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Paper in a Nutshell

HPC node OS as an RTOS

— |solation in time-shared environment
— Resource control with commensurate performance

— Coordination via time instead of via synchronization
e Barrier removal example

Hard real-time threads in Nautilus kernel
— Despite x64
— ~10 us resolution (Xeon Phi KNL)

Thread group scheduling and coordination
— ~3 us synchronization for 255 threads (Phi)

Publicly available codebase



Outline

Motivation
— Prior work on soft RT scheduling of distributed machines
— Modern machines and interesting runtimes

What is hard real-time?

— Liu model

Implementation in Nautilus
— Threads

— Groups

Performance evaluation

— Limits (mostly on KNL)

— Fine-grain BSP benchmark
Conclusions and future work



Experiences with Soft Real-time

* VVSched soft RT scheduler extension for Linux
* Consolidation of interactive and batch VMs

* Time-sharing of distributed memory parallel
applications on a cluster with
performance isolation and control

— Coordinated scheduling (i.e., gang scheduling
based on time) so BSP applications achieve
resource-commensurate performance

B. Lin, P. Dinda, VSched: Mixing Batch and Interactive Virtual Machines Using Periodic Real-time Scheduling, SC 2005

B. Lin, A. Sundararaj, P. Dinda, Time-sharing Parallel Applications Through Performance-targeted Feedback-controlled
Real-time Scheduling, Cluster Computing, 11:3, 2008; ICAC 2007, patent application
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Can This Apply Within a Node?

Increasingly interesting target
— Growing CPU count: Phi now at 256; NUMA, ...

OS noise concerns continue

Much finer granularity scheduling and
coordination needed

— OpenMP loops and tasking

— NESL VCODE model (abstract vector machine)
New opportunity: substitute timing for
synchronization

— Example: potential barrier removal



What is Hard Real-time?

Formal admission control process
— Based on work and deadlines
— Scheduler can say no

Scheduler engine guarantees all deadlines

Limitations
— Scheduler overheads
— Context switch overheads

Our system: threads on a NUMA node



What is Hard Real-time?

* Aperiodic threads ohase  period

— Have priority — .

— Always admitted _— E
* Periodic threads N e

— Phase, period, slice (deadline=period)
— Selective admission (RMA tests)

e Sporadic threads
— Phase, size, deadline, aperiodic priority
— Selective admission (EDF tests)

J. W. S. Liu, Real-time Systems, Prentice Hall, 2000



Nautilus as the Basis for an RTOS

* Nautilus: kernel framework for constructing
hybrid run-times (HRTs) on x64

— No userspace, simple address translation, single
address space, streamlined primitives, NUMA, ...

— 15-40% speedup over Linux for Legion run-time

e Particularly salient for an RTOS:
— No page faults, only capacity TLB misses

— Deterministic path length in drivers and all core
functionality

— Steerable interrupts

K. Hale, P. Dinda, A Case for Transforming Parallel Runtime Systems Into Operating System Kernels, HPDC 2015
K. Hale, P. Dinda, Enabling Hybrid Parallel Runtimes Through Kernel and Virtualization Support, VEE 2016.

K. Hale, C. Hetland, P. Dinda, Multiverse: Easy Conversion Of Runtime Systems Into OS Kernels Via Automatic
Hybridization, ICAC 2017
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The Curse of Missing Time

Unaccounted time within kernel itself
— Scheduler overhead, context switch overhead, etc.

Deliberate, nondeterministic, unaccounted time due to
System Management Interrupts (SMls)

— Firmware-level interrupts
— Higher privilege than kernel or even VMM
— Cannot be turned off

— Like an alien abduction from the scheduler’s perspective
* “My clock just jumped forward 10 us!”

Our approach to both:
(a) Reservations, (b) Eager Earliest Deadline First

B. Delgado, K. Karavanic, Performance Implications of System Management Mode, IISWC 2013



Global (per-node)

* Local scheduler coordination via

Scheduler

 Time (mostly)
* Interrupts (sparingly)
* No global locking

* |nterrupt steering and

segregation

Interrupt-free CPUs see only
scheduling-related interrupts
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Group Scheduling

Local schedulers’ clocks synchronized
— Variance <1000 cycles (<1 us) over 256 CPUs on Phi

Thread groups and group admission control
— Main element is admission control done in parallel
— All or nothing

Phase correction to coordinate initial thread
arrival on all involved local schedulers

Same constraints on all local schedulers results in
of the group of threads

— Without explicit communication
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Local Scheduler Synchronization on Phi
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Code Measures

e Scheduler: ~5000 LoC (C)

— Also includes work-stealing, thread pools, garbage
collection support, and tasks

* Groups and Group Scheduling: ~1000 LoC (C)

e Other changes: ~2000 LoC (C+Assembly)

— Low-level CPU-state maintenance / context switch
— Additional thread states
— Assorted



Test machines

 Phi
— Supermicro 5038ki (“Colfax KNL Ninja”)
— Intel Xeon Phi 7210 (“Knight’s Landing”)

* 64 cores, 4 hardware threads per core

e 1.3GHz

16 GB MCDRAM, 96 GB DRAM

 All throttling/burst behavior disabled in BIOS

* R415

— Dell R415
— AMD 4122

» 2 sockets, 8 cores/threads total,

* 2.2 GHz

16 GB DRAM

 All throttling/bust behavior disabled in BIOS



Validation Through External Monitoring
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Controlled Miss Behavior on Phi
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Controlled Miss Behavior on R415
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Fine-grain BSP Microbenchmark

each thread in group:
for (1=0;i<N;i++) {
local compute(granularity)
optional barrier();

write to neighbor(granularity)

optional barrier();

}

Barrier overhead grows with shrinking granularity
Barriers could be removed if the threads ran in lock-step
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Execution Time (s)

Resource Control With Commensurate Performance
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Resource Control With Commensurate Performance
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Fine-grain BSP Microbenchmark

each thread in group:
for (1=0;i<N;i++) {
local compute(granularity)
optional barrier();

write to neighbor(granularity)

optional barrier();

}

Barrier overhead grows with shrinking granularity
Barriers could be removed if the threads ran in lock-step
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Time without Barrier Removal

Barrier Removal
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Related Work

OS Noise
Gang scheduling
Vsched / Coordinated soft RT

— As in motivation
Mondragon
RTVirt
Tesselation

Barrelfish
— Also coordination via time
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Ongoing/Future Work

Further overhead reduction
— Reduce granularity

Real-time tasks
Interrupt-free scheduling

— Avoid interrupt overheads / Reduce granularity
— Compiler-based injection of cooperative scheduling calls

Real-time executive model

— Scheduling implemented at compile-time as a superloop,
as in safety-critical and/or smallest embedded systems

Custom hardware for scheduling and synchronization
— Intel HARP / FPGA



Paper in a Nutshell

HPC node OS as an RTOS

— |solation in time-shared environment
— Coordination via time instead of via synchronization
— Barrier removal example

Hard real-time threads in Nautilus kernel
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— ~10 us resolution (Xeon Phi KNL)

Thread group scheduling and coordination
— ~3 us synchronization for 255 threads (Phi)

Publicly available codebase
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