarly to the CPU exerciser. This exerciser is
experimentally verified to a contention level of 7 for equal
priority threads.

The memory exerciser is considerably different. It in-
terprets contention as the fraction of physical memory it
should attempt to allocate. It keeps a pool of allocated pages
equal to the size of physical memory in the machine and
then touches the fraction corresponding to the contention
level with a high frequency, making its working set size in-
flate to that fraction of the physical memory. This ensures
borrowing of physical memory by the desired amount. We
avoid contention levels greater than one because this imme-
diately results in thrashing which is not only very irritating
to all users (as it affects interactivity drastically), but also
very difficult to stop punctually.

Using the network can also lead to user discomfort. We
developed several variants of a network exerciser (described
in our technical report), but all create a significant impact
beyond the client machine. For this reason, we did not study
the effect of network resource borrowing. We plan to do so
in the future.

2.3 Testcase execution and system monitoring

When a testcase is executed, the appropriate exercisers
are started, passed their exercise functions, synchronized,
and then let run. A high priority GUI thread watches for
clicks or hot-key strokes. If this occurs, the exercisers are
immediately stopped and their resources released. The test-
case run is over when user expresses discomfort feedback
or the exercise functions are exhausted without any feed-
back. A considerable amount of information is stored as
the result of the testcase run, including CPU, memory and
Disk load measurements for entire duration of the testcase,
system processes information, foreground process informa-
tion, etc. A number of technical articles, discussed in our
technical report, were very useful in the development of the
resource exercisers and monitors. Figure 5 illustrates the
structure of the UUCS client.

The detailed registration information for the client along
with collected data is stored in text-based form for later
communication back to the server. For the remainder of
this paper, we use the following data:

• Whether the testcase run was terminated due to user
feedback or testcase exhaustion,

• The time offset into the testcase at which irritation or
exhaustion was reported, and

Figure 6. Basic client interface. A menu and
full interface are also available.

Machine Configuration

Hardware Configuration 2.0 GHz P4, 512 MB, 80 GB.
Dell Optiplex GX270, 17 in monitor
100 Mbps Ethernet

Operating System Windows XP
Applications Installed Word 2002, Powerpoint 2002,

IE 6, Quake III

Figure 7. Machine configuration.

• The last five contention values used in each exercise
function at the point of user feedback.

2.4 Client interface

Figure 6 shows the most basic graphical interface of the
UUCS client, as used in our study. Here, the user can only
request discomfort, either by clicking on the tray icon or
pressing a hot-key (F11).

3 Controlled study

Using the UUCS, we ran a controlled study at North-
western to help us answer the questions posed in the intro-
duction. Compared to our ongoing Internet-wide study, this
study had a limited number of participants, but because of
the careful control of factors, we can directly address many
of the questions.

3.1 Perspective of the user

The 33 users in our study consisted primarily of gradu-
ate students and undergraduates from the Northwestern en-
gineering departments. We advertised for participants via
flyers and email. Each user was given $15 for participating.
The machine configuration used in the controlled study is
shown in Figure 7. Two such machines were set up in sep-
arate, private environments. The duration of the study for
each user was 84 minutes. The user:

• Filled out a questionnaire. The key questions were user
self-evaluations as “Power User”, “Typical User”, or
“Beginner” for use of PCs, Windows, Word, Powerpoint,
Internet Explorer, and Quake. (5 minutes).

• Read a one page handout. (5 minutes).

No. Resource Type Word Parameters Powerpoint Internet Explorer Quake

1 CPU Ramp 7.0,120 2.0,120 2.0,120 1.3,120
2 Blank
3 Disk Ramp 7.0,120 8.0,120 5.0,120 5.0,120
4 Memory Ramp 1.0,120 1.0,120 1.0,120 1.0,120
5 CPU Step 5.5,120,40 0.98,120,40 1.0,120,40 0.5,120,40
6 Disk Step 5.0,120,40 6.0,120,40 4.0,120,40 5.0,120,40
7 Blank
8 Memory Step 1.0,120,40 1.0,120,40 1.0,120,40 1.0,120,40

Figure 8. Testcase descriptions for the 4 tasks (given in random order).

• Acclimatized themselves to the performance of our machine
by using the above applications. (10 minutes).

• Performed the following tasks:
• Word processing using Microsoft Word (16 minutes):

Each user typed in a non-technical document with
limited formatting. 1

• Presentation making using Microsoft Powerpoint (16
minutes): Each user duplicated a presentation
consisting of complex diagrams involving drawing
and labeling from a hard copy of a sample
presentation.

• Browsing and research with Internet Explorer (16
minutes): Each user was assigned a news web site and
asked to read the first paragraphs of the main news
stories. Based on this, they searched for related
material and saved it. This task involved multiple
application windows.

• Playing Quake III (16 minutes): Quake III is a well
known first-person shooter game. There were no
constraints on user’s gameplay. This is our most
resource intensive application.

These applications are intended to represent typical user
tasks. As the user performed the tasks, the UUCS client
executed in the background and ran specific testcases. It
recorded all the system and contextual information as well
as the user feedbacks, which were later used to generate the
results. The user is aware of a background resource bor-
rowing process but unaware of any details, and the process
remains invisible to the user.

Note that our control study involves a self-selected sam-
ple, which, although we have mitigated the effects, mean
that we must be careful when generalizing from it. How-
ever, anecdotal evidence suggests that this group is more
sensitive to resource borrowing than others, and thus our
results are likely to be conservative.

3.2 Testcase details

Our testcases were designed to help us address the ques-
tions in the introduction. They were either of the type ramp

1Even in a word processor, the space of interactions can be very large.
Here we mainly cover typing and saving the document. Drawing figures is
covered in the Powerpoint task.

or step (Section 2.1), or blank. Blank testcases allow us to
test for the background level of discomfort, while ramps al-
low us to test user tolerance to borrowing. Steps combined
with ramps are used to test for sensitivity to one element of
time dynamics. Each task had 8 associated testcases, each
2 minutes long. They are run in a random order for each
16-minute task. We call the execution of a testcase during a
specific task by a specific user a run.

The regions of resource usage where interactivity is af-
fected are different for each task. For example, in Word
very high values of CPU contention (around 3) are needed
to affect interactivity at all, while in Quake, CPU contention
values in the region of 0.2 to 1.2 cause drastic effects. To
observe the onset of discomfort, the parameters for the test-
cases for each task had to be chosen carefully. This calibra-
tion was done by having one of the authors use the appli-
cations while running a large number of testcases with dif-
ferent parameters, selecting those testcases which affected
interactivity. Figure 8 shows the specific testcases used for
each task.

It is important to point out that our calibration proce-
dure was subjective. It could have been the case that our
testcases were too aggressive or too lax, affecting too many
or too few users. However, our results suggest that we have
captured a wide range of behavior. Figure 9 counts the runs,
grouped by the task, whether the testcase was blank or not,
and whether the user expressed discomfort or did not react
(testcase exhausted). As we can see, there were few reac-
tions to blank testcases, and most, but not all, non-blank
testcases caused discomfort at some level.

3.3 Results

We now address the questions posed in the introduction
using empirical cumulative distribution functions and infor-
mal factor analysis. We describe the results below, along
with additional observations.

Total

Non-Blank testcases Blank
Discomforted 295 33
Exhausted 47 212

MS Word

Discomforted 48 0
Exhausted 20 59
Prob of discomfort from blank testcase 0.00

MS Powerpoint

Discomforted 71 0
Exhausted 4 60
Prob of discomfort from blank testcase 0.00

Internet Explorer

Discomforted 50 14
Exhausted 17 50
Prob of discomfort from blank testcase 0.22

Quake

Discomforted 126 19
Exhausted 6 43
Prob of discomfort from blank testcase 0.30

Figure 9. Breakdown of runs.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P
ro

b

Contention Level (DfCount=295, Excount=47, f_d=0.862)

CDF for CPU feedback values - ALL contexts

Exhausted Region

Discomfort Region

Prob

Figure 10. CDF of discomfort for CPU.

3.3.1 What level of resource borrowing leads to user
discomfort for a significant fraction of users?

From the perspective of an implementor this is a key ques-
tion. We can answer this question using cumulative prob-
ability distributions (CDF) derived from running our ramp
testcases, aggregated across contexts to convey a general
view of each resource.

Figures 10-12 show CDFs for CPU, Memory and Disk
aggregated over all the tasks. The horizontal axis is the
level of contention for each resource. The vertical axis is
the cumulative fraction of users discomforted. As the level

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ro

b

Contention Level (DfCount=25, Excount=96, f_d=0.206)

CDF for Mem feedback values - ALL contexts

Exhausted Region

Discomfort Region

Prob

Figure 11. CDF of discomfort for Memory.

of borrowing increases, users’ interactivity is increasingly
likely to be affected. This is the discomfort region. Some
users do not become discomforted in the range of levels
explored. We refer to this as the exhausted region. The
graph is labeled with the number of runs that ended in dis-
comfort (DfCount) and exhaustion (ExCount). There is
also some probability that a user will feel discomforted even
when no resource borrowing (blank testcase) is occurring.
We refer to this as the noise floor and it is reflected in Fig-
ure 9. To make our discussion easier, we derive three met-
rics from the CDFs. The first is fd, the fraction of testcases
which provoke discomfort, fd = DfCount

DfCount+ExCount . A
low value of fd indicates that the range of contention ap-
plied in that context for resource borrowing doesn’t affect
interactivity significantly.

The second metric is c0.05, the contention level that dis-
comforts 5% of the users. This is the 5th-percentile of the
CDFs. This value is of particular interest to implementors
as it provides them with a level that discomforts only a tiny
fraction of users. Any other percentile can also be found
from these CDFs.

The third metric is ca, the average contention level at
which discomfort occurs. This is useful in comparing
classes of users. Figures 14, 15, and 16 present the met-
rics.

Figure 10 shows the CDF for CPU borrowing. Notice
that even at CPU contention levels of 10, more than 10%
of users do not become irritated. More importantly, we can
reach contention levels of 0.35 while irritating fewer than
5% of the users (c0.05,cpu � 0.35). This corresponds to
consuming 35% of the processor when there are no com-
peting threads.

Figure 11 shows the CDF for memory. Notice that al-
most 80% of users are unfazed even when nearly all their
memory is consumed (fd = 0.21). Furthermore, aggre-

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P
ro

b

Contention Level (DfCount=47, Excount=94, f_d=0.333)

CDF for Disk feedback values - ALL contexts

Exhausted Region

Discomfort Region

Prob

Figure 12. CDF of discomfort for Disk.

CPU Memory Disk Total

Word L L L L
Powerpoint M L L M
IE M M H M
Quake H M M H
Total M L L

Figure 13. User sensitivity by task and re-
source (Low, Medium, High).

gating over the four contexts, it appears we can easily bor-
row 33% of memory on these common PCs while irritating
fewer than 5% of users (c0.05,memory � 0.33) in general.

Figure 12 shows the CDF for disk bandwidth. Almost
70% of users are comfortable even with seven competing
tasks (fd = 0.33). Furthermore, we can easily execute a
single disk writing task, capable of consuming the whole
disk bandwidth if run alone, while irritating fewer than 5%
of the users (c0.05,disk � 1.11). We found this result re-
markably counterintuitive as we ourselves tend to become
uncomfortable when large amounts of unexplained disk I/O
occurs on our desktops. The Dell machines we used for the
study are remarkably quiet and have very dim disk lights.
We suspect that it is the limited feedback about disk activ-
ity that leads to users accepting far higher amounts of disk
contention than they otherwise might.

Note that the aggregated CDFs are intended to estimate
performance over all applications. This is a rough estimate
and will be more generalizable as we collect information for
more applications.

CPU Memory Disk

Word 0.71 0.00 0.10
Powerpoint 0.95 0.07 0.17
IE 0.75 0.30 0.61
Quake 0.95 0.45 0.29
Total 0.86 0.21 0.33

Figure 14. fd by task and resource.

CPU Memory Disk

Word 3.06 * 3.28
Powerpoint 1.00 0.64 3.84
IE 0.61 0.31 2.02
Quake 0.18 0.08 0.69
Total 0.35 0.33 1.11

Figure 15. c0.05 by task and resource. (* indi-
cates insufficient information)

3.3.2 How does the level depend on which resource or
combination of resources is borrowed?

Figure 18 (located at the end of the paper) shows the CDF
for each context and resource pair. Consulting its columns
as well as the aggregated CDFs shown earlier clearly shows
the strong dependence on the type of resource. Within the
contention levels explored by the ramp testcases for each
resource, users are much more tolerant with borrowing of
memory and disk. This observation is qualitative as the test-
cases for each resource are different, but within the levels
explored this holds true.

The varying tolerance by resource also shows up in our
aggregated fd, c5 and ca metrics, the column totals of Fig-
ures 14, 15, and 16. An important point to note is that the
high fd value of CPU (0.86), does not mean that the prob-
ability of discomforting users by borrowing CPU is 0.86.
This probability depends on the contention. To determine
this probability, a level must be chosen and the CDFs con-
sulted as described in the previous section.

3.3.3 How does the level depend on the user’s context?

In Figure 18, we see dramatic differences in the reactions to
resource borrowing between different contexts. Consulting
the rows illustrates this. It is clearly the case that the user’s
tolerance for resource borrowing depends not only on the
resource, but also on what the user is doing.

The totals row of Figure 16 shows the average level at
which discomfort occurs for the CPU contention for the four
tasks. For an undemanding application like Word, the CPU
contention can be very high (> 4) without significant affect-
ing interactivity. However, with finer-grain interactivity, as
in Powerpoint and Quake, the average level is much lower.

CPU Memory Disk

Word 4.35 * 4.20
(3.97,4.72) (1.89,6.51)

Powerpoint 1.17 0.64 4.65
(1.11,1.24) (0.21,1.06) (3.67,5.63)

IE 1.20 0.55 3.11
(1.07,1.33) (0.39,0.71) (2.69,3.52)

Quake 0.64 0.55 1.19
(0.58,0.69) (0.37,0.74) (0.86,1.52)

Total 1.47 0.58 2.97
(1.31,1.64) (0.46,0.71) (2.54,3.41)

Figure 16. ca by task and resource, including
95% confidence intervals. (* indicates insuf-
ficient information)

This is likely due to the more aggressive CPU demands of
these applications. Still, for the most aggressive applica-
tion, Quake, results show that a thread with contention of
nearly 0.2 can still run with a low probability of discomfort.

We used the same testcase for memory in all four tasks,
growing the working set from zero to nearly the full mem-
ory size. The effect of memory borrowing is minimal in
the case of Word (no discomfort recorded) and Powerpoint.
IE and Quake are much more sensitive to memory borrow-
ing, with more instances of discomfort (fd = 0.3 and
fd = 0.45, respectively). For IE and Quake, value of
c0.05,mem is 0.31 and 0.08 respectively, meaning that Quake
users become discomforted at much lower levels. It ap-
pears that once office applications like Word and Power-
point form their working set, significant portions of the re-
maining physical memory can be borrowed with marginal
impact. This seems to be less true for IE and Quake, where
their memory demands may be more dynamic.

Disk bandwidth can be borrowed with little discomfort
in typical office applications. In Word and Powerpoint,
the fraction of testcases ending in discomfort was small
(fd = 0.01 and fd = 0.17 respectively), in the wide range
covered by the testcases. IE and Quake are more sensitive.
For identical disk testcases, we find that IE is more sensi-
tive (fd = 0.61). This may be expected as IE caches files
and users were asked to save all the pages, resulting in more
disk activity.

Figure 9 shows that users express feedback even when
there is no testcase running. We note that users exhibit this
behavior only in IE and Quake. Quake is a very demand-
ing application in which jitter quickly discomforts users.
There are sources of jitter on even an otherwise quiescent
machine. Discomfort in IE depends to some extent on net-
work behavior.

Figure 13 summarizes our judgement of user sensitivity
to resource borrowing by resource and task. Note that the

App Rsrc Rating p Diff

Quake CPU PC Power vs. Typical 0.006 0.176
Quake CPU Windows Power vs. Typical 0.031 0.137
Quake CPU Quake Power vs. Typical 0.001 0.224
Quake CPU Quake Typical vs. Beginner 0.031 0.139
IE Disk Windows Power vs. Typical 0.004 1.114
IE Mem Windows Power vs. Typical 0.011 0.354

Figure 17. Significant differences based on
user-perceived skill level.

totals are not derived from the columns but represent overall
judgements from the study of the CDFs (Figure 18).

3.3.4 How does the level depend on the user, factoring
out context?

Users’ comfort with resource borrowing depends to a small
extent on their perceived skill level. We asked our users to
rate themselves as {Power User, Typical User, or Beginner}
in each of {PC Usage, Windows, Word, Powerpoint, IE, and
Quake}.

We compared the average discomfort contention levels
for the different groups of users defined by their self-ratings
for each context/resource combination using unpaired t-
tests. In some cases, we found significant differences,
summarized in Figure 17. The largest differences were
for the combination Quake/CPU. For example, a Quake
Power User will tolerate 0.224 less CPU contention than
a Quake Typical User at a significance level (p-value) of
0.001. Even the users’ self-rating for general Windows and
PC use can lead to interesting differences in their tolerance.
For example, for CPU, the differences between discomfort
levels for Power and Typical users are quite drastic with
p = 0.002 (PC Background) and p = 0.010 (Windows
Background). Applications which have higher resource re-
quirements show greater differences between user classes.
However, our results are preliminary here and will improve
with our Internet-wide study.

These results expose the psychological component to
comfort with resource borrowing. Experienced or power
users have higher expectations from the interactive applica-
tion than beginners. When we borrow resources it may be
helpful to ask the user to rate himself.

3.3.5 How does the level depend on the time dynamics
of resource borrowing?

For this question, we have only preliminary results. We
tested the “frog in the pot” hypothesis. A perhaps apoc-
ryphal rule in French cooking is that when boiling a frog, it
is best to place the frog in the water before starting to heat

it. The frog will not react to the slowly rising temperature,
while a frog dumped unceremoniously into boiling water
will immediately jump out. We paired ramp and step test-
cases in our study to explore if a similar phenomenon might
be true of user comfort with resource borrowing—that a
user would be more tolerant of a slow ramp that a quick
step to the same level. We did observe the phenomenon
in Powerpoint/CPU—the majority of users (96%) tolerated
higher levels in the ramp testcase with a contention differ-
ence of 0.22 (averaged) with a p-value of 0.0001.

Our Internet-wide study is intended to address the ques-
tion of time dynamics and of raw host speed more carefully.

4 Internet-wide study

Our controlled study at Northwestern helped us to an-
swer or address many of the questions we raised in the in-
troduction. We are now expanding both the scale and the
questions through an Internet-wide study open to all partic-
ipants. Any individual with a Windows computer is wel-
come to visit http://comfort.cs.northwestern.edu to down-
load and run a copy of the UUCS client. The client is con-
figurable by the user, including privacy options. We cur-
rently have about 100 users and are looking for many more.

In the Internet-wide study, the user uses the computer
as normal. When user indicates any discomfort, the client
records the context, the running processes, the contention
levels, and other data similar to the controlled study. We
plan to use this data to create better estimates for the aggre-
gated resource CDFs (Figures 10-12), to better understand
the effect of context and to measure the effect of the raw
performance of the machine, which was not studied in our
controlled study.

5 Advice to implementors

Based on our study, we can offer the following guidance
to implementors of distributed computing and thin-client
frameworks.

• Borrow disk and memory aggressively, CPU less so.

• Build a throttle [25]. Your system can benefit from being
able to control its borrowing at a fine granularity similar to
the UUCS client.

• Exploit our CDFs (Figures 10-12) to set the throttle
according to the percentage of users you are willing to
affect. As we collect more data, the CDF estimates will
improve.

• Know what the user is doing. Their context greatly affects
the right throttle setting.

• Consider using user feedback directly in your application.

6 Conclusions

We have described the design and implementation of a
system for measuring user comfort with resource borrow-
ing, as well as a carefully controlled study undertaken with
the system. The end result has three components. First,
we provided a set of empirical cumulative distribution func-
tions that show how to trade off between the level of bor-
rowing of CPU, memory, and disk resources and the prob-
ability of discomforting an end-user. Second, we describe
how resource type, user context (task), and user-perceived
expertise affect these CDFs. Finally, we have made initial
observations on how the time dynamics of resource borrow-
ing affect the level.

Surprisingly, disk and memory can be borrowed quite
aggressively with little user reaction, while CPU can also
be borrowed liberally. Our observations formed the basis of
advice for the implementers of distributed computing and
thin-client frameworks. We are currently exploring how to
use user feedback directly in the scheduling of these frame-
works and applications.

Acknowledgements

We thank Don Norman, Andrew Ortony, Ben Watson,
Jack Tumblin, and Leslie Lamport for very useful sugges-
tions. We also are grateful to the participants in our study.

References

[1] ANDERSON, T. E., CULLER, D. E., AND PATTERSON,
D. A. A case for networks of workstations. IEEE Micro
(February 1995).

[2] BHOLA, S., AND AHAMAD, M. Workload modeling for
highly interactive applications. In ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems
(1999), pp. 210–211. Extended version as Technical Report
GIT-CC-99-2, College of Computing, Georgia Tech.

[3] CHIEN, A. A., CALDER, B., ELBERT, S., AND BHATIA,
K. Entropia: architecture and performance of an enterprise
desktop grid system. Journal of Parallel and Distributed
Computing 63, 5 (2003), 597–610.

[4] CURTIN, M., AND DOLSKE, J. A brute force search of des
keyspace. ;login: (May 1998).

[5] DINDA, P. A. The statistical properties of host load. Scien-
tific Programming 7, 3,4 (1999). A version of this paper
is also available as CMU Technical Report CMU-CS-TR-
98-175. A much earlier version appears in LCR ’98 and as
CMU-CS-TR-98-143.

[6] DINDA, P. A., AND O’HALLARON, D. R. Realistic CPU
workloads through host load trace playback. In Proc. of 5th
Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR2000) (May 2000). Springer
LNCS 1915, pp. 265-280.

[7] DOUGLIS, F., AND OUSTERHOUT, J. Transparent process
migration: Design alternatives and the Sprite approach. Soft-
ware Practice and Experience 21, 7 (July 1991), 1–27.

[8] EMBLEY, D. W., AND NAGY, G. Behavioral aspects of text
editors. ACM Computing Surveys 13, 1 (January 1981), 33–
70.

[9] ENDO, Y., WANG, Z., CHEN, J. B., AND SELTZER, M.
Using latency to evaluate interactive system performance. In
Proceedings of the 1996 Symposium on Operating Systems
Design and Implementation (1996).

[10] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A
case for grid computing on virtual machines. In Proceed-
ings of the 23rd IEEE Conference on Distributed Computing
(ICDCS 2003 (May 2003), pp. 550–559.

[11] FREY, J., TANNENBAUM, T., FOSTER, I., LIVNY, M., AND

TUECKE, S. Condor-g: A computation management agent
for multi-institutional grids. In Proceedings of the 10th Inter-
national Symposium on High Performance Distributed Com-
puting (HPDC 2001) (2001), pp. 55–66.

[12] GOOGLE CORPORATION. Google compute.
http://toolbar.google.com/dc/.

[13] GUPTA, A., LIN, B., AND DINDA, P. A Framework and
Toolkit for Understanding User Comfort with Resource Bor-
rowing. Tech. rep. NWU-CS-04-28, Department of Com-
puter Science, Northwestern University, 2003.

[14] HUA CHU, Y., RAO, S., SHESHAN, S., AND ZHANG, H.
Enabling conferencing applications on the internet using an
overlay multicast architecture. In Proceedings of ACM SIG-
COMM 2001 (2001).

[15] JANNOTTI, J., GIFFORD, D., JOHNSON, K., KAASHOEK,
M., AND JR., J. O. Overcast: Reliable multicasting with
an overlay network. In Proceedings of OSDI 2000 (October
2000).

[16] KLEIN, J. T. Computer response to user frustration. Mas-
ter’s thesis, Massachusetts Institute of Technology, 1999.

[17] KOMATSUBARA, A. Psychological upper and lower limits
of system response time and user’s preferance on skill level.
In Proceedings of the 7th International Conference on Hu-
man Computer Interaction (HCI International 97), pp. 829–
832.

[18] LARSON, S. M., SNOW, C. D., SHIRTS, M., AND PANDE,
V. S. Folding@home and genome@home: Using distributed
computing to tackle previously intractable problems in com-
putational biology. In Computational Genomics, R. Grant,
Ed. Horizon Press, 2002.

[19] LITZKOW, M., LIVNY, M., AND MUTKA, M. W. Condor
— a hunter of idle workstations. In Proceedings of the 8th
International Conference of Distributed Computing Systems
(ICDCS ’88), pp. 104–111.

[20] MUTKA, M. W., AND LIVNY, M. The available capacity
of a privately owned workstation environment. Performance
Evaluation 12, 4 (July 1991), 269–284.

[21] REYNOLDS, C. J. The sensing and measurement of frustra-
tion with computers. Master’s thesis, Massachusetts Institute
of Technology Media Laboratory, 2001.

[22] RIPEANU, M., FOSTER, I., AND IAMNITCHI, A. Mapping
the gnutella network: Properties of large-scale peer-to-peer
systems and implications for system design. IEEE Internet
Computing Journal 6, 1 (2002).

[23] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-
to-peer systems. In Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms (Mid-
dleware) (2001).

[24] RYU, K. D., AND HOLLINGSWORTH, J. K. Fine-grain cy-
cle stealing for networks of workstations. In Proceedings of
ACM/IEEE SC98 (Supercomputing ’98) (November 1998),
pp. 801–821.

[25] RYU, K. D., HOLLINGSWORTH, J. K., AND KELEHER,
P. J. Efficient network and I/O throttling for fine-grain cycle
stealing. In Proceedings of Supercomputing ’01 (November
2001).

[26] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R., ZEL-
DOVICH, N., CHOW, J., LAM, M. S., AND ROSENBLUM,
M. Virtual appliances for deploying and maintaining soft-
ware. In Proceedings of the 17th Large Installation Systems
Administration Conference (LISA 2003) (October 2003).

[27] SCHMIDT, B., LAM, M., AND NORTHCUTT, J. The interac-
tive performance of slim: A stateless thin client architecture.
In Proceedigns of the 17th ACM Symposium on Operating
Systems Principles (SOSP 1999) (December 1999).

[28] SHARMAN NETWORKS. The Kazaa Media Desktop.
http://www.kazaa.com.

[29] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F.,
AND BALAKRISHNAN, H. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proceedings of
ACM SIGCOMM 2001 (2001), pp. 149–160.

[30] SULLIVAN, W. T., WERTHIMER, D., BOWYER, S., COBB,
J., GEDYE, D., AND ANDERSON, D. A new major seti
project based on project serendip data and 100,000 personal
computers. In Proceedings of the Fifth International Confer-
ence on Bioastronomy (1997).

W
or

d
Po

w
er

po
in

t
In

te
rn

et
E

xp
lo

re
r

Q
ua

ke

C
PU

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

48
, E

xc
ou

nt
=

20
, f

_d
=

0.
70

5)

C
D

F
 fo

r
C

P
U

 fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 W

or
d

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

71
, E

xc
ou

nt
=

4,
 f_

d=
0.

94
6)

C
D

F
 fo

r
C

P
U

 fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 P

ow
er

po
in

t

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

50
, E

xc
ou

nt
=

17
, f

_d
=

0.
74

6)

C
D

F
 fo

r
C

P
U

 fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 IE

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

12
6,

 E
xc

ou
nt

=
6,

 f_
d=

0.
95

4)

C
D

F
 fo

r
C

P
U

 fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 Q

ua
ke

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

D
is

k

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

3,
 E

xc
ou

nt
=

28
, f

_d
=

0.
09

6)

C
D

F
 fo

r
D

is
k

fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 W

or
d

E
xh

au
st

ed
 R

eg
io

n
D

is
co

m
fo

rt
 R

eg
io

n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

5,
 E

xc
ou

nt
=

25
, f

_d
=

0.
16

6)

C
D

F
 fo

r
D

is
k

fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 P

ow
er

po
in

t

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

30
, E

xc
ou

nt
=

19
, f

_d
=

0.
61

2)

C
D

F
 fo

r
D

is
k

fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 IE

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

9,
 E

xc
ou

nt
=

22
, f

_d
=

0.
29

)

C
D

F
 fo

r
D

is
k

fe
ed

ba
ck

 v
al

ue
s

-
C

on
te

xt
 Q

ua
ke

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

M
em

0

0.
2

0.
4

0.
6

0.
81

0
0.

2
0.

4
0.

6
0.

8
1

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

0,
 E

xc
ou

nt
=

30
, f

_d
=

0)

C
D

F
 fo

r
M

em
 fe

ed
ba

ck
 v

al
ue

s
-

C
on

te
xt

 W
or

d

E
xh

au
st

ed
 R

eg
io

n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
0.

2
0.

4
0.

6
0.

8
1

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

2,
 E

xc
ou

nt
=

28
, f

_d
=

0.
06

6)

C
D

F
 fo

r
M

em
 fe

ed
ba

ck
 v

al
ue

s
-

C
on

te
xt

 P
ow

er
po

in
t

E
xh

au
st

ed
 R

eg
io

n
D

is
co

m
fo

rt
 R

eg
io

n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
0.

2
0.

4
0.

6
0.

8
1

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

9,
 E

xc
ou

nt
=

21
, f

_d
=

0.
3)

C
D

F
 fo

r
M

em
 fe

ed
ba

ck
 v

al
ue

s
-

C
on

te
xt

 IE

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

0

0.
2

0.
4

0.
6

0.
81

0
0.

2
0.

4
0.

6
0.

8
1

Prob

C
on

te
nt

io
n

Le
ve

l (
 D

fC
ou

nt
=

14
, E

xc
ou

nt
=

17
, f

_d
=

0.
45

1)

C
D

F
 fo

r
M

em
 fe

ed
ba

ck
 v

al
ue

s
-

C
on

te
xt

 Q
ua

ke

E
xh

au
st

ed
 R

eg
io

n

D
is

co
m

fo
rt

 R
eg

io
n

P
ro

b

F
ig

u
re

18
.C

D
F

s
by

re
so

u
rc

e
an

d
ta

sk
.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

