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Overview
• Analysis of packet traces of representative 

HPF-like codes running on a shared Ethernet
• Traffic very different from typical models

– Simple packet size+interarrival behaviors
– Correlation between flows
– Periodicity within flows and in aggregate

• Implications for prediction and QoS models

Caveats: Data is old, shared media network

Current focus



3

Outline

• Why?
• CMU Fx Compiler
• Communication Patterns and programs
• Methodology
• Results
• Implications for prediction and QoS
• Conclusions and future work
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Why Study Traffic of Parallel Programs?

• Networking provisioning
– Source models, Aggregated traffic models

• Adaptive applications
– Measurement and prediction
– Network Weather Service, Remos, RPS

• Resource reservation and QoS systems
– Source models, framing QoS requests
– Intserv, ATM

• Computational Grids may introduce lots of 
such traffic

• …
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CMU Fx Compiler
• Variant of High Performance Fortran
• Both task and data parallelism
• Sophisticated communication generation

– Compile-time and run-time
• Multiple target platforms

– Custom communication back-ends
• iWarp (original target), Paragon, T3D, T3E, MPI

– PVM, MPI on many platforms
• Alpha/DUX, Sun/Solaris, I386/Linux, …

http://www.cs.cmu.edu/~fx
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Genesis of Communication  Patterns 
in Fx Programs

• Parallel Array assignment
• Parallel Loop iteration input and output
• Parallel prefix and loop merge
• Inter-task communication

• Tasks can themselves be task or data parallel

• Parallel I/O
• Distribution of sequential I/O 
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Communication Patterns in Study

Neighbor All-to-all Partition Broadcast

Tree (up 1) Tree (up 2) Tree (down 1) Tree (down 2)

Pattern Kernel Description 
Neighbor SOR 2D Successive Overrelaxation 
All-to-all 2DFFT 2D Data Parallel FFT 
Partition T2DFFT 2D Task Parallel FFT 
Broadcast SEQ Sequential I/O 
Tree HIST 2D Image Histogram 
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Beyond Kernels: AIRSHED
• Air quality modeling application

– Used Fx model created by app developers
• Coupled chemistry and wind simulations on 

3D array (layers, species, locations)
Data input and distribution

Do I=1,h

Pre-processing

do j=1,k

Chemistry/vertical transport

Distribution transpose

Horizontal transport

Distribution transpose

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/gems/www/hpcc.html
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Environment

• Nine DEC 3000/400 workstations
• 21064 at 133 MHz, OSF/1 2.0, DEC’s tcpdump
• Fx 2.2 on PVM 3.3.3, TCP-based communication

• 10 mbps half-duplex shared Ethernet LAN
• Not private: experiments done 4-5 am

Recording Host
(tcpdump) Execution Hosts
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Why is this still interesting?
(study was done ~1996)

• Compiler and run-time still representative
• Communication patterns still common
• Hard to do a study like this today

– Modern Ethernet is switched
– Can only see an approximation of the aggregate traffic 

(SNMP, Remos) not the actual packets
• Artificial synchronization?  BSP anyway
• Implications for network prediction and QoS 

models are important
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Methodology

• Run program, collecting all packets
• Arrival time and size (including all headers)

• Classify packets according to “connections”
• One-way flow of data between machines
• All packets from machine A to machine B
• Includes TCP ACKs for symmetric connection

• Aggregate and per-connection metrics
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Metrics

• Packet size distributions
• Packet interarrival time distributions
• Average bandwidth consumed
• Instantaneous bandwidth consumed

– 10 ms sliding window
– Time and frequency domain (power 

spectrum)

Results for 4 node versions of programs
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Packet Size Distributions

• Trimodal
• MTU-sized packets
• “leftovers” (n byte message modulo MTU size)
• ACKs for symmetric connection

• T2DFFT generates many different sizes
• Run-time communication system uses multiple 

PVM pack calls per message 

Typical LAN traffic has wide range of sizes
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Packet Interarrival Time Distribution

• Bursty, but only at only a few timescales
– Most are within a burst: closely spaced
– Few are between bursts: farther apart

• Quite deterministic on-off sources
– Synchronized communication phases in Fx

Typical network source model is 
heavy-tailed stochastic on-off
which mix giving self-similarity



15

Long-term Average Bandwidth

 
Program 

KB/s 
(Aggregate) 

KB/s 
(Connection) 

SOR 5.6 0.9 
2DFFT 754.8 63.2 
T2DFFT 607.1 148.6 
SEQ 58.3 - 
HIST 29.6 - 
AIRSHED 32.7 2.7 
 

Resource demands are often quite light
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SOR: connection, time domain
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The Power Spectrum

• Frequency domain view of signal
• Density of variance as function of frequency

– Power = variance 
• Excellent for seeing periodicities

– Periodically appearing feature in the signal turns 
into a spike in the power spectrum
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SOR: connection, power spectrum
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2DFFT: aggregate, power spectrum
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Airshed: aggregate, power spectrum
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Implications for Network Prediction

• Networks with significant parallel 
workloads may be more predictable

• Typical LAN and WAN look like pink noise
• Mixing effects unclear, however

• Source model must be different
• More deterministic, no heavy tails

• Parallel applications appear detectable
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Implications for QoS Models

• Pattern should be conveyed
• Show traffic correlation along multiple flows

• Source model more deterministic
• Deterministic burst size
• Deterministic burst interval that depends on 

proffered bandwidth

• More degrees of freedom to expose
• Number of nodes
• Closer coupling of network’s and app’s 

optimization problemss 
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Conclusions and Future Work
• Analysis of packet traces of Fx codes running on a 

shared Ethernet using 1996 data
• Traffic very different from typical models

– Simple packet size+interarrival behaviors
– Correlation between flows
– Periodicity within flows and in aggregate

• QoS models should allow and exploit these 
differences

• Parallel traffic appears more predictable than 
common traffic
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For More
Information

• http://www.cs.northwestern.edu/~pdinda
• Resource Prediction System (RPS) Toolkit

• http://www.cs.northwestern.edu/~RPS

• Prescience Lab
• http://www.cs.northwestern.edu/~plab

• Fx and AIRSHED
• http://www.cs.cmu.edu/~fx
• http://www.cs.cmu.edu/afs/cs.cmu.edu/project/gems/www/hpcc

.html
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SOR: aggregate, time domain
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SOR: aggregate, freq domain
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2DFFT: connection, freq domain
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T2DFFT: aggregate, freq domain
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T2DFFT: connection, freq domain
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HIST: aggregate, freq domain
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SEQ: aggregate, freq domain
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