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1. INTRODUCTION

This paperdescribes system the RunningTime Advisor (or RTA),
that canpredict, at run-time, the running time of a compute-bound
taskon a sharechostrunninga variantof the Unix operatingsystem.
Suchpredictionsarevaluablefor schedulingthe soft real-timetasks
of distributedinteractve applicationsuchasscientificvisualizations.
To characterizahe variability inherentto distributed systemsandto
the processof prediction,the RTA predictsa task’s runningtime as
a confidencenterval computedto the applications requestedatonfi-
dencelevel. Confidenceantervals provide a simpleabstractiorto the
application but still provide sufiicientinformationto enablevalid sta-
tistical reasoningn the schedulingprocess.

Figure 1 shaws the structureof the RunningTime Advisor (or RTA)

systemthe broadercontet of whichiit is a part,andthe queriesand
responsesit eachlevel. The RTA's responsds computedfrom host
load predictions,a topic we have thoroughlystudiedin previous pa-
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Figure 1: Running Time Advisor (RTA) system and context.

pers[1, 4]. We have found that hostload, specificallythe Digital completewith their predictedconfidencentenals; and (2) span the
Unix 5 secondload averagesampledat 1 Hz, canbe usefully pre-  averagewidth of the confidencentenval width in secondsWe useda
dictedto a 30 seconchorizonusingsimple AR(16) models.We have ' tagetconfidencdevel of 95%. The mainconclusionis thatthe RTA

implementedan extremelylow overheadonline hostload prediction andits algorithm canindeedpredictthe runningtime of tasksin a
system,basedon a generalpurposetoolkit [3] that we have made ysefulandeffective way.

publicly available.t

Dueto thelimited spaceavailable,we give only a brief overview of 2. EVALUATION RESULTS

the RTA algorithmhere. A full discussiorof the RTA (andthereal- Usingthe AR(16) predictor we foundthattherewereonly five traces
time schedulenotedin thefigure)is availableelsavhere[2, Chapters (out of 39) in which fewer than90% of the taskscompletedn their
5 and6]. The RTA's algorithmsimply relatesthe nominaltime (CPU computedconfidencentervals and only one hostwherefewer than
demand)of the taskandthe runningtime of the taskto the average 85%werewithin theirintervals. Furthermorewe foundthatit is gen-
of the hostload signalover the task’s runningtime. We replacethe erally bestto usethemostaggressie hostloadpredictor AR(16). On
signalin this relationshipwith the signalpredictionandusethe co- hostswith high load, AR(16) is ableto producesignificantly better
variancematrix of the predictionerrorsto estimatethe confidence coverageby estimatingwider spans On hostswith low load, AR(16)

interval usinganormalityassumptionin additionto AR(16),we also
exploredtheuseof LAST (lastvalueis predictedJandMEAN (long-
termaverageis predicted)predictors computingcovariancematrices
for thesepredictorsappropriately In addition,we discountthe pre-
dictedloadsignalto modelthe priority boostthatprocesseseewhen
they completean!/O operation.

We evaluatedhow well the actualRTA systemworksin practiceus-
ing arandomizedapproach.The evaluationuseda real ervironment
wherethe backgroundoadon a hostwassuppliedby hostloadtrace
playback[5]. Hostloadtraceplaybacklets usreconstruct realistic
repeatablavorkload using a hostload tracecollectedon a real ma-
chine. We usedtracesfrom 39 different machines. The tracesare
describedn detailin a previous paper[1] andarerepresentatie of
productionand researcllusters,applicationseners, and desktops.
We have madethetracesandthe playbacktool publically available.?

For eachtrace we ranapproximately3000testcasesyhich consisted
of taskswith nominaltimesrandomlyselectedfrom 0.1 to 10 sec-
ondsrandomlyarriving 5 to 15 secondspart.We usedthe following
the following two metrics: (1) coverage the fraction of taskswhich

Lhttp:/iwww.cs.nwu.edutpdinda/RPS.html
http://www.cs.nwu.edubpdinda/LoadTaces

can achieve the tamget coveragewith much smallerspans. Perfor
mancegenerallyimprovesasnominaltime is increasedWe saw five
differentclasse®f behaior. In thefollowing, we'll illustratethetwo
of thoseandthensummarizeour overall results.

Class |: This class,which we alsocall the “typical low load host”
classrepresentshe mostcommonbehaior by far thatwe have en-
countered. The classconsistsof 29 of the 39 hosts(76%). A rep-
resentatie of classl is plottedin Figure2. The main characteristics
of the classarethe following. The coverageis only slightly depen-
denton the nominaltime, increasingslightly for all predictorsasthe
nominaltime increases.The MEAN predictortypically hasalmost
100% coverageandis closelyfollowed by the AR(16) andthenthe
LAST predictor TheLAST andAR(16) predictorshave significantly
narraver spansthanthe MEAN predictor with AR(16) producing
slightly wider spanghanLAST.

We believe thatthe AR(16) is the bestpredictorfor this mostcom-
mon classof host. The coverageis nearly as good as MEAN and
is typically nearthe target 95% point, while LAST tendsto lag be-
hind, especiallyfor smallertasks. Furthermorethe spanof AR(16)
is typically half thatof MEAN andonly slightly widerthanLAST. In
mosthosts then,abetterpredictorproducesnuchnarraver accurate
confidencentenals.
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Figure 2: Coverage and Span on Class| hosts
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Figure 3: Coverage and Span on ClassV hosts

ClassV: Thisclasswhichwe alsoreferto asthe “high load 3” class,

consistsof a singlehost(2.5%). Figure 3 plots the performanceof
the predictorson thathostusingthe samemethodologyasbefore.In
termsof coverage, AR(16) is clearly the winner here,especiallyfor
mediumsizedtasks. It achievesits reasonableoverage(the goalis
95%) by computingslightly larger confidencentervalsthanMEAN.

LAST computesonfidencentenalsthatarefar too small, resulting
in abysmalcoverage.

Generalized results: In the following, we summarizeour conclu-
sionsbasedn the class-by-clasandotheranalysis.

(1) The RTA works: with almostevery load tracein our study the
coverageof eitherthe AR(16) or LAST predictoris very closeto the
target95%coverage.

(2) LAST and AR(16) producebetter coverageon heaily loaded
hosts: The LAST and AR(16) predictorsare betterableto “under

stand”suchhostsandcomputeappropriatelywider confidencenter-

valscomparedo MEAN.

(3) LAST andAR(16) producebetterspanson lightly loadedhosts:
For thosehostswhich have lower load andvariability, the LAST and
AR(16) predictorsproducesignificantly narraver confidenceinter-

valsthanMEAN while still capturinganappropriatenumberof tasks
within their computectonfidencentenals.

(4) AR(16) performsbetterthanLAST: Theconfidencentervalscom-
putedusing AR(16) generallyinclude more of their tasksthanthose
computedusingLAST. Using the AR(16) predictor only five of the
tracesareatlessthan90%andonly onelessthan85%. UsingLAST,

9 arelessthan90%, while four arelessthan85%. This gainis due
to AR(16) predictorsproducingwider confidencentenals on hear-

ily loadedhosts. Thereis alsoa correspondingerformancegain on
lightly loadedhostswhereAR(16) producesarraver confidencen-

tenvalsthanLAST becausaét is ableto appropriatelyrelaxits cover

ageevenmorethanLAST.

(5) Performancés slightly dependenbn the nominaltime: For very
smalltasks,especiallythoseon the orderof the measuremerperiod
(1 secondpr smaller coveragas worsethanfor largertasks.For very
longtaskswe seeadeclinein performanc@nsomehosts.Generally
then,asthe nominaltime increasescoverageimprovesslightly. Not

surprisingly spansgrow with nominaltimes.

3. CONCLUSION AND FUTURE WORK

We providedherea high-level descriptionof the RunningTime Advi-

sor, asystentor predictingtherunningtime of compute-boundasks,
andsummarizedts performancesvaluation. We arecurrentlywork-

ing on a similar systemto predictcommunicatiortimes. The goal
is to be ableto predict, againas a confidencentenal, how long it

will take to transfera given numberof bytesbetweertwo hosts.We
are currently exploring the use of wavelet-basednethodsto repre-
sent,compressand predictresourcesignalssuchas hostload. We
alsoplanto extendour predictionwork to the application providing

predictionsof resourcalemandaswell asresourcesupply
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