
Enhancing Virtualized Application Performance Through
Dynamic Adaptive Paging Mode Selection

Chang S. Bae
Dept. of EECS

Northwestern University
Evanston, IL 60208

cbae@u.northwestern.edu

John R. Lange
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

jacklange@cs.pitt.edu

Peter A. Dinda
Dept. of EECS

Northwestern University
Evanston, IL 60208

pdinda@northwestern.edu

ABSTRACT

Virtual address translation in a virtual machine monitor (VMM)
for modern x86 processors can be implemented using a software
approach known as shadow paging or a hardware approach known
as nested paging. Most VMMs, including our Palacios VMM, sup-
port both. Using a range of benchmark measurements, we show
that which approach is preferable for achieving high application
performance under virtualization is workload dependent, and that
the performance differences between the two approaches can be
substantial. We have developed an algorithm, based on measuring
the TLB miss rate and the VMM exit rate for paging-related exits,
for measuring the performance of the current paging approach dur-
ing normal execution and predicting when switching approaches is
likely to be beneficial to the application. We combine this with new
support in Palacios for switching paging approaches at any time to
implement a dynamic adaptive paging approach called DAV2M
for dynamically adaptive virtualized virtual memory. DAV2M at-
tempts to deliver application performance that is the same or better
than the best static approach for a given workload. Our evaluation
shows that it does so, and, for a range of benchmarks, DAV2M
delivers performance within 5–8% of native, reducing overheads
by as much as a factor of four. Although both the shadow and
nested paging approaches are evolving, the dynamic adaptive ap-
proach can combine their best qualities.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design

General Terms

Design, Experimentation, Measurement, Performance

Keywords

virtual machine monitors, operating systems, performance analysis

This project is made possible by support from the National Science
Foundation (NSF) via grant CNS-0709168, and the Department of
Energy (DOE) via grant DE-SC0005343.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

1. INTRODUCTION
A critical component of the overhead of a modern virtual ma-

chine monitor (VMM) for x86 or x64 hardware is the virtualiza-
tion of address translation. Conceptually, a VMM introduces an
additional layer of indirection that maps addresses that the guest
OS believes are physical addresses, but called here guest physical
addresses (GPAs), to the actual host physical addresses (HPAs).
Address translation then is effectively from guest virtual addresses
(GVAs) to GPAs and then to HPAs.

There are two general approaches to achieving this translation,
shadow paging and nested paging. Both approaches have several
variants. Shadow paging is a software-centric approach that flat-
tens GVA→GPA→HPA translation to GVA→HPA translation and
implements this translation in a single page table hierarchy that is
under the exclusive control of the VMM and combines guest and
VMM intent. In contrast, nested paging is a hardware-centric ap-
proach in which the hardware provides for a second page table hier-
archy that the VMM can use to separately maintain the GPA→HPA
mapping without having to involve itself in the guest’s GVA→GPA
decisions. Section 2 describes these approaches, and their variants
on the x86/x64 in more detail.

Although both approaches can achieve very low overhead, we
argue that there is not a single best approach for minimizing over-
heads and hence maximizing application performance. Rather, the
best approach depends on the paging workload of the application
running in the VM. Further, even for a single application, the best
approach may not be static, but may rather vary over time. For
example, an HPC application with multiple computation phases
might have a preferred paging approach for each phase. As an-
other example, a long-running VM might very well have different
applications execute during its lifetime, each of which may prefer
a different paging approach. In Sections 3 and 4 we report on a
study, based largely on HPC workloads, that supports these claims.
The virtualized application performance, relative to a native envi-
ronment, can vary by as much as 105% between the two modes.

Most modern VMMs for x86/x64 hardware, including the Pala-
cios VMM [19] in which this work is implemented, offer several
variants of both shadow and nested paging. In these VMMs, the
selection of paging approach is made at the time the VM is instan-
tiated and holds for the VM’s lifetime. As we explain in Section 5,
we have extended Palacios to allow us to dynamically change the
paging approach at run-time. As part of the handling of any exit to
the VMM, we can switch to a different approach.

We have developed a prototype policy that uses this mechanism
to enhance the performance of applications as they execute. The
policy is based on two metrics of paging performance. When shadow
paging is in use, the metric is the rate of VMM exits related to
paging, which is extremely easy to measure in the context of exit

handling. When nested paging is used, the metric is the TLB miss
rate, which is measured at virtually zero cost using a hardware per-
formance counter. A third metric, cycles per instruction (CPI), is
used to measure application performance. These metrics are fur-
ther described in Section 4. The metrics are valuable apart from
our policy since they succinctly capture the performance of each
paging approach and the effect on application performance.

Our prototype policy, dynamically adaptive virtualized virtual
memory (DAV2M), uses our mechanism and metrics to probe ap-
plication performance using the current and alternate paging modes.
Probing is triggered when the paging performance under the current
mode exceeds a threshold. Based on this probing, the thresholds
associated with each paging approach are also adjusted. Perfor-
mance testing takes into account transient effects due to the paging
approach switch itself, and probes are temporally limited to avoid
potential oscillations in this control algorithm. When probing iden-
tifies a clearly superior paging approach, it is made the current one.
DAV2M is described in detail in Section 6.

We implemented DAV2M in Palacios and evaluated it using the
application benchmarks described in Section 3 that are most sen-
sitive to particular paging approaches, including benchmarks that
are insensitive for comparison. Detailed results are shown in Sec-
tion 7. The most salient points are as follows. First, for work-
loads which have a single best paging approach, DAV2M is able
to quickly converge on that approach. Because of this quick con-
vergence and the reasonably low overhead of the mechanism for
switching the paging approach, the performance of these workloads
under DAV2M is nearly identical to that we would have seen if we
chose the paging approach correctly when the VM was configured
(≤1%). A second important result is that, for a benchmark whose
best paging approach varies over its execution, DAV2M is able to
dynamically change the paging approach to match changing cir-
cumstances, without oscillatory behavior.

The contributions of our paper are as follows.

• We demonstrate, based on a study of a range of application
benchmarks, that there is no single best paging approach in
VMM that will maximize application performance. The
choice of approach can have a significant impact.

• We describe VMM-based metrics that cheaply and
succinctly measure paging and application performance.

• We describe the design, implementation, and evaluation of a
new mechanism in our Palacios VMM that allows for
dynamically changing the paging approach during run-time.

• We describe the design, and implementation of a policy,
DAV2M, that drives our mechanism to dynamically select
the best paging approach as a VM executes.

• We provide a detailed evaluation of DAV2M in Palacios,
showing that it is highly effective, using the same
application benchmarks.

Our work is publicly available in the context of the Palacios VMM
codebase, which can be found at v3vee.org.

2. PAGING APPROACHES
In a virtualized environment, paging is complicated because there

are essentially two levels of address translation. Conceptually, the
guest OS controls the translation from guest virtual addresses (GVAs)
to guest physical addresses (GPAs) by manipulating page tables in
its address space. The VMM controls the translation from GPAs
to host physical address (HPAs) by manipulating some other struc-
ture that implements the mapping. The two structural forms we
consider here are shadow paging and nested paging.

Shadow paging. Shadow paging is a form of virtualized pag-
ing that is implemented in software. In order to understand shadow
paging, it is helpful to differentiate the privilege level of the guest
page tables and the VMM page tables. Because the VMM runs at
a higher privilege level, it has the ultimate control over the control
registers used to control the normal paging hardware on the ma-
chine. Because of this, it can always ensure that the page tables
in use contain the correct mapping of guest addresses to host ad-
dresses. These page tables, the shadow page tables, contain map-
pings that integrate the requirements of the guest and the VMM.
The shadow page tables implement a mapping from GVA to HPA
and are in use whenever the guest is running.

The VMM must maintain the shadow page tables’ coherence
with the guest’s page tables. A common approach to do so is
known as the virtual TLB model [16, Chapter 28]. The x86’s ar-
chitected support for native paging requires that the OS (guest OS)
explicitly invalidate virtual address (GVAs) from the TLB and other
page structure caches when corresponding entries change in the in-
memory page tables. These operations (including INVLPG and
INVLPGWB instructions, CR3 (the pointer to the current page ta-
ble) writes, CR4.PGE writes, and others) are intercepted by the
VMM and used to update the shadow page tables. The interception
of guest paging operations can be expensive as each one requires
at least one exit from the guest, an appropriate manipulation of the
shadow page table, and one reentry into the guest. These opera-
tions are especially expensive when context switches are frequent.
A typical exit/entry pair, using hardware virtualization support, re-
quires in excess of 1000 cycles on typical AMD or Intel hardware.

In this paper, we use an implementation of shadow paging with
caching, as is common in many VMMs. Shadow paging with caching
attempts to reuse shadow page tables. Ideally, the reuse is suffi-
ciently high enough that a context switch can be achieved essen-
tially with only one exit, to change the CR3 value. The VMM
maintains in memory both shadow page tables corresponding to
the current context, and shadow page tables corresponding to other
contexts. The distinction is not perfect—it is perfectly legitimate
for the guest to share guest page tables among multiple contexts, or
even at different levels of the same context. Furthermore, the guest
kernel has complete access to all of the guest page tables, for all
contexts, at any time.

Nested paging. Nested paging is a hardware mechanism that at-
tempts to avoid the overhead of the exit/entry pairs needed to imple-
ment shadow paging by making the GVA→GPA and GPA→HPA
mappings explicit and separating the concerns of their control, mak-
ing it possible to avoid VMM intervention except when a GPA→HPA
change is desired. Both AMD and Intel support nested paging.

In nested paging, the guest page tables are used in the transla-
tion process to reflect the GVA→GPA mapping, while a second
set of page tables, visible only to the VMM, are used to reflect the
GPA→HPA mapping. Both the guest and the VMM have their own
copy of the control registers, such as CR3. When a guest tries to
reference memory using a GVA and there is a miss in the TLB,
the hardware page-walker mechanism performs a two dimensional
traversal using the guest and nested page tables to translate the GVA
to HPA. When the page walk completes, the result is that the trans-
lation is cached in the TLB.

It is important to realize that with nested paging every step of
the page walk in the guest’s page tables requires a traversal of the
nested page tables—the guest and nested page walk lengths do not
add, they multiply. The consequence is that a TLB miss can be
very expensive to handle. However, hardware page walk caching
has been extended to ameliorate this, and the VMM can further

CPU Opteron 2350 2 GHz

Cache L1 DCache (2-way): 64KB
L1 ICache (2-way): 64KB
L2 (16-way): 512KB
L3 (32-way): 2MB

TLB entries L1 DTLB (full): 48 (4K, 2M, 1G)
(page size) L2 DTLB: 512 (4K) 4-way,

128 (2M) 2-way, 16 (1G) 8-way
L1 ITLB (full): 32 (4K), 16 (2M)
L2 ITLB (4-way): 512 (4K)

BUS 1 GHz

Memory 2GB 667 MHz (DDR2)

Figure 1: Features of primary test machine.

ameliorate it by using large pages (short walks) in the nested page
tables. In this paper, we use the AMD nested paging implementa-
tion on the Opteron 2350. Palacios can use large pages for nested
page tables.

Comparison. A TLB miss under nested paging potentially in-
curs a very high cost compared to shadow paging because of the
two dimensional page walk that is needed. In the worst case, us-
ing 4-level page tables in the guest and VMM, the cost for a TLB
miss is 24 memory references. In contrast, the cost of a TLB miss
for shadow paging is the same as that of the native case. In the
extreme where there is little locality of reference, it is likely that
nested paging will underperform shadow paging.

On the other hand, a shadow page fault is very expensive due to
the necessary involvement of the VMM. This is primarily because
the cost of VM exit is quite high, as previously noted. Furthermore,
a guest page fault will often produce a pair of exits: the first to inject
the page fault into the guest, and the second to fill the shadow page
table entry appropriately. This leads to a situation in which a guest
that frequently modifies its page tables will perform better using a
nested rather than shadow paging approach.

3. WORKLOADS
We have previously conducted studies on virtualized paging us-

ing a range of benchmarks [8, 15]. It is important to note that
for many workloads, the paging approach makes little difference
to performance. In this paper, we focus on specific benchmarks
that highlight the differences in performance between the two ap-
proaches. These are typically benchmarks that stress the TLB.

We surveyed widely-used benchmarks such as SPEC CPU (2000
and 2006) [3] and PARSEC [13, 12] under a native environment,
and found TLB-intensive workloads as shown along the x-axis of
Figure 2. Our measurements were done on a Dell PowerEdge
SC1435 described in Figure 1. We ran the benchmarks under Linux
2.6.27 (64-bit). The PARSEC benchmarks used the distributed pre-
compiled binaries. GCC 4.3.2 was used to compile SPEC CPU.
We used Oprofile 0.9.4 for measuring TLB misses and clock cy-
cle counts, PinPoints (Pin 2.8/SimPoint 3.2) [1] to profile memory
access patterns, and libhugetlbfs 2.4 [14] to examine the effect of
large pages.

Large page effects. Given this set of TLB-sensitive benchmarks,
we also considered the effect of the use of large pages. One expec-
tation is that large pages will reduce the TLB miss rate simply by
reducing contention. A second expectation is that because large
pages imply fewer levels on the page hierarchy, we will decrease

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m
u
l
a
t
i
v
e

%

o
f

m
e
m
o
r
y

a
c
c
e
s
s

PDE(Level 2) offset entries (Normalized)

171.swim (4KB)
171.swim (2MB)
181.mcf (4KB)
181.mcf (2MB)
175.vpr (4KB)
175.vpr (2MB)

microbench (4KB)
microbench (2MB)

Figure 3: Locality of reference analysis of benchmarks. The

memory access pattern of 171.swim is so random that TLB

misses are frequent, even when large pages are used. How-

ever,∼20 % of the page table covers >80% of memory accesses

without large pages (181.mcf) or with large pages (175.vpr).

the number of page table entries, making it more likely that entries
will appear in the data cache. Many of the benchmarks showed
increased performance (by 10–20%) using large pages. However,
there are also cases, 181.mcf and 436.cactusADM , where just
the opposite occurs.

Locality in 2-level page entries. To better understand why
there are benchmarks where there is a high TLB miss rate even
when using large pages, we considered 171.swim, 175.vpr, 181.mcf ,
and a “worst case” microbenchmark that scans pages in a manner
designed to maximize the TLB miss rate by forcing misses at every
level of the page hierarchy. In Figure 3, we present the degree of
locality that holds in the first level (“PDE”) of the page hierarchies
for these benchmarks. Two benchmarks have more locality than
the worst case. However, it is important to note that 171.swim

shows a very random memory access pattern with a large work-
ing set, which helps to explain why large pages do not enhance its
performance significantly.

4. BEHAVIOR AND METRICS
We now consider the selection of metrics for quickly measuring

the performance of shadow and nested paging.

Focused benchmark set. Workloads that are TLB-intensive
will produce the largest differences between the performance of
shadow and nested paging. We therefore have selected the fol-
lowing benchmarks from Figure 2 for further study: 171.swim,
301.apsi, 434.zeusmp, 403.gcc, and 164.gzip. For comparison,
we add to this set 191.fma3d and 186.crafty, which are much
less TLB-intensive. 403.gcc and 164.gzip use multiple sequential
inputs, and thus are likely to show phase behavior in page trans-
lation. We might expect that different inputs will result in differ-
ent page mappings. Hence, we expect these benchmarks to stress
shadow paging, requiring many exits to the VMM to repair the
shadow page tables when phase changes occur.

Palacios VMM. The shadow and nested paging implementa-
tions we use are implemented in the Palacios VMM. Palacios is
is an OS-independent, open source, BSD-licensed, publicly avail-
able type-I VMM designed as part of the V3VEE project (http:

 0

 5000

 10000

 15000

 20000

 25000

1
7
1
.
s
w
i
m

c
a
n
n
e
a
l
*

3
0
1
.
a
p
s
i

4
3
4
.
z
e
u
s
m
p

1
8
1
.
m
c
f

4
3
6
.
c
a
c
t
u
s
A
D
M

4
7
1
.
o
m
n
e
t
p
p

4
7
3
.
a
s
t
a
r

1
8
8
.
a
m
m
p

1
7
5
.
v
p
r

1
8
9
.
l
u
c
a
s

s
t
r
e
a
m
c
l
u
s
t
e
r
*

4
8
3
.
x
a
l
a
n
c
b
m
k

1
7
9
.
a
r
t

x
2
6
4
*

2
5
6
.
b
z
i
p
2

4
0
3
.
g
c
c

1
9
1
.
f
m
a
3
d

1
8
6
.
c
r
a
f
t
y

1
6
4
.
g
z
i
p

2
0
0
.
s
i
x
t
r
a
c
k

-20

-10

 0

 10

T
L
B

m
i
s
s
e
s

p
e
r

m
i
l
l
i
o
n

r
e
t
i
r
e
d

i
n
s
t
r
u
c
t
i
o
n
s

P
e
r
c
e
n
t
a
g
e

o
f

c
y
c
l
e

d
i
f
f
e
r
e
n
c
e

b
y

h
u
g
e

p
a
g
e

* - benchmark of PARSEC

Small page (4KB)
Large page (2MB)

Delta of cycle count (%)

Figure 2: TLB-intensive workloads surveyed for this paper and their native performance with large and small pages. The bars

indicate TLB misses (smaller is better), while the line shows the percentage performance difference between large and small pages

for each benchmark (smaller is better).

//v3vee.org). For this work, we use Palacios embedded in the
Kitten lightweight kernel. Detailed information about Palacios and
Kitten can be found elsewhere [19] with code available from our
site. We specifically use these commits: Palacios commit
1cd2958b5eb63b2ac63ced17447ba3b45c43f51a and Kitten commit
738:02e673de9a2e. The machine used is as described in the previ-
ous section.

Guest OS. We run the benchmarks on a guest (and native) OS
based on Puppy Linux 3.01 [2], with a 2.6.18 Linux kernel, running
on a single core 32 bit guest environment.

Conservative shadow paging performance. Although we
employ shadow paging with caching, the implementation we eval-
uate in this paper is likely to produce conservative performance
compared to nested paging for several reasons:

• 32 bit guest addressing. 32 bit guest addressing results in
the guest page tables being at most 2 levels deep. This
means that a nested page walk is much shorter than if 64 bit
addressing (4 levels) were used in the guest.

• Small pages. Our shadow paging implementation uses small
pages, while our nested paging implementation can use
large pages at the nested level. As described in Section 3,
using large pages provides an opportunity to reduce TLB
contention, thus favoring nested paging. However, it is
important to note that benchmarks such as 171.swim,
301.apsi, and 434.zeusmp are relatively insensitive to the
choice of large or small pages.

• TLB tags [6, Chapter 12] and VMCB caching [5, Chapter
15.15] are not used. These features benefit shadow paging
more than nested paging as they reduce exit costs.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

1
6
4
.
g
z
i
p

4
0
3
.
g
c
c

1
7
1
.
s
w
i
m

4
3
4
.
z
e
u
s
m
p

3
0
1
.
a
p
s
i

1
8
6
.
c
r
a
f
t
y

1
9
1
.
f
m
a
3
d

C
l
o
c
k

c
o
u
n
t
s

o
v
e
r

N
a
t
i
v
e

Nested paging
Shadow paging

Figure 4: Performance, compared to native, of selected bench-

marks using nested and shadow paging. Lower numbers are

better. Neither approach is consistently superior.

Performance comparison. Figure 4 shows the performance,
compared to native, of nested and shadow paging, for the selected
benchmarks. As we can see, neither approach is consistently su-
perior. We seek to automatically and dynamically choose the ap-
proach that gives the best performance.

Metrics. We now consider the selection of metrics for measuring
application performance and the performance of the current pag-
ing approach. Note that application performance may decline for
reasons unrelated to paging, so it is essential to measure it indepen-
dently. The metrics must be very inexpensive to measure. We have
selected the following metrics:

• Application performance: Cycles per instruction (CPI),
measured as the number of CPU cycles needed to execute a

 1e+09

 1e+10

1
6
4
.
g
z
i
p

Cycles per billion inst.

Nested paging

Shadow paging

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

VMexit freq. (Shadow)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

TLB miss freq. (Nested)

 1e+09

 1e+10

4
0
3
.
g
c
c

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

1
7
1
.
s
w
i
m

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

4
3
4
.
z
e
u
s
m
p

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

3
0
1
.
a
p
s
i

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

1
8
6
.
c
r
a
f
t
y

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

1
9
1
.
f
m
a
3
d

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Figure 5: Deeper analysis of nested and shadow paging performance, and metrics. Each row is a single benchmark. The first column

shows the performance, using CPI, of the benchmark. The second column shows the paging-related VM exit rate when using shadow

paging. The third column shows the TLB miss rate when using nested paging. Highlighted graphs are described in Section 4.

window of instructions. We smooth the CPI with a 10 step
moving average.

• Nested paging performance: TLB miss rate, measured over
a window of instructions. We smooth the TLB miss rate
with a 10 step moving average.

• Shadow paging performance: VM exit rate due to paging,
measured over a window of instructions.

To capture the CPI and TLB miss rate, we make use of the hard-
ware performance counter unit (PMU) [7, Chapter10]. The coun-
ters used are the cycles outside of halt states, the count of retired
instructions, the count of L1 DTLB misses, and the count of L2
DTLB misses. The first two are combined to create the application
performance metric (CPI), and the last is used for the nested pag-
ing performance metric. VM exits related to paging are counted in
Palacios’s exit handler. Instructions and TLB misses are counted in
the context of the guest, but the cycle count is measured under both
VMM and guest context. Because of this, we are measuring these
metrics, as they affect the guest, over “wall clock” time (not virtual
time). Measurements are made in the context of VM exits that are
already occurring, with the window and sampling interval chosen
so that there is < 1% overhead.

Figure 5 provides a detailed view of how these metrics vary over
the execution of the selected benchmarks. The first column shows
the CPI over time for both shadow and nested paging for easy com-
parison. The second shows the paging-related VM exit rate for
shadow paging, while the third shows the TLB miss rate for nested
paging. For all graphs, lower is better. The thresholds shown in the
graphs in the middle and right-hand columns will be explained in
Section 6. The highlighted graphs are explained next.

Comparing the left column of Figure 5 and Figure 4 we can see
that our CPI measurement does indeed capture the application-level
difference in performance between shadow and nested paging. Fur-
thermore, we can see a clear connection between low application
performance (high CPI) and shadow paging performance. For ex-
ample, for 164.gzip, the four bursts of low CPI (left graph) are
explained by the four bursts of high paging-related VM exit rate
(middle graph). Similarly, the better performance of 171.swim

under shadow paging is captured by its correspondingly lower CPI
(left graph), and the high TLB miss rate (right graph) explains why
nested paging has difficulty performing well.

5. MECHANISM
We have implemented a facility in Palacios that allows us to

switch between shadow paging and nested paging in the middle
of handling any exit. There are essentially two elements to this
mechanism, (a) management of the paging and TLB-related aspects
of the hardware-specific virtualization extensions, particularly the
VMCB [5] or VMCS [16], and (b) management of the paging state
for each mechanism in a manner such the guest and VMM intent
represented in one can readily be translated to the other.

Palacios maintains a relatively stable GPA→HPA mapping. Be-
cause of this, maintaining nested paging state is quite straightfor-
ward. In essence, unless the guest physical memory map changes,
the nested page tables can simply be kept cached. Thus, when we
switch from shadow to nested paging, we can simply reuse them.
In contrast, the shadow page tables include guest intent, which is
not under our control. If we tracked guest page table updates while
using nested paging, we would obviate the performance benefits
of nested paging. Instead, we simply flush the shadow page ta-
bles when we switch from nested paging to shadow paging. Notice
that shadow page caching is still used while we are running with
shadow paging. It is only when we transition from shadow paging

 100000

 1e+06

 1e+07

 0 3 6 9 12 15 18

I
n
s
t
r
u
c
t
i
o
n
s

p
e
r

c
l
o
c
k

c
y
c
l
e

Sampling period: 0x1000000 cycles

Shadow to Nested

Nested to Shadow

Figure 6: Overhead for shadow→nested and nested→shadow

transitions for 403.gcc.

to nested paging, and then return to shadow paging that we lose the
shadow paging cache contents.

Because of the asymmetry in tracking and reconstructing paging
state, it is considerably cheaper to switch from shadow paging to
nested paging than the reverse, all other things being the same. Of
course, the actual switching cost also depends on the workload.
Figure 6 shows both costs in the context of the 403.gcc benchmark,
where they are among the highest. Shadow to nested requires about
half of the time of the reverse in this benchmark. The real time for
the most costly switch, including the time for the transient effects
to quiesce, on this most costly benchmark is ≤ 100ms. On other
workloads, the transitions occur in much less time.

6. POLICY
DAV2M is a threshold-based policy. The performance of the

current paging mode is compared with a threshold. If the threshold
is exceeded, we switch to the alternative mode. A naive approach
to setting these thresholds might be to make them fixed. However,
as we can see from Figure 5, our metrics vary widely across work-
loads, and also across time within an individual workload. Fur-
thermore, even if a threshold were correct for a workload, fixing
it would make possible oscillatory behavior, bouncing between the
alternative modes.

In Figure 5, for the graphs in the middle and right-hand columns,
the horizontal lines represent potential static thresholds for illustra-
tion. Clearly, a workload such as 171.swim would be well served
by these thresholds. However, consider 403.gcc. For this work-
load, the illustrative thresholds would result in continuous switch-
ing that would kill performance. Consider 434.zeusmp. For this
workload, the thresholds would lead to a consistent selection of
nested paging, which would in a 8% increase in execution time
compared to using shadow paging.

DAV2M uses dynamic thresholds that are adjusted whenever we
switch modes. The adjustments to the thresholds are based on the
performance difference that is seen, as measured using CPI. If per-
formance increases due to the switch, the threshold is adjusted so
that switch will occur at a lower threshold. Otherwise, the threshold
makes the switch less probable in the future.

States. DAV2M uses five states, as shown in Figure 7, and de-
scribed in the following.

• Shadow is the state when we are operating under shadow
paging. The VM exits related to paging are being counted in
countvexit. When we retire windowvexit instructions, the

S h a d o w N e s t e dP r e S h a d o w
P r e N e s t e d P r e p a g i n gS h a d o w p a g i n g N e s t e d p a g i n g

12
33

5684
9 7

Figure 7: State transition diagram.

counter is reset. When it is necessary to leave the state due
to countvexit exceeding its threshold, thresholdvexit, the
counter and cpishadow, computed from the number of
retired instructions and the number of cycles during
windowvexit are stored.

• PreNested is the state in which we are probing the
performance of nested paging after deciding that shadow
paging performance is insufficient. Specifically, we
compare the previous cpishadow with the current cpinested.
Nested paging is being used. PreNested has a limited
duration that expires when at least windowvexit

instructions have been retired.

• Prepaging is the state that is in force after the PreNested
and before Nested. The purpose of this state, during which
nested paging is also in force, is to allow the TLB miss rate
behavior to quiesce before switching to Nested. Without
this state, we could easily misinterpret the high TLB miss
rate after a shadow-to-nested switch and switch back to
shadow. The workloads 164.gzip and 403.gcc are examples
where such oscillation would occur.

• Nested is the state in which we are operating under nested
paging. Here we are counting TLB misses in counttmiss,
reseting every windowtmiss instructions. When this count
exceeds thresholdtmiss, we will leave the state, but update
cpinested before doing so.

• PreShadow is the state in which we are comparing the
previous cpinested with the current cpishadow, while
running with shadow paging active. Like PreNested,
PreShadow holds for a limited duration. As in Shadow, VM
exits are being monitored.

Because the measurement granularity is courser when operating
with shadow paging (due to operating over exits), the transient ef-
fects of switching from Nested to PreShadow are generally over by
the time the PreShadow period is over. Thus no state analogous to
PrePaging is needed.

Figure 8 illustrates an example timing of state transitions. Tran-
sitions are labeled by number as in the state diagram.The figure
begins in the Shadow state purely for convenience. The time is in
retired instructions.

To avoid repeated switching between nested and shadow paging,
we modify the thresholds as we transition from state to state. Fur-
thermore, in testing thresholds we multiply by a factor pFactor.
Finally, we consider the intervals between transitions from nested
to shadow (countn2s) and shadow to nested (counts2n) and com-
pare to a window threshold windowtrans. When a transition oc-
curs within this window, both thresholdvexit and thresholdtmiss

are increased, which will damp the system.

Algorithm specifics. DAV2M advances through handling the
following two events:

VM exit for a shadow page fault:

countvexit ← countvexit + 1
determineStatenext(statecur, statenext)
transState(statecur, statenext)

VM exit for a PMU overflow:

countinst ← 0
countpunit ← countpunit + 1
counts2n ← counts2n + 1
countn2s ← countn2s + 1
determineStatenext(statecur, statenext)
transState(statecur, statenext)

The PMU is set for windowinst instructions as the as sampling
period, as Section 5. For every retired instruction beyond this, an
overflow occurs, causing a VM exit. These exits are counted in
countpunit.
transState(statecur, statenext) transitions to the next state and
updates the thresholds. It is implemented as:

if statecur 6= statenext then

if transit from PreNested to Shadow or
from Nested to PreShadow then

switch paging mode
if countn2s < windowtrans then

increase thresholdtmiss and thresholdvexit

countn2s ← 0
end if

else if transit from Shadow to PreNested or
from PreShadow to Nested then

switch paging mode
if counts2n < windowtrans then

increase thresholdtmiss and thresholdvexit

counts2n ← 0
end if

end if

end if

determineStatenext(statecur, statenext) determines the next state.
It is implemented as:

statenext ← statecur

if statecur is PreShadow or Shadow then

if countvexit > thresholdvexit then

update cpishadow

statenext ← PreNested
countpunit ← 0

else if statecur is PreShadow then

if countpunit = windowtmiss then

update cpishadow

if cpishadow > cpinested * pFactor then

statenext ← Nested
counttmiss ← 0
countpunit ← 0
increment thresholdtmiss

end if

else if not (countpunit mod countvexit) then

countvexit ← 0
end if

else if statecur is Shadow and
countpunit = windowvexit then

countvexit ← 0
countpunit ← 0

S h a d o w p a g i n g
N e s t e d p a g i n gP re < N est edSh ad ow

P r e p a g i n g N e s t e d
P r e S h a d o w S h a d o w1 2 3 4 1r e t i r e d i n s t r u c t i o n c o u n t5 6

7
8

9
W v e x i t

W v e x i t W v e x i t W v e x i t : w i n d o w v e x i tW t m i s s : w i n d o w t m i s sW t r a n s : w i n d o w t r a n s
ﾓ

W t m i s s W t r a n sW t m i s s
W t m i s s

Figure 8: State transition timeline.

end if

else if statecur is either PreNested, Prepaging or Nested then

if statecur is PreNested and
countpunit = windowvexit then

update cpinested

if cpinested > cpishadow * pFactor then

increment thresholdvexit

statenext ← Shadow
else

statenext ← Prepaging
end if

else if statecur is Nested and
countpunit = windowtmiss then

update counttmiss

if counttmiss > thresholdtmiss then

update cpinested

statenext ← PreShadow
else

countpunit ← 0
end if

else if statecur is Prepaging and
countpunit = windowprepaging then

countpunit ← 0
statenext ← Nested

end if

end if

Several different windows have been introduced. Their relation-
ships must be

windowinst ≤ windowvexit < windowtmiss < windowtrans.

Threshold adjustment in action. Figure 9 shows how the
thresholds are dynamically adjusted during the execution of two
different benchmarks that would otherwise likely cause oscillation.
The graphs show the execution of the 168.gzip and 403.gcc bench-
marks, using the parameters described in Section 7.

7. RESULTS
We now present an evaluation of DAV2M as implemented in

Palacios, using the selected benchmarks described in Section 4.

 0

 100000

 200000

 300000

 400000

 500000
TLB miss frequency
VM exit frequency
TLB miss threshold
VM exit threshold

(a) 168.gzip

 10000

 100000

 1e+06

 1e+07

 1e+08
TLB miss frequency
VM exit frequency
TLB miss threshold
VM exit threshold

(b) 403.gcc

Figure 9: Examples of DAV2M’s threshold control in action.

Parameters and initial settings. The parameters and starting
values for DAV2M, described in Section 6, were set as follows:

• pFactor = 1.1
• windowinst = 109 instructions

• windowvexit = 109 instructions

• windowtmiss = 10× windowinst

• windowtrans = 100× windowinst

• thresholdvexit = 104

• thresholdtmiss = 105

 0.7
 0.8
 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9
 2

 2.1
 2.2

1
6
4
.
g
z
i
p

4
0
3
.
g
c
c

1
7
1
.
s
w
i
m

4
3
4
.
z
e
u
s
m
p

3
0
1
.
a
p
s
i

1
8
6
.
c
r
a
f
t
y

1
9
1
.
f
m
a
3
d

C
l
o
c
k

c
o
u
n
t
s

o
v
e
r

N
a
t
i
v
e

Opteron 2350

Nested paging
Shadow paging

DAV
2
M

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

1
6
4
.
g
z
i
p

4
0
3
.
g
c
c

1
7
1
.
s
w
i
m

4
3
4
.
z
e
u
s
m
p

3
0
1
.
a
p
s
i

1
8
6
.
c
r
a
f
t
y

1
9
1
.
f
m
a
3
d

C
l
o
c
k

c
o
u
n
t
s

o
v
e
r

N
a
t
i
v
e

Phenom II X2 550

Nested paging
Shadow paging

DAV
2
M

Figure 10: Performance of DAV2M on two different processors. DAV2M is able to provide virtually identical performance to the

best static policy for every benchmark on both machines.

Application performance. Figure 10 presents the application
performance results comparing DAV2M with the static approaches
of either shadow paging or nested paging. The format of each graph
is identical to that of Figure 4. The bars compare to native perfor-
mance, lower bars are better. The left hand graph presents an evalu-
ation on the same Opteron 2350 as previously described, while the
right hand graph presents the same evaluation done on a newer ma-
chine. The newer machine is equipped with with an AMD Phenom
II X2 550 processor, 4GB RAM, 3GHz clock speed, and 6 MB of
L3 cache. The most important observation is that DAV2M is able
to provide virtually identical performance to the best static paging
approach on all of the benchmarks on both machines.

There are two important things to point out at this point. First, the
measurements given in Figure 10 (and Figure 4) are of the number
of cycles needed to run the benchmark—they reflect the total exe-
cution times of the benchmarks. These should not be confused with
the CPI metric (Section 4) that DAV2M uses internally to heuristi-
cally determine application execution rate. Secondly, recall that our
evaluation focused on a set of benchmarks that induced the most
significant differences between the two paging approaches (Sec-
tion 3). For benchmarks where there is little difference (two are
included), DAV2M correctly does not affect performance.

Deeper analysis. We now focus on the results for the Opteron
2350 machine and illustrate how DAV2M is working, and what its
overheads are.

It is possible to group the benchmarks into three sets based on
which virtual paging mode is best for performance:

1 171.swim and 434.zeusmp are best under shadow paging.

2 403.gcc and 168.gzip are best under nested paging.

3 301.apsi, 186.crafty and 191.fma3d perform similarly.

For (1) and (2), DAV2M quickly chooses the right approach. For
(3), DAV2M quickly chooses an approach and avoids switching.

Figure 11 illustrates the number of switches of paging mode that
occur for each benchmark. Even in 403.gcc, only 13 transitions
occur. If we consider 403.gcc’s behavior in Figure 5, we can see
why this benchmark might cause a larger number of transitions:
there is phase behavior in which short phases where shadow pag-
ing is preferable occur. Note that despite this switching, 403.gcc

under DAV2M performs as well as the best static policy: the costs
of switching are counterbalanced by the increased performance in
those phases. For the other benchmarks, we can see very little
switching, as we would hope for.

 0

 2

 4

 6

 8

 10

 12

 14

1
6
4
.
g
z
i
p

4
0
3
.
g
c
c

1
7
1
.
s
w
i
m

4
3
4
.
z
e
u
s
m
p

3
0
1
.
a
p
s
i

1
8
6
.
c
r
a
f
t
y

1
9
1
.
f
m
a
3
d

T
o
t
a
l

n
u
m
b
e
r

o
f

m
o
d
e

s
w
i
t
c
h
i
n
g

Figure 11: Number of transitions seen during execution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1
6
4
.
g
z
i
p

4
0
3
.
g
c
c

1
7
1
.
s
w
i
m

4
3
4
.
z
e
u
s
m
p

3
0
1
.
a
p
s
i

1
8
6
.
c
r
a
f
t
y

1
9
1
.
f
m
a
3
d

%

o
f

c
l
o
c
k

c
o
u
n
t
s

Nested paging Shadow paging

Figure 12: Percentage of time spent in each mode under

DAV2M.

Figure 12 shows the percentage of time that the benchmarks
spend in each mode when run under DAV2M. Here the three sets
of benchmarks are quite evident. For the third set, in which the
paging approach does not matter, we see that DAV2M has made
opposite decisions (171.swim vs. 434.zeusmp), but with no real
consequences for performance. At most one switch occurred.

8. RELATED WORK
The virtualization of paging has a history as long as virtual ma-

chine monitors themselves. For the x86 platform, the initial de-
scriptions of the software-based approaches of shadow paging in
VMware [20] and paravirtualized shadow paging in Xen [9] set
the stage. Bhargava et al [11] give a detailed treatment of the
hardware-based approach of nested paging and its optimization.
Barr et al [10] propose new approaches to page walk caching that
could be used to further accelerate nested paging. Adams and Age-
son [4] compare hardware and software techniques in x86 virtu-
alization, while Karger [17] compares x86 and DEC Alpha virtu-
alization, a comparison that includes a excellent treatment of the
aspects of x86 paging that make it particularly challenging to vir-
tualize with high performance.

Wang et al [21] also propose, implement, and evaluate an adap-
tive approach to paging approach selection. DAV2M uses a dif-
ferent mechanism and policy, and is evaluated in the context of
a different VMM. Both papers find adaptive paging to be highly
promising.

Our paper fits in the context of our group’s efforts to achieve
low overhead virtualization for high performance computing (see
v3vee.org for more). Prior publications have analyzed the perfor-
mance differences between different forms of shadow and nested
paging [8, 19, 18], identified the opportunity for adaptive paging in
HPC [8], and considered other hardware approaches to paging at
the nested level [15].

9. CONCLUSIONS
We have made a case that no single approach to virtualizing vir-

tual memory is best for maximizing application performance, fo-
cusing on the choice between shadow paging and nested paging.
Rather, the choice is workload-dependent, and it may even vary
over the life of a virtual machine. In response, we created a mech-
anism in our Palacios VMM for changing the paging approach at
any time, and a policy, DAV2M, for driving that mechanism to in-
crease application performance. We demonstrated that DAV2M is
able to adapt to workload, providing performance at least as good
as the best statically chosen paging approach for the workload. Al-
though our implementation is available in the Palacios VMM, the
general idea could be applied in any VMM that supports multiple
paging approaches.

10. REFERENCES

[1] Pinpoints. http://www.pintool.org/pinpoints.html.

[2] Puppy linux. http://puppylinux.org.

[3] SPEC CPU. http://www.spec.org.

[4] ADAMS, K., AND AGESEN, O. A comparison of software
and hardware techniques for x86 virtualization. In
Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS) (October 2006).

[5] AMD, INC. AMD64 Architecture Programmer’s Manual Vol

2: System Programming, June.

[6] AMD, INC. Software Optimization Guide for AMD Family

10h and 12h Processors, December.

[7] AMD, INC. BIOS and Kernel Developer’s Guide for AMD

Athlon 64 and AMD Opteron Processors, 3.3 ed., February
2006.

[8] BAE, C., LANGE, J. R., AND DINDA, P. A. Comparing
approaches to virtualized page translation in modern vmms.
Tech. Rep. NWU-EECS-10-07, Department of Electrical

Engineering and Computer Science, Northwestern
University, April 2010.

[9] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In ACM

Symposium on Operating Systems Principles (SOSP) (2003),
pp. 164–177.

[10] BARR, T., COX, A., AND RIXNER, S. Translation caching:
Skip, don’t walk (the page table). In Proceedings of the 37th

International Symposium on Computer Architecture (ISCA)

(June 2010).

[11] BHARGAVA, R., SEREBRIN, B., SPANINI, F., AND

MANNE, S. Accelerating two-dimensional page walks for
virtualized systems. In Proceedings of the 13th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (March 2008).

[12] BHATTACHARJEE, A., AND MARTONOSI, M.
Characterizing the TLB behavior of emerging parallel
workloads on chip multiprocessors. In Proceedings of the 8th

International Conference on Parallel Architectures and

Compilation Techniques (PACT) (October 2009).

[13] BIENIA, C., AND LI, K. PARSEC 2.0: A new benchmark
suite for chip-multiprocessors. In Proceedings of the 5th

Annual Workshop on Modeling, Benchmarking and

Simulation (June 2009).

[14] GORMAN, M., AND HEALY, P. Performance characteristics
of explicit superpage support. In Proceedings of the 6th

Annual Workshop on the Interaction between Operating

Systems and Computer Architecture (WIOSCA) (June 2010).

[15] HOANG, G., BAE, C., LANGE, J., ZHANG, L., DINDA, P.,
AND JOSEPH, R. A case for alternative nested paging
models for virtualized systems. Computer Architecture

Letters 9, 1 (January 2010), 17–20.

[16] INTEL CORPORATION. Intel 64 and IA-32 Architectures

Software Developer’s Manual Volume 3B: System

Programming Guide Part 2, January 2011.

[17] KARGER, P. Performance and security lessons learned from
virtualizing the alpha processor. In Proceedings of the 34th

International Symposium on Computer Architecture (ISCA)

(June 2007).

[18] LANGE, J., PEDRETTI, K., DINDA, P., BRIDGES, P., BAE,
C., SOLTERO, P., AND MERRITT, A. Minimal overhead
virtualization of a large scale supercomputer. In Proceedings

of the 2011 ACM International Conference on Virtual

Execution Environments (VEE) (March 2011).

[19] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI,
Z., XIA, L., BRIDGES, P., GOCKE, A., JACONETTE, S.,
LEVENHAGEN, M., AND BRIGHTWELL, R. Palacios and
kitten: New high performance operating systems for scalable
virtualized and native supercomputing. In Proceedings of the

24th IEEE International Parallel and Distributed Processing

Symposium (IPDPS) (April 2010).

[20] WALDSBURGER, C. Memory resource management in
vmware esx server. In 2002 Symposium on Operating

Systems Design and Implementation (OSDI) (2002).

[21] WANG, X., ZANG, J., WANG, Z., LUO, Y., AND LI, X.
Selective hardware/software memory virtualization. In
Proceedings of the 2011 ACM International Conference on

Virtual Execution Environments (VEE) (March 2011).

