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Design, Implementation, and Performance of
an Extensible Toolkit for Resource Prediction
in Distributed Systems

Peter A. Dinda, Member, IEEE

Abstract—RPS is a publicly available toolkit that allows a practitioner to straightforwardly create flexible online and offline resource
prediction systems in which resources are represented by independent, periodically sampled, scalar-valued measurement streams.
The systems predict the future values of such streams from past values and are composed at runtime out of a large and extensible set
of communicating components that are in turn constructed using RPS’s extensible sensor, prediction, wavelet, and communication
libraries. This paper describes the design, implementation, and performance of RPS. We have used RPS extensively to evaluate
predictive models and build online prediction systems for host load, Windows performance data, and network bandwidth. The
computation and communication overheads involved in such systems are quite low.

Index Terms—Distributed systems, performance of systems.

1 INTRODUCTION

REDICTING the dynamic availability of resources such as

CPU time [49], [11], network bandwidth [48], [37], and
disk bandwidth is vital to adaptive applications [4], [1],
load-balancing [21], [41], and others. Unfortunately, tools to
simplify studying resource prediction and building appro-
priate and efficient resource prediction systems are scarce.
To remedy this situation, we have created the RPS
(Resource Prediction System) toolkit. RPS is a set of libraries
and programs implemented using them that simplifies the
evaluation of prospective models and the creation of
efficient and flexible resource prediction systems out of
communicating components. This paper describes the
design, implementation, and performance of RPS.

To understand the role RPS plays, consider the process of
building a prediction system for a new kind of resource.
Once a sensor mechanism has been chosen, this entails
essentially two steps. The first is an offline process
consisting of analyzing representative measurement traces,
choosing candidate predictive models based on the analy-
sis, and evaluating these models using the traces. The
second step is to build an online prediction system that
implements the most appropriate model with minimal
overhead. There are a wide variety of statistical and signal
processing tools for interactive analysis of measurement
traces that work very well for performing most of the first
step [32], [34], [33]. However, tools for doing large scale
trace-based model evaluation are usually ad hoc and do not
take advantage of the available parallelism. No tools exist to
help with the second step, building an online predictive
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system using the appropriate model. RPS addresses both of
these weak points.

The design goals of RPS were that it be generic,
extensible, distributable, portable, and efficient. The basic
abstraction is the prediction of periodically sampled, scalar-
valued measurement streams, i.e., discrete-time signals.
Many such streams arise in a typical distributed environ-
ment. RPS can be easily extended with new classes of
predictive models and new components can be easily
implemented. These components inherit the ability to run
on any host in the network and can communicate in
numerous ways. The only tool needed to build RPS is a C++
compiler and it has been ported to four different Unix
systems and Microsoft Windows. For typical measurement
stream sample rates and predictive models, the load placed
on a host is miniscule, and sample rates, even on low-end
machines, can exceed 2.7 KHz.

We have used RPS extensively to determine appropriate
predictive models for host load [14], network bandwidth
[37], and various Windows performance data [24], [25], and
then to quickly implement low overhead prediction systems
that provide timely and useful predictions for them. Some
of these systems have been used in the CMU Remos [26],
[28] resource measurement system, the BBN QuO distrib-
uted object quality of service system [51], and the Dv
distributed visualization framework [1].

Unless it is stated otherwise, when the user is referred to,
we mean the user of the RPS toolkit, not the end-user of a
system built using RPS.

1.1 Related Work

Research into resource prediction has focused on determin-
ing appropriate predictive models for host behavior [14],
[49], [38] and network behavior [48], [2], [18]. RPS is a
toolbox that can help facilitate this research.

Resource measurement systems, such as the Network
Weather Service [50], [49], [48], Remos [26], Topology-d
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[35], Netlogger [20], SPAND [39], and others [29] provide
sensors that create the measurement streams that RPS-
based systems can attempt to predict.

Online resource prediction systems collect measure-
ments from resource measurement systems and use them
to predict future measurements. Other than RPS, the
Network Weather Service [50], [49], [48] (NWS) is the only
example of an online resource prediction system we are
aware of. While NWS is a production system that tries to
provide a ubiquitous resource prediction service for grid
computing, RPS is a toolkit for constructing such systems
and others. The RPS user can commit to as little or as much
of RPS as is desired and this lets us explore the
implementation space of prediction systems.

In terms of its available functionality compared to NWS,
RPS includes a much wider range of predictive models,
analysis tools, and communication mechanisms. RPS in-
cludes nonlinear models and a wavelet analysis toolkit and
can even communicate using existing packets to reduce
network overhead. RPS’s computation and communication
are structured so that an RPS-based prediction system can
operate with very low overhead or at very high data rates.

2 DESIGN GOALS

At the highest level, RPS’s goal is to simplify the creation of
online measurement and prediction systems for resource
availability. This process involves two steps, extensive
offline evaluation using trace data, and the construction of
an online system. It should be straightforward to move a
model found appropriate during the offline step to online
production use in the second. RPS serves the first goal
through an extensive collection of libraries and command-
line tools, including a parallel evaluation system. To serve
the second goal, the same RPS models used offline can be
used online and a prediction system can be quickly stitched
together without programming. RPS was designed to meet
the following requirements:

e  Genericity. Nothing in the system should be tied to
a specific kind of signal or measurement approach.
RPS should be able to operate on periodically
sampled, scalar-valued measurement streams from
any source.

e Extensibility. It should be easy to add new models
to RPS and to write new RPS-based components.
Being able to add new models is important because
the statistical study of a signal can point to them.
Adding new sensors is necessary to measure new
resources.

e Distributed operation. It should be possible to place
RPS-based components in different places on the
network and have them communicate using various
transports. It should be possible to spread the
computation and communication load of an RPS-
based prediction system across multiple machines.

e Portability. It should be easy to port RPS to new
platforms, including those without threads, such as
FreeBSD, and non-Unix systems, such as Windows.

e Efficiency. An online prediction system must be
able to operate at reasonably high measurement
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Fig. 1. Overview of an online resource prediction system.

rates (100s of Hz) and place only minor computa-
tional and communication loads on the system when
operating at typical sampling rates (1 Hz).

3 SysTEM DESIGN

In the following, we focus on online prediction, pointing out
the particulars of offline prediction when needed. Fig. 1
presents an overview of an online time series prediction
system. In the system, a sensor produces a measurement
stream (we also refer to this as a signal) by periodically
sampling some attribute of the distributed system and
presenting it as a scalar. The measurement stream is the
input of a predictor, which, for each individual measure-
ment, produces a vector-valued prediction. The vector
contains predictions for the next m values of the measure-
ment stream, where m is configurable. Each of the
predictions in a vector is annotated with an estimate of its
error. Consecutive vectors form a prediction stream, which is
the output of the predictor. Applications (including other
middleware) can subscribe directly to the prediction stream.
The prediction stream also flows into a buffer, which keeps a
short history of the prediction stream and permits applica-
tions to access these predictions asynchronously via a
request/response mechanism.

The measurement and prediction streams also feed an
optional evaluator, which continuously monitors the perfor-
mance of the predictor by comparing the predictor’s actual
prediction error with a maximum permitted error and by
comparing the predictor’s estimates of its error with
another maximum permitted error level. If either maximum
is exceeded—the predictor is either making too many errors
or is misestimating its own error—the evaluator calls back
to the predictor to tell it to refit its model.

The user can exert control of the system by an
asynchronous request/response mechanism. For example,
he might change the sampling rate of the sensor, the model
the predictor is using, or the size of the buffer’s history.

The implementation of Fig. 1 relies on several function-
ally distinct pieces of software: the sensors, the time series
prediction library, the wavelet library, the communication
library, the components, and scripts and other ancillary
codes. A Web interface is also provided.

RPS has gone through three releases. The current release
consists of ~ 74,000 lines of C++, ~ 21,000 lines of Perl,
~ 6,900 lines of Fortran, and ~ 600 lines of Java. The core
elements of the system can be built and run using only a
C++ compiler.
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4 SENSORS

A sensor measures some attribute of a resource, giving a
scalar value. Currently, four sensors have been implemen-
ted. The first, GetLoadAvg, provides a library function that
retrieves the load averages (i.e., average run queue length)
of the Unix system it is running on. Where possible, it uses
efficient OS-specific mechanisms to retrieve the measure-
ments. On a 500 MHz Alpha 21164-based DEC personal
workstation, it can run at a rate of 625 KHz.

The GetFlowBW library provides a function that mea-
sures the available bandwidth of a network path between
two IP addresses. The implementation is based on Remos
[27], which uses SNMP queries to estimate this value on
LANs and benchmarking to estimate it on WANs. For
SNMP queries on a private LAN, a rate of 14 Hz can be
achieved.

The WatchTower sensor provides access to the performance
counters on a Microsoft Windows computer. There are
hundreds of counters that can be accessed using this library
and more information is available elsewhere [25]. On a
500 MHz Pentium III machine, WatchTower can simulta-
neously monitor 256 performance counters at a rate of 16 Hz
using 10 percent of the CPU while monitoring a single counter
at 1 Hz requires less than 0.1 percent.

The Proc sensor provides access to performance data in
the proc file system on Linux computers. The library
includes a namespace for relevant counters and is respon-
sible for reading and parsing them from proc. On a 1 GHz
Pentium III computer running Red Hat 7.3, Proc can
monitor a single counter at more than 1 KHz.

Other sensors can be readily added to the system simply
by having them output a sequence of (optionally time-
stamped) scalars. A special component exists that can
convert such a stream to RPS’s internal representation and
communicate it over the network.

5 TiME SERIES ANALYSIS AND PREDICTION

The time series prediction library is an extensible set of C++
classes that cooperate to fit models to data, create predictors
from fitted models, and then evaluate those predictors as
they are used. While the abstractions of the library are
designed to facilitate online prediction, as per Fig. 1, RPS
also includes offline prediction tools that use the library.

5.1 Abstractions

The abstractions of the time series library are illustrated in
Fig. 2. The user begins with a measurement sequence,
(24N, ..., 21-2,2z1-1), which is a sequence of N scalar values
that were collected at periodic intervals, and a model
template, which contains information about the structure of
the desired model. The user can create a model template
himself. Alternatively, he can use a provided function that
creates an appropriate template by parsing a simple text-
based specification of the template, given, for example, on a
command line.

The measurement sequence and model template are
supplied to a modeler, which will fit a model of the
appropriate structure to the sequence and return the model
to the user. The user can select a modeler himself or use a
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Fig. 2. Abstractions of the time series library.

provided function that chooses an appropriate modeler
based on the model template. The returned model
represents a fit of the model structure described in the
model template to the measurement sequence.

To predict future values, the model creates a predictor. A
predictor is a filter which operates on a scalar-valued
measurement stream, z, z.1, ..., producing a vector-valued
prediction stream,

[Zt,t,+1, Ztt42y vy Ztﬁmm], [ZHLHZ; Zt41, 443 - - - Zt+1ﬁr,+1+m], ceee

Each new measurement generates predictions for what the
next m measurements will be, conditioned on the fitted
model and on all the measurements up to and including the
new measurement. m can be different for each step and the
predictor can be asked for any arbitrary next m values at
any point. The predictor can also produce error estimates for
its 1,2,..., m-step-ahead predictions. Ideally, the prediction
error will be normally distributed and independent and, so,
these estimates can serve to compute a confidence interval
for the prediction.

The measurement and prediction streams can also be
supplied to an evaluator, which evaluates the actual quality
of the predictions independent of any particular predictor,
producing error metrics. The user can compare the evalua-
tor’s error metrics and the predictor’s error estimates to
determine whether a new model needs to be fitted.

It may appear that, since a model is fit and a predictor
created only once, the cost of doing so is irrelevant.
However, in practice, we often refit models based on the
measured prediction errors of their predictors. The more
frequently such refits occur, the more important the model
fit cost becomes.

5.2 Implementation

The time series library is implemented in C++. To extend
the basic framework shown in Fig. 2 to implement a new
model, one creates subclasses of model template, modeler,
model, and predictor, and updates several helper functions.
The evaluator can also be subclassed, but the base class
already provides a comprehensive implementation.

RPS implements a wide range of predictive models, as
described below. Generally, these models fall into two
classes: linear models and nonlinear models. Additionally,
there are wrappers, which add functionality to models, and
evaluators, which test models. The descriptions in the
following are short. More detail can be found in our
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Fig. 3. Linear time series model.

experimental papers [14], [37], and the vast literature on
time series analysis [6], [7], [23], [17], [46].

5.2.1 Linear Models

In fitting a linear model, the idea is to treat the measure-
ment sequence (z) as the output of a linear filter being
driven by a white noise sequence (a;). Fig. 3 illustrates this
decomposition. The filter coefficients 1); are estimated from
past observations of the sequence with the goal of
minimizing the variance (or energy) of the driving source,
o2. This residual variance is an estimate of prediction error
of the model for one-step-ahead predictions.

This general form of the linear time series model is
impractical since it involves an infinite summation using
an infinite number of completely independent weights.
The practical models we implemented model the filter
coefficients ; as the coefficients of a ratio of polynomials
in the backshift operator B, where B’z = z_,. Using this
scheme, the models we implemented are all variants of
the following form:

o
$(B)(1— B

The MEAN model has z; = y, so all future values of the
sequence are predicted to be the mean. This is the best
predictor, in terms of minimum mean squared error, for a
sequence which has no correlation over time—in other
words, it is best if the sequence is entirely white noise.

LAST models have z = ﬁat. where ¢(B) has one
coefficient, set to one. In other words, z = z_1, so the
one-step-ahead prediction is simply the last measured
value.

BM(p) models have 2z = jiza;, where the ¢(B) has
N, N < p, coefficients, each set to 1/N. This simply predicts
the next sequence value to be the average of the previous
N values, a simple windowed mean. The BM(p) modeler
chooses N to minimize the one-step-ahead prediction error
for the measurement sequence.

AR(p) (purely autoregressive) models have z; = ﬁat +u,
where ¢(B) has p coefficients, which the modeler chooses to
minimize 2. Our implementation uses the Yule-Walker

+ u. (1)

Zt =

technique to fit the model. Even for relatively large values of
p, this fitting process can be done quite quickly and the
technique makes no assumptions about the error distribution.

MA(q) (purely moving average) models have z; = 6(B)a;,
where 6(B) has ¢ coefficients. The modeler uses the
Numerical Recipes implementation of Powell’s method for
multidimensional function minimization [36 pp. 406-413], to
choose coefficients which minimize o2 for the measurement
sequence.

ARMA(p,q) (autoregressive moving average) models

have z; = % as + u, where ¢(B) has p coefficients and 6(B)

has ¢ coefficients. The modeler uses Powell’s function
minimization routine to choose the p+ ¢ coefficients to
minimize o2 for the measurement sequence.

ARIMA(p, d, q) (autoregressive integrated moving aver-
age) models implement (1) for d = 1,2, .... The purpose of
these unitary roots is to introduce integration of the signal,
which allows ARIMA models to model non-stationary
signals. The modeler fits ARIM A(p, d, q) models by differ-
encing the sequence d times and then fitting an ARMA(p, q)
model to the result.

ARFIMA(p,d,q) (autoregressive fractionally integrated
moving average) models implement (1) for fractional values
of d, 0<d<0.5. It can be shown that this fractional
integration can model long-range dependence such as arises
from self-similarity [3], [23], [17]. In addition, the “ARMA
part” of the model models the short-range dependence in
the signal. To fit ARFIMA models, we use Fraley’s Fortran
77 code [15], which does maximum likelihood estimation of
ARFIMA models assuming a normally distributed white
noise source [22]. Modeling long-range dependence is
necessary for modeling self-similar signals.

WAVELET models apply a streaming wavelet transform
(see Section 6) to decompose the input signal into multiple
detail signals. Each detail signal is predicted using some
model, and these predictions inverse transformed to
produce predictions of the input signal.

5.2.2 Nonlinear Models

There is no convenient framework for nonlinear models.
In BMED(p) models, the prediction is the median of the
last p values in the input signal. The modeler chooses p to
minimize the one-step-ahead prediction error for the
measurement sequence. In NEWTON(p)) models, an
interpolating polynomial of order p is fit to the last
p values. It is then used to predict subsequent values.
Any linear model can be converted into its nonlinear
sibling using the MANAGED wrapper, described below.

5.2.3 Wrappers

Wrappers are C++ templates that can be wrapped around
any other model to provide additional functionality while
maintaining the model interface.

The AWAIT wrapper introduces a delay in the predictor
produced by a modeler. It requires that it receive a certain
number of input samples before the predictor is engaged to
produce outputs. Sample delay is needed in various places,
such as in the WAVELET model.

The REFIT wrapper causes the underlying model to be
refitted at regular user-specified intervals.

The MANAGED wrapper is a large and very important
wrapper that does continuous evaluation of a predictor and
forces its model to be refit if error limits are exceeded. This
has the effect, when used with a linear model, of turning it
into its nonlinear “threshold” analogue [46]. This is a very
useful wrapper because many signals generated by
resources are not stationary as assumed by most models,
but, rather, have stationary periods [9]. We have used
MANAGED wrappers extensively in our work.
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Both the MANAGED and REFIT wrappers cause their
underlying models to be refit, increasing the importance of
their fit cost.

5.2.4 Evaluator

RPS’s evaluator implementation measures the following
error metrics of a predictor. For each lead time (number of
steps ahead), the minimum, median, maximum, mean,
mean absolute, and mean squared prediction errors are
computed. Of these, the mean squared prediction errors are
especially useful since they can be compared against the
predictor’'s own estimates to determine whether a new
model needs to be fitted. Of course, a new model can also be
fitted if the prediction error is simply too high or for any
reason at any time.

The one-step-ahead prediction errors (i.e., aj,;,
1=1,2,...,n) are also subject to IID and normality tests
as described by Brockwell and Davis [7, pp. 34-37]. IID
tests include the fraction of the autocorrelations that are
significant, the Portmanteau Q statistic (the power of the
autocorrelation function), the turning point test, and the
sign test. Recall that, with an adequate model, the
prediction errors should be uncorrelated (white) noise. If
an IID test finds significant correlation in the errors, then
a new model can be fitted to attempt to capture this
correlation. The evaluator also tests if the errors are
distributed normally by computing the R? value of a
least-squares fit to a quantile-quantile plot of the errors
versus a sequence of normals of the same mean and
variance. If the R? is high, then using the simplifying
assumption that the errors are normally distributed is
well founded.

5.3 Code Size

The interface to the time series library is relatively
straightforward, resulting in the user writing a small
amount of code to use the library. A set of utility functions
are included that make it possible to use the library
generically, allowing the choice of model to be determined
from a runtime string. This makes it possible to extend the
range of models provided without modifying code that uses
the library. It is possible to use all elements of Fig. 2 in this
way in about 20 lines of C++, as shown elsewhere [13].

5.4 Parallel Evaluation System

RPS includes a program that uses master/slave parallelism
implemented using PVM [16] to do large-scale randomized
evaluations of predictive models on trace data. The user
supplies a measurement trace and a file containing a
sequence of test-case templates that specify models to
examine and ranges of parameters. As the system runs, test
cases containing specific models and segments of the trace
are randomly generated by the master using the template.
When a slave evaluates a test case, the result is a set of error
metrics for a randomly chosen model fit to a random section
of the trace and tested on a subsequent random section of
the trace. These test case parameters and results are then
imported into a database. Because the test cases are
randomly generated, the database of test cases can be used
to draw unbiased conclusions about the absolute and
relative performance of particular prediction models on
particular kinds of measurement sequences, as we have
done for host load [14] and network bandwidth [37].

5.5 Runtime Costs

In an online prediction system, it is vital to understand the
runtime cost of a predictive model. This cost in part
determines the maximum rate at which the system can be
run, the delay before the prediction is ready, and the
overhead the system will have when run at a lower rate. In
our original use of RPS, host load prediction, the goal was
that the predictor would have a delay of 1 ms and consume
only 1 percent of the CPU when run at 1 Hz.

We measured the costs, in terms of system and user time
required to 1) fit a model and create a predictor and 2) step
one measurement into the predictor producing one set of
30-step-ahead predictions. We show both fit and step costs
because, in typical use, models are often refit when
prediction quality declines, either explicitly or via a
mechanism like the REFIT and MANAGED wrappers. As
refitting becomes more frequent, the fit cost becomes more
important. In general, there is a trade-off between fit cost
and step cost. The more complex the structure of the model,
the higher the fit cost, but the lower the step cost.

For all of the models we implement, the step cost is
independent of the data in the measurement stream.
However, the fit cost depends on both the length of the
measurement sequence (generally between linearly and
quadratically) in all cases and on the nature of the data in
some cases. In practice, fitting is usually dominated by
computing the ACF or PACF, which can be done in
O(NlogN) time. When building a system, the cost of a
particular model must also be ameliorated by its prediction
accuracy. We summarize the prediction accuracy of our
various models on host and network data in Section 10.
Here, we simply show a wide range of models, looking at
their fit and step costs averaged over randomly selected
segments of a representative host load trace. For host load
prediction, AR(16) or better predictive models are appro-
priate, typically combined with a MANAGED wrapper,
giving us a simple threshold autoregressive model.

We measured the fit and step costs for two different
measurement sequence lengths, 600 samples and 2,000 sam-
ples. For space reasons, we show only the 600-sample case
here, which is the same case used in describing the online
host load prediction system in Section 9. The machine used
is a 500 MHz Alpha 21164-based DEC personal workstation.

Fig. 4 shows the result. There are six plots, one for the
(a) MEAN, LAST, and AR models and one each for the
remaining (b) BM, (c) MA, (d) ARMA, (e) ARIMA, and
(f) ARFIMA models. Each bar is the average of 30 trials,
each of which consists of one Fit/Init step and a large
number of Step/Predict steps. The y axis on each plot is
logarithmic. We replicate some of the bars from graph to
graph to simplify comparing models across graphs and we
also draw horizontal lines at roughly 1 ms and 100 ms,
which are the Fit/Init times of AR(16) and AR(512) models,
respectively. One ms is also the Step/Predict time of an
AR(512) predictor.

The WAVELET, BMED, and NEWTON models are not
shown here. The times for BMED and NEWTON are similar
to those of BM. The time for an [-level wavelet predictor
with the same model at each level is typically [ X timodel,
where t,,04. 1S the time for the model.
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Fig. 4. Timing of various prediction models, 600 sample fits. (a) AR models. (b) BM models. (c) MA models. (d) ARMA models. (e) ARIMA models.

(f) ARFIMA models.

If we consider the times to fit and use the simplest
models, like LAST and MEAN, we can see that the
overhead of our abstraction is quite low and on par with
a few virtual function calls, as we might expect. The AR(p))
model combines low and deterministic fit and use over-
heads with statistical rigor. For this reason, it is often our
model of choice, even if another model can do the job more
parsimoniously. However, it is not always the most

appropriate or fastest model.
Notice that the time to fit and use the models varies over

a tremendous range, several orders of magnitude. Further-
more, because the fitting of many of the models involves
search, the time can be data dependent. This is one of the
core motivations behind RPS’s communication tools and
componentization, as described in Sections 7 and 8. Using

these elements of RPS, we can place sensors, prediction, and
evaluation in different locations.

6 WAVELET ANALYSIS

RPS includes a wavelet toolkit written expressly for use in
distributed systems. Like the time series library, the wavelet
library supports both offline analysis of signals and the
construction and deployment of online systems.

A wavelet transform converts a periodically sampled,
time domain signal, such as provided by a sensor, into two
dimensions representing time and frequency. The outputs
of the wavelet transform are called the wavelet coefficients
(or “details”) and can be studied in lieu of the original
signal for they contain all the information in it. The wavelet
domain exposes opportunities that do not exist in time
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Fig. 5. (a) The mirror abstraction and (b) implementation.

domain or frequency domain and a wavelet domain signal
can be readily converted back to time domain without loss
of information.

Many implementations of wavelet analysis exist. How-
ever, none are tuned for resource monitoring in distributed
systems, where we require an inexpensive streaming
operation at low sample rates and efficient communication
over lossy channels. In addition, few provide generality,
allowing the user to construct essentially arbitrary trans-
forms in pursuit of research goals. Using the primitives
included in our wavelet toolkit, it is possible to build
arbitrary transforms and adaptively shape them at runtime.
The toolkit is written in C++ using templates and, so, can be
instantiated for many different input and output data types
and different wavelet basis functions.

Building on these primitives, the library includes imple-
mentations of discrete-time transforms and streaming trans-
forms, both sample-based and sample block-based. Variants
of the streaming transforms that support dynamic reconfi-
guration at runtime are provided. Finally, all transforms can
be runina “mixed” mode, meaning that they can provide any
combination of approximations and details as output or use
them as input for the inverse transforms. This provides
support for straightforward multiresolution analysis.

On a 2 GHz Pentium 4 machine, a typical 10-level
streaming forward transform based on a D8 wavelet and
using double precision floating-point can operate at a
sample rate of 156 KHz. The transform can run at 40 KHz
with less than 10 percent CPU utilization. Similar to the
time series library, common uses of the wavelet library,
running at typical sample rates for resource monitoring,
will have miniscule costs and impact on other work on the
machine. More detailed information about the wavelet
toolkit can be found in a technical report [43]. We discuss
the use of the wavelet toolkit for prediction in Section 10.

7 COMMUNICATION

In any prediction system, measurements, predictions,
evaluation results, and control information must be
conveyed from producers to consumers. Communication
should be as efficient as possible, since RPS traffic on the
network consumes bandwidth that the application traffic
can use. When configuring a set of communicating RPS
components, we want to be able to make use of the most
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efficient communication transport possible without
reprogramming.

7.1 Abstraction

Consider Fig. 1, which shows a high level view of how the
components of an online prediction service communicate.
Notice that each component is roughly similar in how it
communicates with other components. It receives data from
one or more input data streams and sends data to one or
more output data streams. When a new data item becomes
available on some input data stream, the component
performs computation on it and forwards it to all of the
output data streams. In addition to this data path, the
component also provides request-response control, which
operates asynchronously. We refer to this abstraction as a
mirror (with no computation, input data is “reflected” to all
of the outputs) and illustrate it in Fig. 5a.

7.2 Rejected Implementation Approaches

We considered four different approaches to implementing
communication: CORBA RMI [40], the CORBA event
channel service [40, pp. 196-204], Java RMI [44], and
SOAP/XML-RPC. We rejected CORBA because it would
have required users to buy, install, and understand a
CORBA implementation. We rejected Java RMI because we
would have had to make extensive use of the Java Native
Interface (JNI), and, in our previous experience, JNI is
remarkably unportable, especially on uncommon platforms.

The fourth possibility was to use XML-RPC [47] or SOAP
[19]. These XML-based approaches are very portable and
have been advocated by the Global Grid Forum [45], but the
overheads of using an XML representation were judged to
be far too high. Later, we implemented XML serialization
for an RPS load measurement using a well-regarded XML
parser and drew the conclusion that we had made the right
decision. Fig. 6 compares RPS’s serialization technique with
the XML technique. XML requires that much more code be
written, the serialization process is much slower, and the
serialized objects that would be sent on the network are
much larger.

7.3 Implementation

Our mirror implementation, illustrated in Fig. 5b, is a C++
template class that is parameterized at compile-time by
handlers for stream input and for request/response input.
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Property | RPS Binary Format RPS XML Format
Size (bytes) 52 851

Pack LOC 10 36
Unpack LOC 10 150

Pack time (us) 6 287
Unpack time (us) 16 1500

Fig. 6. Comparing RPS’s binary format to an XML format for a host load
measurement.

Additionally, it is parameterized by handlers for new
connection arrivals for streams and for request/response
traffic, although the default handlers are usually used for
this functionality. Parameterized stream input and request-
response handlers are also supplied for serializable objects,
which can be used to hide all the details of communication
from the computation that a mirror performs for data or
control. Beyond this, there are other template classes and
default handler implementations to simplify using a mirror.

As shown in Fig. 5b, the heart of a mirror is a select call
that waits for activity on the file descriptors associated with
the various input streams, request/response ports, and
ports where new connections arrive. Streams can also
originate from in-process sources and, so, the select
includes a timeout for periodically calling back to these
local sources.

When the select falls through, all local callbacks that are
past due are executed and their corresponding stream
handler is executed on the new data item. Next, each open
file descriptor that has a read pending on it is passed to its
corresponding stream, request/response, or new connec-
tion handler. A stream handler will unserialize an input
data item from the stream and perform computation on it,
yielding an output data item, which it passes to the mirror’s
data forwarder.

The data forwarder will then serialize the item to all the
open output streams. If a particular output stream is not
writable, it will buffer the write and register a handler with
the selector to be called when the stream is once again
writable. This guarantees that the mirror’s operation will
not block due to an uncooperative communication target.

A request/response handler will unserialize the input
data item from the file descriptor, perform computation
yielding an output data item, and then serialize that output
data item onto the same file descriptor. A new connection
handler will simply accept the new connection, instantiate
the appropriate handler for it, and then register the handler
with the connection manager.

The I/O multiplexing approach that the mirror imple-
ments ensures ready portability to different platforms,
including very simple ones that provide no thread or
process support.

The mirror class knows about a wide variety of different
transport mechanisms, in particular, TCP, UDP (including
multicast IP), Unix domain sockets, and pipes or file-like
entities. Endpoints for each of these forms of communica-
tion can be created dynamically at runtime and there is no
RPS limit on the number of clients that can attach or listen
to a stream.

7.4 Special Communication Mechanisms

We have developed two specialized communication
mechanisms for use with RPS with the goal of minimizing
the amount of network traffic. The first mechanism, wavelet
transport, seeks to convey a signal only at the maximum
sample rate across all interested consumers. The signal is
wavelet transformed at the source, creating multiple detail
signals with geometrically decreasing rates, each of which is
multicast on a different channel. A consumer subscribes
only to those signals necessary to reconstruct the signal at
the resolution (and sample rate) it needs. Wavelet transport
also serves to decouple the producer’s sample rate from that
of the consumer.

This scheme, which is described in detail in a previous
paper [42] and included in the RPS implementation,
unfortunately has a problem. The sample delay through
the wavelet transform, which is a function of the wavelet
type and the number of levels in the transform, coupled
with a low sample rate, leads to a high real-time delay in
receiving information. There is some hope that this problem
can be addressed, but we have not yet solved it.

We have also built RPS communication on top of our
Diffusion system [10], [8] on Linux. The Diffusion kernel
module allows us to piggyback additional data on existing
packet transfers, exploiting unused header fields and trailer
padding to carry the data. Although this communication
method provides no guarantees, it allows us to absolutely
minimize RPS’s communication traffic, down to zero. One
scenario in which it is quite effective is communicating host
load information on an Ethernet LAN, in which case, the
data is piggybacked on the frequent ARP broadcasts made
by each host.

8 COMPONENTS

A user of RPS can choose to straightforwardly incorporate
elements from the sensor library (Section 4), the time series
library (Section 5), the wavelet library (Section 6), and the
communication library (Section 7) in any C++ program.
However, the easiest way to use RPS is to compose the
prepackaged components that are provided.

Each component is a program that implements a specific
RPS function. The communication connectivity of a compo-
nent is specified via command-line arguments, which
means the location of the components and what transport
any two components use to communicate can be deter-
mined at startup time. In addition, the components also
support transient connections to allow runtime reconfigura-
tion and to permit multiple applications to use their
services. In Section 9.1, we compose an online host load
prediction system out of the components we describe here.

RPS includes over 40 components that fit into five basic
groups: sensors, measurement converters, buffers, predic-
tion components, and wavelet components.

Sensor components encapsulate the sensors of Section 4,
and generate streams of sensor-specific measurements.
Related components provide mechanisms to control the
sensors and read the measurement streams.

The remainder of RPS operates on a generic measure-
ment type. Hence, each type of sensor is paired with a
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measurement converter. Also, a special converter is
provided that can simply read a stream of numbers from
standard input, making it straightforward to couple non-
RPS sensors with the system.

For the most part, communication and computation in
RPS-based systems is event-driven. A sensor generates a
stream of measurements that drive the other components.
When a component receives a measurement, it computes a
response and pushes it to its downstream components.
However, RPS-based systems also often need memory. For
example, a predictor component that needs to refit its
model needs a history of data up to the present time. In
addition, external components (clients) need to be able to
query the system asynchronously. Buffers serve both of
these purposes. A buffer stores the last n items of a stream
of raw sensor data, generic measurement data, predictions,
or wavelet coefficients, and lets other components request
the last £ < n of them at any time.

Most of the prediction components are event-driven,
providing continuous prediction services for generic mea-
surement streams. The main component, when started,
retrieves a measurement sequence from a buffer, fits the
desired model to it, and then creates a predictor. As new
measurements arrive in the stream, they are passed through
the predictor to form m-step-ahead predictions and corre-
sponding estimates of prediction error. The actual work is
done by a subprocess, limiting the impact of a crash caused
by a bad model fit.

The core prediction component also provides a request/
response control interface for changing the type of model,
the length of the sequence to which the model is fit, and the
number, m, of predictions it will make. The parameters can
be chosen by the user, through a client, or, alternatively, an
evaluation component can be run that continuously
evaluates the quality of the predictions and forces a model
refit when prediction quality exceeds limits set by the user.

Prediction components that provide stateless, request/
response prediction services are also provided. Here, a
client can send a sequence of measurements and a model to
a server which fits the model to the sequence creates a
predictor and returns predictions for the next m values of
the sequence.

Similar to prediction components, wavelet components
are available both for use in a streaming framework and a
request/response framework. In both cases, forward and
reverse transforms of the types described in Section 7 are
possible.

It is important to note that the set of prediction
components is not fixed. It is quite easy to construct new
components using the libraries we described earlier.
Indeed, we constructed additional components for the
performance evaluation we describe in the next section.

A client component, one that reads from a stream or a
buffer or that reconfigures another component can be
implemented in as few as eight lines of RPS-specifc C++
code, while a bare server component, including both stream
and request/response functionality takes as few as 12.
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Fig. 7. Online host load prediction system composed out of the RPS
components described in Section 8.

9 RunTIME COSTS

The RPS-based components described in the previous section
are composed at startup time to form online prediction
systems. To evaluate the performance of RPS for constructing
such systems, we constructed an RPS-based prediction
system for host load and measured its performance in terms
of the timeliness of its predictions, the maximum measure-
ment rates that can be achieved, and the additional
computational and communication load it places on the
distributed system. In addition to the composed system, we
also constructed a monolithic system using the RPS libraries
directly and measured the maximum measurement rates it
could support.

For interesting measurement rates, both the composed
and the monolithic systems can provide timely predictions
using only tiny amounts of CPU time and network
bandwidth. In addition, the maximum achievable rates
are two to three orders of magnitude higher than we
currently need.

It is important to note that RPS is a toolkit for resource
prediction and, because of the inherent flexibility of the
design, the actual delivered performance depends on the
particular composition of components, the communication
mechanisms employed, and the predictive models being
used. Recall that the computational costs of RPS’s models
cover several orders of magnitude.

9.1 Host Load Prediction System

Our host load prediction system implements the function-
ality of Fig. 1 using the RPS components. It uses a predictive
model, an AR(16), that we have found appropriate for host
load prediction in other work [14] and have used to provide
both predictions of the running time of tasks [11] and soft
real-time scheduling in a distributed environment [12].
Fig. 7 shows the configuration of the host load prediction
system. The boxes in the figure represent components,
while the dark arrows represent stream communication
between components and the symmetric arrows represent
request/response communication between components.
The arrows are annotated with communication volumes,
in bytes, per cycle of operation of the system for streams
and per call for request/response communication. s is the
number of measurements being requested asynchronously
from the measurement buffer while m is the number of
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steps ahead for which predictions are made and w is the
number of predictions being requested from the prediction
buffer.

The system works as follows: The loadserver component
periodically measures the load on the host on which it is
running. Each new measurement is forwarded to any
attached clients and also to load2measure, which converts
it to a generic measurement form and forwards it to
measurebuffer. Measurebuffer buffers the last n measure-
ments and provides request/response access to them. It also
forwards the current measurement to predserver and
evalfit. Predserver consumes the measurement and pro-
duces an m-step-ahead prediction using its subprocess,
predserver_core. It forwards the prediction to predbuffer
and to evalfit.

Evalfit continuously compares predserver’s predictions
with the measurements it receives from measurebuffer
and computes its own assessment of the quality of the
predictions. For each new measurement, it compares its
assessment with the requirements the user has specified
as well as with the predictor’'s own estimates of their
quality. When quality limits are exceeded, it calls
predserver to refit the model. The model is an AR(16)
fit to a 600-sample window and providing predictions for
1 to 30 steps into the future.

Predserver’s predictions also flow to predbuffer, which
provides request/response access to some number of
previous predictions and also forwards the predictions to
any attached predclients. Predbufferclients can asynchro-
nously request predictions from predbuffer. Of course,
applications can decide, at any time, to access the prediction
stream or the buffered predictions in the manner of
predclient and predbufferclient.

Each measurement that loadserver produces is time-
stamped. This timestamp is passed along as the measure-
ment makes its way through the system and is joined with a
timestamp for when the corresponding prediction is
completed and for when the prediction finally arrives at
an attached predclient. We shall use these timestamps to
measure the latency from when a measurement is made to
when its corresponding prediction is available for
applications.

The system can be controlled in various ways. For
example, the user can change loadserver’s measurement
rate, the predictive model that predserver uses, and the time
horizon for predictions. We used the control over loadser-
ver’s measurement rate to help determine the computa-
tional and communication resources the system uses.

So far, we have not specified where each of the
components runs or how the components communicate.
As we discussed in the previous section, RPS lets us defer
these decisions until startup time and even run time. In the
study we describe in this section, we ran all of the
components on the same machine and arrange for them to
communicate using TCP. The machine we used is a
500 MHz Alpha 21164-based DEC personal workstation.

This configuration of components is an interesting one
because it is very conservative. By running all the
components on a single host, we maximize the impact on
the host and minimize the possible rate. Using TCP

communication instead of local mechanisms like Unix
domain sockets or pipes further increases the impact. If
RPS can achieve reasonable performance and low overhead
levels in such a suboptimal configuration, it is likely the
case that a performance-optimized RPS-based system
would do at least as well. We discuss such a system later.

9.2 Limits

Before we present the details of the performance of the host
load prediction system, it is a good idea to understand the
limits of achievable performance on this machine. Recall
from Section 5 that the host load sensor library requires
only about 1.6 us to acquire a sample. As for the cost of
prediction, Fig. 4 indicates that fitting and initializing an
AR(16) model on 600 data points requires about 1 ms of
CPU time, with a step/predict time of about 100 us. The
computation involved in evalfit, load2measure, and the
various buffers amounts to about 50 us, thus the total
computation time per cycle is 151.6 ps. If no communication
was involved, we would expect the prediction system to
operate at a rate no higher than 6.6 KHz.

However, the prediction system also performs commu-
nication. Examination of Fig. 7 indicates that, for 30-step-
ahead (m = 30) predictions, eight messages are sent for each
cycle. There are three 28-byte messages, two 52-byte mes-
sages, and three 536-byte messages. The measured band-
widths of the host for messages of this size are 2.4 Mbytes/s
(28 bytes), 4.2 Mbytes/s (52 bytes), and 15.1 Mbytes/s
(536 bytes). Therefore, the lower bound transfer times for
these messages are 11.7 us (28 bytes), 12.4 us (52 bytes), and
35.5 pis (536 bytes). The total communication time per cycle is
therefore at least (3)11.7 + (2)12.4 + (3)35.5 = 166.4 us, and
the total time per cycleisatleast151.6 4 166.4 = 318 s, which
suggests a corresponding upper bound on the system’s rate of
about 3.1 KHz.

The host we evaluated the system on has a timer
interrupt rate of 1,024 Hz, which means that all measure-
ment rates in excess of this amount to “as fast as possible.”
This rate also results in a clock accuracy of approximately
one millisecond.

9.3 Evaluation

We configured the host load prediction system so that the
model will be fit only once and, thus, measured the system
in steady state. We measured the prediction latency,
communication bandwidth, and the CPU load as functions
of the measurement rate, which we swept from 1 Hz to
1,024 Hz in powers of 2.

9.3.1 Prediction Latency

In an online prediction system, the timeliness of the
predictions is paramount. We measured this timeliness in
the host load prediction system as the latency from when a
measurement becomes available to when the prediction it
generates becomes available to applications that are inter-
ested in it. This is the latency from the loadserver
component to the predclient component in Fig. 7.

The prediction latency should be independent of the
measurement rate until the prediction system’s computa-
tional or communication resource demands saturate the
CPU or the network. Fig. 8 shows that this is indeed the
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Fig. 8. Prediction latency as a function of measurement rate: (a) 95 percent confidence interval of mean latency and (b) minimum, median, and

maximum latency.

case. Fig. 8a plots the 95 percent confidence interval for the
mean prediction latency as a function of increasing
measurement rates. We do not plot the latency for the
1,024 Hz rate since, at this point, the CPU is saturated and
the latency increases with backlogged predictions. Up to
this point, the mean prediction latency is roughly 2 ms.

Fig. 8b plots the minimum, median, and maximum
prediction latencies as a function of increasing measure-
ment rate. Once again, we have elided the 1,024 Hz rate
since latency begins to grow with backlog. The median
latency is 2 ms, while the minimum latency is at 1 ms,
which is the resolution of the timer we used. The highest
latency we saw was 33 ms.

9.3.2 Resource Usage

To measure the CPU usage of our representative host load
prediction system, we did the following: First, we started an
independent sensor measuring the CPU utilization. We
then started the prediction system at its default rate of 1 Hz
and let it quiesce. Next, we started a client to receive the
prediction stream and let the system quiesce. Then, we
swept the measurement rate from 1 Hz to 1,024 Hz in
powers of 2. For each of the 10 rates, we let the system
quiesce. Finally, we reset the rate to 1 Hz. Fig. 9 shows plots
of what the sensors recorded over time. Fig. 9a shows the
percentage of the CPU that was in use over time, while
Fig. 9b breaks down the system and user components. The
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system component is essentially the time spent doing TCP-
based IPC between the different components.

There are several important things to notice about Fig. 9.
First, we can sustain a measurement rate of between 512 Hz
and 1,024 Hz on this machine. The exact rate is 720 Hz. While
this is nowhere near the upper bound of 3.1 KHz that we
arrived atin Section 9.2, it is still much faster than we actually
need for the purposes of host load prediction (1 Hz) and than
the limits of our network flow bandwidth sensor (14 Hz).

A second observation is that, for these interesting 1 and
14 Hz rates, CPU usage is quite low. At 1 Hz, it is around
2 percent, while, at 16 Hz (the closest rate to 14 Hz), it is
about 5 percent. For comparison, the “background” CPU
usage measured when only running the sensor is itself
around 1.5 percent.

The bandwidth requirement of the system is 1,796 x f
bytes/second, where f; is the measurement rate. To
understand how small these requirements are, consider a
1 Hz host load prediction system running on each host in
the network and multicasting its predictions to each of
the other hosts. Approximately 583 hosts could multicast
their prediction streams in 1 MB/s of sustained traffic,
with each host using only 0.5 percent of its CPU to run
its prediction system. Alternatively, 42 network flows
measured at the maximum rate could be predicted. If
each host or flow only used the network to provided
asynchronous request/response access to its predictions,
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Fig. 9. CPU utilization produced by system. The measurement rate is swept from 1 Hz to 1,024 Hz. (a) Total percentage of CPU used over time. (b) A

system and user time breakdown.
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System Transport Optimal Rate  Measured Rate  Percent of Optimal
Monolithic  In-process 6.6 KHz 5.3 KHz 80 %
Monolithic ~ Unix domain socket 5.5 KHz 3.6 KHz 65 %
Monolithic ~ TCP 5.3 KHz 2.7 KHz 51 %
Composed  TCP 3.1 KHz 720 Hz 24 %

Fig. 10. Maximum measurement rates achieved by monolithic and composed host load prediction systems.

many more hosts and flows could be predicted. For
example, if prediction requests from applications arrived
at a rate of one per host per second, introducing 552 bytes
of traffic per prediction request/response transaction,
1,900 hosts could operate in 1 MB/s.

9.3.3 Monolithic System

The composed host load prediction system we have
described so far can operate at a rate 52-720 times higher
than we need and uses negligible CPU and communication
resources at the rates at which we actually desire to operate
it. However, the maximum rate it can sustain is only
24 percent of the upper bound we determined in Section 9.2.
To determine if higher rates are indeed possible, we
implemented a monolithic, single process host load predic-
tion system using the RPS libraries directly.

Fig. 10 shows the maximum rates the monolithic system
achieved for three transports: in process, where the client is
in the same process, Unix domain socket, where the (local)
client listens to the prediction stream through a Unix
domain socket, and TCP, where the client operates as with
the earlier system. For comparison, it also includes the
maximum rate of the composed system described earlier,
and the percentage of optimal rate that each configuration
achieves. The message here is two-fold: First, for typical
resource measurement rates, even a simple system, com-
posed at runtime with no programming, has an overhead
that is low enough to be very practical. Second, it is possible
to use RPS at the level of libraries to build a system that
comes near to the optimal possible overhead.

10 PREDICTION ACCURACY

A natural question to ask about a prediction system is how
good its predictions are. Unfortunately, it is an ill-defined
question because prediction accuracy depends on

1. the nature of the signal—its inherent predictability,
which is effectively unmeasurable,

2. the sampling of the signal,

3. the models that are available, and

4.  whether an appropriate model is chosen. Further-
more,

5. the practical aspects of the model, such as its fit and
step costs, are critical.

RPS addresses points 3 and 5 by providing a many models
with efficient implementations.

Addressing 1, 2, and 4 necessarily combines automation
and human input. We have shown how to use RPS’s
wavelet analysis to efficiently decouple the sample rate from
queries an application makes, but it is still necessary for the
RPS user to determine an appropriate rate for the resource
and then implement a non-aliasing sampler. RPS addresses

(4) by providing automatic model refitting, but a human
must choose the underlying model. Of course, multiple-
expert techniques [5] in which we run many predictors
simultaneously can be employed here as in NWS. With
complex predictors, however, the cost of doing this grows
very quickly.

Using RPS, we have developed prediction systems for
host load [14], network bandwidth [37], and various
Windows performance data [24], [25]. We summarize the
host load and network bandwidth results here.

Host load, sampled at a 1 Hz rate, is readily predictable
from 1 to 30 seconds into the future using AR(16) models
(the system of the previous section) [14]. The predictions of
values and error are accurate enough to compute tight
confidence intervals for the running time of short tasks [11].
These predictions are sufficient to do effective predictive
scheduling of distributed soft real-time tasks [12].

We explored passive network bandwidth prediction
using multiscale techniques, including binning (Haar
wavelets) and higher order wavelet analysis, looking at
timescales from 1 ms to 1,024 s [37]. There is no clear
statement to be made about the predictability of network
traffic in general. In situations where it is predictable, high-
order threshold autoregressive models are most appropri-
ate. If predictable, the traffic tends to be very predictable,
even with very simple models. It is not the case that
prediction monotonically improves with timescale. Given
these observations, we have moved in the direction of active
measurement and prediction [31], [30].

11 RETROSPECTIVE

RPS has gone through three major versions, including the
addition of many predictive models, the entire wavelet
toolkit, and different communication schemes, all while
keeping the same basic design. Overall, its flexibility,
extensibility, and reasonable performance have been pro-
ven. There are, however, a number of things that we would
change if we were to design a new resource prediction
toolkit from scratch.

A weakness of RPS is that it is based on univariate
signals. This design decision has implications throughout
most of the system. It would have been better to base RPS
on a multivariate signal model. Cross correlation between
signals is a real and exploitable feature for prediction.

RPS components are designed only to be composed at
startup time or runtime. This makes creating new predic-
tion systems trivial, but, to build a monolithic system, the
programmer has to operate at the level of RPS’s libraries.
While this is not difficult, it would be better if the
programmer could generate both composed and monolithic
systems from a common description.
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RPS communicates metadata in-band—every serializable
RPS data structure includes the necessary metadata to make
sense of it in isolation. The communication costs would be
even lower if metadata were communicated out-of-band,
perhaps through a directory service.

RPS’s low-level communication mechanisms and core
implementation language (C++) have helped make it easy
to port to new platforms. However, because of the evolving
nature of C++, porting to newer versions of a particular
compiler has proven to be time-consuming.

RPS contains no naming or directory services. The user is
responsible for finding the elements of a prediction system.
This is eased somewhat through canonicalization of loca-
tions in the various scripts provided with RPS. While this
can be painful at times, we argue that it is outside of the
purview of a toolkit and that, for deployed prediction
systems, directory services should be responsible for this
sort of information.

12 CONCLUSION

We have designed, implemented, and evaluated RPS, a
toolkit for constructing online and offline resource predic-
tion systems in which resources are represented by
independent, periodically sampled, scalar-valued measure-
ment streams. RPS consists of resource sensors, an extensive
time series library, a sophisticated communication library,
an extensive wavelet analysis library, and a set of
component programs out of which resource prediction
systems can be readily composed at run time. The
performance of RPS is quite good in terms of the maximum
sample rates supported, the prediction latency, and the
bandwidth requirements. These results demonstrate the
feasibility of resource prediction in general and of using
RPS-based systems for resource prediction in particular.
RPS can be acquired from http://rps.cs.northwestern.edu.
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