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I. INTRODUCTION

Increasing thread-level parallelism (TLP) is the chief way
to maximize core utilization and compute performance on
multicore systems. However, inter-thread data movements,
which are necessary for satisfying dependences, impose a
low limit on TLP and hence on performance. The research
community has had tremendous success using techniques
like thread-level speculation to reduce the impact of apparent
dependences [1], [2], [3], [4]. Uncovering and ignoring
apparent dependences, however, has reached the point of
diminishing returns. To overcome this parallelism plateau,
we must turn our attention to actual dependences.

While, strictly speaking, all actual dependences must be
satisfied to preserve program semantics, strict semantics
preservation is not always necessary; some programs allow
variations in their outputs. Prior work has shown that break-
ing actual dependences can lead to important performance
gains, if one is willing to accept some output distortion [5],
[6], [7]. When output quality needs to be preserved, prior
approaches are not applicable as they introduce inaccuracies
if any actual dependence is broken.

Nondeterministic programs naturally produce different
output results from run to run given the same inputs; this
defines the program’s inherent output variability. Often, this
output variability originates from variations in the program’s
intermediate data. Here, an intermediate datum forwarded
from a producer to a consumer may vary across runs for
the same input. Hence, consumers are often designed to
be resilient to such variations. Our hypothesis is that this
resiliency may allow an alternative producer to generate data
that are similar enough to satisfy the original consumer. This
alternative producer can be decoupled from the original pro-
ducer, therefore liberating additional TLP. When a producer
and a consumer exchange data to share their state, we call the
actual producer-consumer dependence a state dependence.

State dependences exist at the algorithm level and are
out of the reach of automatic tools. Hence, we rely on
the developer to make them explicit to our system. The
state dependences we identified in the PARSEC benchmarks
follow the read-after-write pattern shown in Figure 1a. We
call the alternative producer auxiliary code because we use
it as a substitute in case of need—when there is not enough
TLP. The auxiliary code is automatically generated by our
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(a) Execution serialization due to a state dependence

(b) Additional TLP generated by auxiliary code

Figure 1: Alternative execution model obtained by using auxiliary
code to satisfy a state dependence.

compiler (starting from the developer-provided description
of the state dependence) and is specialized to a given state
dependence. Our experiments show that properly-generated
auxiliary code increases TLP while keeping output variations
within the bounds of the original, nondeterministic program.

To the best of our knowledge, this work is the first to
generate automatically additional code to satisfy an actual
dependence with alternative data.

II. OUR APPROACH: APRIL25th

The April25th tool-chain liberates additional TLP of non-
deterministic C++ programs that exhibit the pattern of Figure
1a, relying on additional algorithm-specific information and
representative inputs from developers. It does so by explor-
ing the design space generated by state dependences, and
then choosing the configuration with the best profile (e.g.,
highest performance) whose output is within the program’s
inherent variability for all provided inputs.

Identifying state dependences requires algorithmic knowl-
edge that is beyond the purview of automatic tools. Hence,
developers have to make the state dependence pattern ex-
plicit and provide it to April25th, along with a description of
algorithm-specific tradeoffs. Tradeoffs are pieces of program
text (constants, data types, functions) whose value is chosen
from a range given by the developer. Such tradeoffs are
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Figure 2: Peak performance.

used by April25th only to balance quality and performance
in auxiliary code. The encoding of state dependences and
tradeoffs is done through the State Dependence and Tradeoff
Interfaces (respectively SDI and TI) that April25th exposes
to the developer. Developers also need to provide repre-
sentative inputs to determine the program’s inherent output
variability, and a function to measure the distortion of the
output with respect to the original, non-distorted output.

April25th includes an autotuner, a profiler, and three com-
pilers called front-end, middle-end, and back-end. The front-
end compiler translates C++ extended with the SDI and TI to
standard C++ code, encoding April25th-specific information
in API calls understood by the other April25th compilers.
The front-end also estimates the program’s inherent output
variability by running the original program’s binary. The
middle-end compiler translates the output of the front-end
into our intermediate representation (IR). It embeds the
design space in the IR, which is defined by the tradeoffs
described using the TI, how often a state dependence is
satisfied with auxiliary code, and the number of threads to
dedicate to the TLP available in the original program.

The description of the design space is used by the auto-
tuner, which explores it by choosing the next configuration
to test. The back-end compiler translates our IR into the
binary that corresponds to the configuration chosen by
the autotuner. The profiler runs the binary generated by
the back-end using the representative inputs, measuring its
performance and output quality (using a developer-supplied
metric) for consumption by the autotuner. The autotuner then
decides whether or not to test other configurations iterating
over the loop just now described.

When enough information has been obtained, April25th
generates the binary of the most performant configuration it
has seen, considering only configurations whose outputs fall
within the program’s inherent output variability for all the
provided inputs.

III. EVALUATION

Our evaluation tests the hypothesis behind our work—that
state dependences can be satisfied with auxiliary code. To
do so, we built April25th on top of LLVM 3.9.1, Racket 6.8,
and Opentuner 0.5.0.

We consider PARSEC benchmarks that exhibit nondeter-
minism: bodytrack, fluidanimate, swaptions, and two vari-
ants of streamcluster (clustering, called streamcluster, and
classification, called streamclassifier). The state dependences
we find are all related to state updates like the human
body model in bodytrack, the fluid state in fluidanimate,
the swaption price in swaptions, and the clusters of points
in streamcluster and streamclassifier. The tradeoffs we en-
code in auxiliary code are the number of original threads,

the number of threads to use for state dependences, and
algorithm-specific tradeoffs (e.g., the number of annealing
layers used by bodytrack’s particle filter, the number of
particles to discard from the computation in fluidanimate).
To measure output quality we use well-known domain-
specific metrics (e.g., average Euclidean distance between
the position of the particles in fluidanimate) [8], [9], [10].
We evaluate our system on a machine with two Intel Xeon
E5-2695 v3 Haswell processors.

Satisfying state dependences with auxiliary code liberates
important additional TLP. Figure 2 compares the speedup
of three approaches to parallelizing the benchmarks. The
first, “Original”, is the out-of-the-box benchmark that has
been parallelized by traditional means. The second, “Seq.
April25th”, uses only the TLP liberated by April25th.
The third, “Par. April25th”, combines the TLP available
in the original code with the one liberated by April25th.
All approaches maintain output quality within the original
program’s output variability. Speedup is computed using the
single-threaded version of the out-of-the-box benchmark as
baseline. Results shown in Figure 2 empirically support our
hypothesis: state dependences can be satisfied with auxiliary
code. This enables April25th to liberate additional TLP from
multi-threaded, non-deterministic programs.

IV. CONCLUSION

Actual dependences have been either satisfied or broken
by prior work. We propose an intermediate solution for
a subset of actual dependencies (i.e., state dependences)
common to nondeterministic programs: satisfy a state de-
pendence with auxiliary code. This work is the first step in
exploiting state dependences, and does so without introduc-
ing distortion in the program’s output.
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