
An Optimization Problem in Adaptive Virtual Environments

Ananth I. Sundararaj Manan Sanghi Jack R. Lange Peter A. Dinda
{ais,manan,jarusl,pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

A virtual execution environment consisting of virtual machines(VMs) interconnected with virtual networks pro-
vides opportunities to dynamically optimize, at run-time, the performance of existing, unmodified distributed appli-
cations without any user or programmer intervention. Along with resource monitoring and inference and application-
independent adaptation mechanisms, efficient adaptation algorithms are key to the success of such an effort. In
previous work we have described our measurement and inference framework and also the adaptation mechanisms at
hand and proposed simple heuristics as adaptation algorithms. Though we were successful in improving performance
as compared to the case with no adaptation, none of them were characterized by theoretically proven bounds. In this
paper, we formalize the adaptation problem, show that it is NP-hard and propose research directions for coming up
with an efficient solution.

1 Introduction

Virtual machines greatly simplify wide-area distributed computing by lowering the abstraction to benefit both resource
users and providers [1]. We have been developing a middleware system, Virtuoso, for virtual machine grid comput-
ing 1. Virtuoso, for a user, very closely emulates the existing process of buying, configuring, and using a computer or
a collection of computers from a web site. Instead of a physical computer, the user receives a reference to the virtual
machine which he can then use to start, stop, reset, and clone the machine.

The nature of the network presence that the virtual machine gets depends solely on the policies of the remote
site. To deal with this network problem we developed VNET [4], a simple layer two virtual network tool. VNET
is ideally placed to monitor the resource demands of the VMs. The VTTIF (Virtual Topology and Traffic Inference
Framework) component of Virtuoso achieves this [2]. In addition, the execution environment can use the naturally
occurring traffic of existing, unmodified applications running inside of the VMs to measure the characteristics of the
underlying physical network.

2 Dynamic adaptation problem in virtual execution environments

Any application running in a distributed environment must adapt to the continuously changing network and computing
resources. Despite many efforts adaptation has remained very application specific.

A virtual execution environment, such as Virtuoso, provides an opportunity to dynamically optimize, at run-time,
the performance of existing, unmodified distributed applications running on existing, unmodified operating systems
without any user or programmer intervention. However, a number of challenges must first be met. Figure 1 illustrates
a simplified adaptation scenario wherein a greedy heuristic drives overlay topology and routing changes leveraging
data inferred by VTTIF.

Measurement and inference: This involves (a) measuring the traffic load and topology of applications running
inside the virtual machines, (b) monitoring the underlying network and inferring its topology and bandwidth and
latency characteristics, and (c) measuring host and VM characteristics such as their size and compute capacities and
demands. In previous work [5] we have shown how to successfully accomplish these.

1http://virtuoso.cs.northwestern.edu

Adaptation mechanisms: A wide variety of adaptation mechanisms are made possible in the context of virtual
execution environments such as (a) VM migration, (b) overlay topology and routing changes, and (c) network and
CPU resource reservation where possible. These have been described previously [5].

Adaptation algorithm: Most importantly, we need an efficient algorithm to drive the adaptation mechanisms
while guided by the measured and inferred data. Note that there may be a variety of reasonable adaptation goals in
terms of latency, throughput, congestion, workload etc. For this paper we formulate the problem with the goal of
maximizing application throughput.

Dynamically created ring topology (“fast path links”) amongst the VNETs
hosting the VMs, matching the communication topology of the application
running in the VMs (ring in this case) as infered by VTTIF

Foreign host
LAN 1

User’s
LAN

Host 2
+

VNET

Proxy
+

VNET

���network

Host 3
+

VNET

Host 4
+

VNET

Host 1
+

VNET

Foreign host
LAN 3

Foreign host
LAN 4

Foreign host
LAN 2

VM 1

VM 4
VM 3

VM 2

Resilient Star Backbone

Merged
matrix as
inferred by
VTTIF

Figure 1: As the application progresses VNET adapts its
overlay topology to match that of the application commu-
nication as inferred by VTTIF leading to a significant im-
provement in application performance, without any partic-
ipation from the user.

VNET monitors the underlying network and pro-
vides a directed VNET topology graph, G = (H,E),
where H are VNET nodes (hosts running VNET dae-
mons and capable of supporting one or more VMs) and
E are the possible VNET links. Note that this may not be
a complete graph as many links may not be possible due
to particular network management and security policies
at different network sites. VNET also provides estimates
for the available bandwidth and latencies over each link
in the VNET topology graph. These estimates are de-
scribed by a bandwidth capacity function, bw : E → R,
and a latency function, lat : E → R.

In addition, VNET also collects information regard-
ing the space capacity (in bytes) and compute capacity
made available by each host, described by a host com-
pute capacity function, compute : H → R and a host
space capacity function, size : H → R. The set of vir-
tual machines participating in the application is denoted
by the set VM. The size and compute capacity demand
made by every VM is also estimated, denoted by a VM
compute demand function, vm compute : VM → R and a VM space demand function, vm size : VM → R, respec-
tively.

VTTIF infers the application communication topology to generate the traffic requirements of the application, A ,
which is a set of 4-tuples, Ai = (si,di,bi, li), i = 1,2 . . .m, where si is the source VM, di is the destination VM, bi is the
bandwidth demand between the source destination pair and li is the latency demand between the source destination
pair.

The goal is to find an adaptation algorithm that uses the measured and inferred data and drives the adaptation
mechanisms at hand to improve application throughput. In other words we wish to find

• a mapping from VMs to hosts, vmap : VM → H, meeting the size and compute capacity demands of the VMs
within the host constraints. Further, we may also be given a set of constraint mappings from VMs to hosts that
have to be maintained at all times, represented by a set of ordered pairs Mi = (vmi,hi), vmi ∈ VM, hi ∈ H.

• a routing, R : A → P , where P is the set of all paths in the graph G = (H,E),i.e. for every 4-tuple, Ai =
(si,di,bi, li), allocate a path, p

(

vmap(si),vmap(di)
)

, over the overlay graph, G, meeting the application demands
while satisfying the bandwidth and latency constraints of the network.

Once all the mappings and paths have been decided, each VNET edge will have a residual capacity, rce, which is
the bandwidth remaining un-utilized on that edge, in that direction.

rce = bwe − ∑
e∈R(Ai)

bi

For each mapped path, R(Ai), we define its bottleneck bandwidth, bb
(

R(Ai)
)

= mine∈R(Ai)

{

rce
}

and its total
latency, tl

(

R(Ai)
)

= ∑e∈R(Ai)

(

late
)

The aim of the adaptation algorithm is to maximize the sum of bottleneck bandwidths over each mapped path. The
intuition behind this objective function is to leave the most room for the application to increase performance within
the current configuration thereby increasing application throughput.

2

Problem 1 (Generic Adaptation Problem In Virtual Execution Environments (GAPVEE))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → R

• A function lat : E → R

• A function compute : H → R

• A function size : H → R

• A set, VM = (vm1,vm2 . . .vmn), n ∈ N

• A function vm compute : VM → R

• A function vm size : VM → R

• A set of ordered 4-tuples A = {(si,di,bi, li) | si,di ∈ VM; bi, li ∈ R; i = 1, . . . ,m}
• A set of ordered pairs M = {(vmi,hi) | vmi ∈ VM,hi ∈ H; i = 1,2 . . .r,r ≤ n}

OUTPUT: vmap : V M → H and R : A → P such that
• ∑vmap(vm)=h

(

vm compute(vm)
)

≤ compute(h), ∀ h ∈ H

• ∑vmap(vm)=h
(

vm size(vm)
)

≤ size(h), ∀ h ∈ H
• hi = vmap(vmi), ∀Mi = (vmi,hi) ∈ M
•

(

bwe −∑e∈R(Ai) bi
)

≥ 0, ∀e ∈ E

•
(

∑e∈R(Ai) late
)

≤ li, ∀e ∈ E
• ∑m

i=1

(

mine∈R(Ai)

{

rce}
)

, where rce = (bwe −∑e∈R(Ai) bi), is maximized

3 A special case of the adaptation problem

The generic adaptation problem seeks a mapping, vmap from VMs to hosts and routing, R of VM traffic over the
overlay network, G. To establish the hardness of the problem, we consider a special case of the problem wherein all
the VM to host mappings are constrained by the ordered pairs M and latency demands are dropped, leaving us only
with the routing problem.

Since the mappings are pre-defined, we can formulate the problem in terms of only the hosts and exclude all VMs.
Also, as the latency demands have been dropped, the application 4-tuple reduces to 3-tuple, Ai = (si,di,bi), si,di ∈ H,
bi ∈ R, i = 1,2 . . .m. Notice that now si,di ∈ H as VM to host mappings are fixed and VMs are synonymous with the
hosts that they are mapped to.

Problem 2 (Routing Problem In Virtual Execution Environments (RPVEE))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → R

• A set of ordered 3-tuples A = {(si,di,bi) | si,di ∈ H; bi ∈ R; i = 1, . . . ,m}

OUTPUT: R : A → P such that
•

(

bwe
)

−
(

∑e∈R(Ai) bi
)

≥ 0, ∀e ∈ E,
• ∑m

i=1

(

mine∈R(Ai)

{

rce}
)

, where rce = (bwe −∑e∈R(Ai) bi), is maximized

4 Analysis

Theorem 1 RPVEE is NP-hard.

The NP-hardness for the problem is established by reduction from the Edge Disjoint Path Problem (EDPP) which
is shown to be NP-complete in [3]. In the interest of space we provide only a brief sketch of the reduction here.2

Problem 3 (Edge Disjoint Path Problem (EDPP))
INPUT:

• A graph G = (H,E), |H| = p, |E| = q
• A set of ordered 2-tuples S = {(si,di) | si,di ∈ H; i = 1, . . . ,k}

2The complete proofs for Theorem 1 and Theorem 2 can be found on our website: http://virtuoso.cs.northwestern.edu/mama-proofs-rev1.pdf

3

OUTPUT:
• Yes, if and only if ∀(si,di) ∈ S their exist edge disjoint paths from si to di in G = (H,E)

• No, otherwise

V3

V2

V1
V4

1

V3

V2

V1
V4

1

1 1

1

1+ε

1+ε
1+ε

1+ε

1+ε

1+ε 1+ε

V3V1

V4V2

V4V1

V2V1

A set of ordered 2-tuples

V3

V4

V4

V2

1V1

1V2

1V1

1V1

A set of ordered 3-tuples

si di

disi bi

Given an arbitrary instance of EDPP

Converted to a particular instance of RPVEE

A directed graph G = (H,E)

A complete directed graph G = (H,E)

A function bw : E -> R

Figure 2: Reducing EDPP to RPVEE. The edge weights
are bandwidths as specified by the function bw.

For reducing EDPP to an instance of the deci-
sion version of RPVEE, construct a complete graph
G′ = (V,E ′) where bw((u,v)) = 1 + ε if (u,v) ∈ E and
bw((u,v)) = 1 if (u,v) /∈ E. Further for all (si,di) ∈ S ,
let (si,di,1)∈A . Figure 2 illustrates this reduction. Note
that there exists edge disjoint paths for the EDPP if and
only if the sum of bottleneck bandwidths in the instance
of RPVEE is k·ε.

Since GAPVEE is a special case of RPVEE, the fol-
lowing theorem immediately follows.

Theorem 2 GAPVEE is NP-hard.3

5 Status

We have previously developed a variety of heuristics
to drive the adaptation mechanisms [5]. Though they
were successful in improving performance relative to the
naive approach (with no adaptation), we believe there is
a significant scope for improvement. Therefore, as a first step, we have formalized the adaptation problem and given
preliminary results of its hardness.

Even though the problem in this most generic incarnation is computationally hard, special cases of the problem
amenable to efficient solutions will be of significant interest as we have a working system wherein various adaptation
algorithms can be deployed and studied very conveniently.

There are a number of well studied variants of our problem such as routing un-splittable flows. We believe that
the rich collection of approximation algorithms already available for them can be adapted to our specific problem.
Accordingly, we have begun work in that direction.

6 Conclusion

We formalize the adaptation problem that arises in virtual execution environments consisting of virtual machines
inter-connected by virtual networks. Such a platform provides opportunities to dynamically optimize, at run-time,
the performance of existing, unmodified distributed applications running on existing, unmodified operating systems
without any user or programmer intervention. We show that the adaptation problem is NP-hard and propose potential
research directions for coming up with efficient solutions to certain interesting special cases.

References
[1] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case for grid computing on virtual machines. In Proceedings of the 23rd International

Conference on Distributed Computing Systems (ICDCS) (May 2003).

[2] GUPTA, A., AND DINDA, P. A. Infering the topology and traffic load of parallel programs running in a virtual machine environment. In
Proceedings of the 10th Workshop on Job Scheduling Policies for Parallel Program Processing(JSPPP) (June 2004).

[3] KARP, R. Compexity of Computer Computations. Miller, R.E. and Thatcher, J.W. (Eds.). Plenum Press, New York, 1972, ch. Reducibility
among combinatorial problems, pp. 85–103.

[4] SUNDARARAJ, A. I., AND DINDA, P. A. Towards virtual networks for virtual machine grid computing. In Proceedings of the 3rd USENIX
Virtual Machine Research and Technology Symposium (VM 04) (May 2004).

[5] SUNDARARAJ, A. I., GUPTA, A., AND DINDA, P. A. Increasing application performance in virtual environments through run-time inference
and adaptation. In Proceedings of the Fourteenth International Symposium on High Performance Distributed Computing (HPDC) (July 2005).
To appear.

3The complete proofs for Theorem 1 and Theorem 2 can be found on our website: http://virtuoso.cs.northwestern.edu/mama-proofs-rev1.pdf

4

