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ABSTRACT
The hybrid runtime (HRT) model offers a plausible path to-
wards high performance and efficiency. By integrating the
OS kernel, parallel runtime, and application, an HRT al-
lows the runtime developer to leverage the full privileged
feature set of the hardware and specialize OS services to the
runtime’s needs. However, conforming to the HRT model
currently requires a complete port of the runtime and ap-
plication to the kernel level, for example to our Nautilus
kernel framework, and this requires knowledge of kernel in-
ternals. In response, we developed Multiverse, a system that
bridges the gap between a built-from-scratch HRT and a
legacy runtime system. Multiverse allows existing, unmodi-
fied applications and runtimes to be brought into the HRT
model without any porting effort whatsoever. Developers
simply recompile their package with our compiler toolchain,
and Multiverse automatically splits the execution of the ap-
plication between the domains of a legacy OS and an HRT
environment. To the user, the package appears to run as
usual on Linux, but the bulk of it now runs as a kernel.
The developer can then incrementally extend the runtime
and application to take advantage of the HRT model. We
describe the design and implementation of Multiverse, and
illustrate its capabilities using the Racket runtime system.

1. INTRODUCTION
Runtime systems can gain significant benefits from execut-

ing in a tailored software environment. In previous work, we
proposed one such specialized environment called the Hybrid
Runtime (HRT) [10, 11]. In an HRT, a light-weight kernel
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framework (called an AeroKernel), a runtime, and an ap-
plication coalesce into a single entity in which the runtime
can enjoy full access to the underlying hardware, including
features typically reserved for a privileged OS.

An AeroKernel can export functionality through a stan-
dard interface such as POSIX or through a custom interface.
However, it exists solely for convenience, and the runtime
may not even leverage the mechanisms it provides. Ulti-
mately, the choices of proper execution model and abstrac-
tions to the hardware are left to the runtime. The runtime
developers can build or choose the kernel abstractions they
need. The motivation for an AeroKernel draws from the
reliable performance of light-weight kernels [16, 15, 8], the
philosophy regarding kernel abstractions of Exokernel [4],
new techniques and ideas developed in multi-core OS re-
search [17, 5], and the simplicity of other experimental OSes
from previous decades [14, 18]. In this paper, we use our
Nautilus AeroKernel, which we describe in more detail in
Section 2.

Prior to the work and system we describe here, the im-
plementation of an HRT consisted entirely of manual pro-
cesses. HRT developers needed first to extend an AeroKer-
nel framework such as Nautilus with the functionality the
runtime needed. The HRT developers would then port the
runtime to this AeroKernel manually. Readers interested in
finer detail regarding this process can refer to our technical
report [11]. While a manual port can produce the highest
performance gains, it requires an intimate familiarity with
the runtime system’s functional requirements, which may
not be obvious. These requirements must then be imple-
mented in the AeroKernel layer and the AeroKernel and
runtime must be combined. This requires a deep under-
standing of kernel development. This manual process is also
iterative: the developer adds AeroKernel functionality until
the runtime works correctly. The end result might be that
the AeroKernel interfaces support a small subset of POSIX,
or that the runtime developer replaces such functionality
with custom interfaces.

While such a development model is tractable, and we have
transformed three runtimes to HRTs using it, it represents
a substantial barrier to entry to creating HRTs, which we
seek here to lower. The manual porting method is additive
in its nature. We must add functionality until we arrive at
a working system. A more expedient method would allow
us to start with a working HRT produced by an automatic
process, and then incrementally extend it and specialize it
to enhance its performance.

The Multiverse system we describe in this paper supports
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just such a method using a technique called automatic hy-
bridization to create a working HRT from an existing, un-
modified runtime and application. With Multiverse, runtime
developers can take an incremental path towards adapting
their systems to run in the HRT model. From the user’s per-
spective, a hybridized runtime and application behaves the
same as the original. It can be run from a Linux command
line and interact with the user just like any other executable.
But internally, it executes in kernel mode as an HRT.

Multiverse bridges a specialized HRT with a legacy envi-
ronment by borrowing functionality from a legacy OS, such
as Linux. Functions not provided by the existing Aero-
Kernel are forwarded to another core that is running the
legacy OS, which handles them and returns their results.
The runtime developer can then identify hot spots in the
legacy interface and move their implementations (possibly
even changing their interfaces) into the AeroKernel. The
porting process with Multiverse is subtractive in that a de-
veloper iteratively removes dependencies on the legacy OS.
At the same time, the developer can take advantage of the
kernel-level environment of the HRT.

To demonstrate the capabilities of Multiverse, we auto-
matically hybridize the Racket runtime system. Hybridized
Racket executes in kernel mode as an HRT, and yet the
user sees precisely the same interface (an interactive REPL
environment, for example) as out-of-the-box Racket.

Our contributions in this paper are as follows:

• We introduce the concept of automatic hybridization for
transforming runtime systems and their applications into
HRTs, enabling them to run in kernel mode with full
access to hardware features and the ability to adapt the
kernel to their needs.

• We describe the design of Multiverse, an implementation
of automatic hybridization that combines compile-time,
link-time, run-time, and virtualization-based techniques.

• We demonstrate automatic hybridization with Multiverse
by transforming the Racket runtime into an HRT.

• We evaluate the initial performance of Multiverse.

2. HRT AND HVM
Multiverse builds on our previously described work and

systems [10, 11, 9] to define and support the hybrid run-
time (HRT) model. We describe the key salient findings
and components here.

The core premise of the HRT model is that by moving the
parallel runtime (and its application) to the kernel level, we
enable the runtime developer to leverage all hardware fea-
tures (including privileged features), and to specialize kernel
features specifically for the runtime’s needs. These capabil-
ities in turn allow for greater performance or efficiency than
is possible at user-level. We developed a kernel framework,
the Nautilus AeroKernel, to facilitate doing this. Nautilus
runs on bare metal or under virtualization on x64 machines
and the Intel Xeon Phi.

We have previously ported three runtimes to Nautilus,
namely Legion [2], the NESL VCODE interpreter [3], and
the runtime of a home-grown nested data parallel language.
Using the HPCG (High Performance Conjugate Gradients)
benchmark [13] developed by Sandia National Labs and ported
to Legion by Los Alamos National Labs, we demonstrated
speedups over Linux of up to 20% for the Intel Xeon Phi,
and up to 40% for a 4-socket, 64-core x64 AMD Opteron
6272 machine.

Multiverse also builds on the Hybrid Virtual Machine
(HVM), an extension to the open source (BSD) Palacios
VMM [16]. HVM allows for the creation of a VM whose
memory, cores, and interrupt logic are segregated so that one
VM simultaneously runs two operating systems, the “Reg-
ular Operating System” (ROS) (e.g., Linux) and an HRT-
based OS (e.g., Nautilus). The ROS runs on a partition of
the cores and can see and touch only the ROS cores and
the ROS subset of physical memory. In contrast, the HRT,
while only allowed to run on its own distinct partition of the
cores, has full access to all the memory, cores, and interrupt
logic of the entire VM. The ROS and HRT can be booted
and rebooted independently.

3. MULTIVERSE
The goal of Multiverse is to ease the path for developers

of transforming a runtime into an HRT. We seek to make
the system look like a compilation toolchain option from
the developer’s perspective. That is, to the greatest extent
possible, the HRT is a compilation target. Compiling to an
HRT results in an executable that is a“fat binary”containing
additional code and data that enables kernel-mode execution
in an environment that supports it. An HVM-enabled VM
on Palacios is the first such environment. The developer
can extend this incrementally—Multiverse facilitates a path
for runtime and application developers to explore how to
specialize their HRT to the full hardware feature set and
the extensible kernel environment of the AeroKernel.

From the user’s perspective, the executable behaves as if it
were compiled for a standard user-level Linux environment.
The user sees no difference between HRT execution and user-
level execution.

3.1 Techniques
The Multiverse system relies on three key techniques: state

split execution, event channels, and state superpositions.
We now describe each of these.

Split execution. In Multiverse, a runtime and its appli-
cation begin their execution in the ROS. Through a well-
defined interface, the runtime on the ROS side can spawn
an execution context in the HRT. At this point, Multiverse
splits its execution into two components, each running in
a different context; one executes in the ROS and the other
in the HRT. The semantics of these execution contexts dif-
fer from traditional threads depending on their characteris-
tics. In the current implementation, the context on the ROS
side comprises a Linux thread, the context on the HRT side
comprises an AeroKernel thread, and we refer to them col-
lectively as an execution group. While execution groups in
our current system consist of threads in different OSes, this
need not be true in general. The context on the HRT side ex-
ecutes until it triggers a fault, a system call, or other event.
The execution group then converges on this event, with each
side participating in a protocol for requesting events and re-
ceiving results. This protocol exchange occurs in the context
of HVM event channels, which we discuss below.

Figure 1 illustrates the split execution of Multiverse for
a ROS/HRT execution group. At this point, the ROS has
already made a request to create a new context in the HRT.
When the HRT thread begins executing in the HRT side,
exceptional events, such as page faults, system calls, and
other exceptions vector to stub handlers in the AeroKernel
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Figure 1: Split execution in Multiverse.

Item Cycles Time

Address Space Merger ∼33 K 1.5 µs
Asynchronous Call ∼25 K 1.1 µs
Synchronous Call (different socket) ∼1060 48 ns
Synchronous Call (same socket) ∼790 36 ns

Figure 2: Round-trip latencies of ROS↔HRT interactions.

(1). The AeroKernel then redirects these events through
an event channel (2) to request handling in the ROS. The
VMM then injects these into the originating ROS thread,
which can take action on them directly (3). For example, in
the case of a page fault that occurs in the ROS portion of
the virtual address space, the HVM library simply replicates
the access, which will cause the same exception to occur on
the ROS core. The ROS will then handle it as it would
normally. In the case of events that need direct handling by
the ROS kernel, such as system calls, the HVM library can
simply forward them (4).

Event channels. When the HRT needs functionality that
the ROS implements, access to that functionality occurs over
event channels, event-based, VMM-controlled communica-
tion channels between the two contexts. The VMM only
expects that the execution group adheres to a strict proto-
col for event requests and completion.

Figure 2 shows the measured latency of event channels
with the Nautilus AeroKernel performing the role of HRT.
The first two calls are bounded from below by the latency
of hypercalls to the VMM, while the remainder operate at
memory synchronization speeds.

State superpositions. In order to forego the addition of
burdensome complexity to the AeroKernel environment, it
helps to leverage functions in the ROS other than those that
lie at a system call boundary. This includes functionality
implemented in libraries and more opaque functionality like
optimized system calls in the vdso and the vsyscall page.
In order to use this functionality, Multiverse can set up the
HRT and ROS to share portions of their address space, in
this case the user-space portion. Aside from the address
space merger itself, Multiverse leverages other state super-
positions to support a shared address space, including super-
positions of the ROS GDT and thread-local storage state.

In principle, we could superimpose any piece of state vis-
ible to the VMM. The ROS or the runtime need not be

aware of this state, but the state is nonetheless necessary
for facilitating a simple and approachable usage model.

The superposition we leverage most in Multiverse is a
merged address space between the ROS and the HRT. The
merged address space allows execution in the HRT with-
out a need for implementing ROS-compatible functionality.
When a merged address space takes effect, the HRT can use
the same user-mode virtual addresses present in the ROS.
For example, the parallel runtime in the ROS might load
files and construct a complex pointer-based data structure
in memory. It can then invoke a function within its coun-
terpart in the HRT to compute over that data.

4. EVALUATION
In this section we evaluate Multiverse using a hybridized

Racket runtime system running a set of benchmarks from
The Language Benchmark Game. We ran all experiments
on a Dell PowerEdge 415 with 8GB of RAM and an 8 Core
64-bit x86 64 AMD Opteron 4122 clock clocked at 2.2GHz.
Each CPU core has a single thread with four cores per
socket. The host machine has stock Fedora Linux 2.6.38.6-
26.rc1.fc15.x86 64 installed, and is configured for maximum
performance in the BIOS. Benchmark results are reported
as averages of 10 runs.

Experiments in a VM were run on a guest setup which
consists of a simple BusyBox distribution running an un-
modified Linux 2.6.38-rc5+ image with two cores (one core
for the HVM and one core for the ROS) and 1 GB of RAM.

Racket
Racket [7, 6] is the most widely used Scheme implementa-
tion and has been under continuous development for over
20 years. It is an open source codebase that is downloaded
over 300 times per day. Recently, support has been added
to Racket for parallelism via futures [19] and places [20].

The Racket runtime is a good candidate to test Multi-
verse, particularly its most complex usage model, the incre-
mental model, because Racket includes many of the chal-
lenging features emblematic of modern dynamic program-
ming languages that make extensive use of the Linux ABI,
including system calls, memory mapping, processes, threads,
and signals. Readers can find more details on the various
usage models of Multiverse in our technical report [12].

To evaluate the correctness and performance of our port,
we tested it on a series of benchmarks submitted to The
Computer Language Benchmarks Game [1]. We tested on
seven different benchmarks: a garbage collection benchmark
(binary-tree-2), a permutation benchmark (fannkuch), two
implementations of a random DNA sequence generator (fasta
and fasta-3), a generation of the mandelbrot set (mandelbrot-
2), an n-body simulation (n-body), and a spectral norm al-
gorithm.

Note that while this is an implementation of a high-level
language, the actual execution of Racket programs involves
many interactions with the operating system. These exercise
Multiverse’s system call and fault forwarding mechanisms.

Figure 3 compares the performance of the Racket bench-
marks run natively on our hardware, under virtualization,
and as an HRT that was created with the initial implemen-
tation of Multiverse. The overhead of the Multiverse case
compared to the virtualized and native cases is due to the
frequent interactions with the Linux ABI. Most of these in-
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Figure 3: Performance of Racket benchmarks running Na-
tive, Virtual, and in Multiverse. Note that the Multiverse
result is the result of Multiverse’s automatic hybridization of
Racket—it is the starting point for incremental enhancement
within the HRT model.

teractions arise from page faults rather than system calls.
In the Multiverse case, these are forwarded from the HRT
to the ROS to be handled.

It is worth reflecting on what exactly has happened
here: we have taken a complex runtime system off-the-
shelf, run it through Multiverse without changes, and
as a result have a version of the runtime system that
correctly runs in kernel mode as an HRT and behaves
identically with virtually identical performance. To be
clear, all of the Racket runtime except Linux ker-
nel ABI interactions is seamlessly running as a
kernel. While this codebase is the endpoint for user-
level development, it represents a starting point for HRT
development in the incremental model.

5. CONCLUSIONS AND FUTURE WORK
We introduced Multiverse, a system that implements au-

tomatic hybridization of runtime systems in order to trans-
form them into hybrid runtimes (HRTs). We illustrated the
design and implementation of Multiverse and described how
runtime developers can use it as a tool for incremental port-
ing of runtimes and applications from a legacy OS to a spe-
cialized AeroKernel.

To demonstrate its power, we used Multiverse to auto-
matically hybridize the Racket runtime system, a complex,
widely-used, JIT-based runtime. With automatic hybridiza-
tion, we can take an existing Linux version of a runtime or
application and automatically transform it into a package
that looks to the user as if it runs like any other program,
but actually executes on a remote core in kernel-mode, in the
context of an HRT, and with full access to the underlying
hardware. We evaluated the performance overheads of an
unoptimized Multiverse hybridization of Racket and showed
that performance varies with the usage of legacy function-
ality. Runtime developers can leverage Multiverse to start
with a working system and incrementally transition heavily
utilized legacy functions to custom components within an
AeroKernel.
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J. Kubiatowicz. Tessellation: Space-time partitioning in a
manycore client OS. In Proceedings of the 1st USENIX
Conference on Hot Topics in Parallelism (HotPar 2009),
pages 10:1–10:6, Mar. 2009.

[18] T. Roscoe. Linkage in the Nemesis single address space
operating system. ACM SIGOPS Operating Systems Review,
28(4):48–55, Oct. 1994.

[19] J. Swaine, K. Tew, P. Dinda, R. Findler, and M. Flatt. Back to
the futures: Incremental parallelization of existing sequential
runtime systems. In Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2010),
October 2010.

[20] K. Tew, J. Swaine, M. Flatt, R. Findler, and P. Dinda. Places:
Adding message passing parallelism to racket. In Proceedings of
the 2011 Dynamic Languages Symposium (DLS 2011),
October 2011.


	Introduction
	HRT and HVM
	Multiverse
	Techniques

	Evaluation
	Conclusions and Future Work
	References

