
EECS 339 Project B Dinda

 Page 1 of 8

Project B: Portfolio Manager

Now that you've had the experience of extending an existing database-backed web
application (RWB), you're ready to design and implement your own. In this project, you
will do so, developing an application from scratch that meets the specifications laid out
here. This application combines requirements that are common to most interactive web
applications with some elements of datamining and analysis using database engines.

You should do this project in teams of 2-3 people. Please see us if you can't find a team.

There is a fair amount of code and other information available in the project handout
directory, ~pdinda/339/HANDOUT/portfolio. Be sure to read the README file there.

Overall Requirements
You are to develop a database-backed web application that lets a user do the following:

● Register for an account and log in.
● Access her portfolios. A user may have one or more portfolios.
● Track a portfolio of the user's stocks, including their current value and other aspects of

their performance.
● Analyze and predict stock and portfolio performance based on historical performance.

You will have access to about 10 years of historical daily stock data for this purpose.
Plus you will add a facility to add new data and integrate this new data into analysis
and prediction. This part of the project will give you the opportunity to play with
simple data mining, and rather more sophisticated prediction techniques.

● Evaluate automated trading strategies using the historic data.

In the following, we'll explain a bit more about what each of these items mean, and give
the concrete specifications for each.

What are Portfolios and Portfolio Management?
A portfolio is a collection of investments that is intended to serve some purpose for the
portfolio holder. For the context of this project, investments will consist purely of stocks
and cash. We will also ignore stock dividends, taxes, margin, and trading costs. There
are many other kinds of investments that could be included in a portfolio.

While the stocks actually held by an individual investor certainly constitute a portfolio,
portfolios are put together for other reasons too, for example to analyze how a particular
collection of stocks has done in the past, to predict how well it may do in the future, or to
evaluate how well an automated trading strategy might work for the portfolio.

An important investing problem is how to choose investments and their relative
proportions such that the risk (and reward) of the portfolio as a whole is controlled. For

EECS 339 Project B Dinda

 Page 2 of 8

example, a 20-something computer scientist may be willing to have a much riskier
portfolio than a retired 70-something teacher.

The intuition behind designing a portfolio with a given “risk profile” is pretty simple. The
amount of risk of an investment (a stock here) is basically the variance of the value of the
investment, sometimes normalized to the average value of the investment (standard
deviation over mean, or “coefficient of variation” (COV)). A high COV means the stock
is “volatile” and thus riskier. Now, suppose you are trying to choose two stocks. You
can not only compute their individual variances, but also their covariation (and thus
correlation). If the two stocks are positively correlated, then this means that if both of
them are in your portfolio, the combination will be more volatile (higher risk). If they
are negatively correlated, then the combination will be less volatile (lower risk). So,
“portfolio optimization” is the process of choosing a collection of stocks such that their
covariances/correlations with each other combine to give you the variance (risk) that you
want while maximizing the likely return (reward). One simplification is to just consider
the correlation of each stock with the market as a whole (this is called the “Beta
coefficient”) in building a portfolio. The Beta of the whole portfolio can thus be made
larger or smaller than the market as a whole by choosing the right stocks.

The devil in the details is that in order to build a portfolio like this, we would need to
know the future values of volatility, covariance, Beta, etc, or of the stock prices
themselves. We only have the past ones. So, a very important discipline is prediction,
determining how a stock is likely to move in the future based on how it and all other
stocks have moved in the past, as well as predicting what the future values of the other
statistical measures will be. Since the statistics are almost certainly nonstationary, we
will occasionally fail completely in predicting the future. The best we can do is muddle
through, but there is a huge range of possibility, and a big part of any serious trading
enterprise is datamining historical data to develop better and better predictors.

Another important consideration is automation. We would like to have a computer
program that continuously adapts the portfolio holdings in pursuit of maximizing return
while controlling risk. These programs are called “trading strategies”, and another
important goal of datamining of historical financial data is to find them.

Stocks
A share of stock represents a tiny bit of ownership of a company. Companies pay
dividends (cash money) on their outstanding shares. The value of a stock is essentially
the (discounted) sum of all of the future dividends it will pay. Since no one knows what
that is, markets try to estimate it by buying and selling. The price at which a stock is
sold (the “strike price”) is an estimate of its value---the seller thinks the stock's value is
less than the strike price, while the buyer thinks it's more. Notice that a “price event”
happens on every sale, and there may be 1000s of sales per day of a stock. If you look at
the “stock price” in some typical free web stock quoting service, you're seeing an average
of these sales over some interval of time, or, in some cases, the most recent sale.

For the purpose of this project, we will consider only information about the “day range”
of a stock. In particular, for each day and stock, we shall have:

EECS 339 Project B Dinda

 Page 3 of 8

● Timestamp
● Symbol (the alphabetic string representing the company – for example, AAPL

represents Apple Computer)
● Open (the strike price of the first trade of the day)
● High (the highest strike price during the day)
● Low (the lowest strike price during the day)
● Close (the strike price of the last trade of the day)
● Volume (the total number of shares traded during the day)

You can access 10 years of such historic data from the Oracle database on murphy, in the
table cs339.StocksDaily. The information on how to access this data is given in the
README file in the handout directory, which you should certainly read. BTW, the
“timestamp” in StocksDaily is the Unix time, the number of seconds since January 1,
1970. The same data is also available in MySQL and Cassandra for you to play with
those systems, but we want you to use Oracle for this project.

Portfolios
A portfolio consists of the following. You will need to figure out what parts of this need
to live in the database and what parts can be generated on the fly.

● Cash account – money that the owner can withdraw or use to buy stocks. If he sells a

stock the money it brings in goes here. The owner can also deposit more money from
other accounts.

● A list of stock holdings. A stock holding consists of a stock symbol and the number
of shares of the stock that the owner has. (We ignore stock lots here since we're
ignoring taxes)

The owner of a portfolio should be able to do the following:

● Deposit and withdraw cash from the cash account.
● Record stocks bought and sold (changing the cash and stock holdings in the portfolio)
● Record new daily stock information (like the above), beyond that in the historic data

we give you. If you want to be fancy, you can pull this information from your favorite
Internet stock quoting service (see the quoting script, quote.pl, which get the current
value the service, or quotehist.pl, which gets historical data from the service).

● Integrate stock information from the historical data (which is read-only) and from the
new daily stock information to provide a unified view of stock information. That is,
the view of information about a stock should be the union of the views in the historic
data and in the new stock data that user or script enters.

● Examine the portfolio. The portfolio display should show the total amount of cash,
and the holdings of each of the stocks. It should probably also show the information
in the following item:

● Get the estimated present market value of the portfolio, the individual stock holdings,
and the cash account. We will consider the present market value of a stock to be
based on the last close price we have available.

EECS 339 Project B Dinda

 Page 4 of 8

● Get statistics of the portfolio. Based on historic data, we should be presented with
information about the volatility and correlation of the stocks in the portfolio. Note that
these can take some time to compute, so they should be cached.

● Get the historic prices of the individual stock holdings. It should be possible to click
on any holding and get a table and plot of its past performance.

● Get the future price predictions for individual stock holdings. It should be possible to
click on any holding and get a plot of its likely future performance, based on past
performance.

● Run at least one automated trading strategy on a stock, using historical information, to
see how well it performs.

Note that for the last four items, we provide some example code that can be used in the
handout directory. We would like to encourage you to go beyond just using it blindly,
though. The example code we provide operates over the historical data, while your
code should operate over the union of the historical data and your new stock data. If you
design the tables you use to represent the new stock data carefully, it will be
straightforward to do this union.

Most of the code we give you is designed to run directly from the command-line, not
from a CGI script. However, it can be integrated into a CGI program. Also,
plot_symbol.pl is an example of using the core functionality (accessing historical stock
market data) in a CGI program. Note that it depends on the stock_data_access.pm file –
both files need to be copied to your web directory for it to work.

We now describe what we expect as far last four items in a bit more detail.

Portfolio Statistics
It should be possible to display the following information about the portfolio, all of which
should be computed from the data in the database.

● The coefficient of variation and the Beta of each stock.
● The covariance/correlation matrix of the stocks in the portfolio. Note that this sounds

harder than it is – we give you example code for how to compute this information
from the historical data. However, computing this information can be slow,
especially for large intervals of time, so you may want to consider some way of
caching the correlation statistics.

It should be possible to compute these values over any interval of time. We expect you to
do the computation within the database, not just by pulling the data down to the front-
end. You may want to look at the scripts get_info.pl and get_covars.pl, which we
provide in the handout directory. Recall that you need to integrate both historic data and
current data.

EECS 339 Project B Dinda

 Page 5 of 8

Historic Prices of Stocks
From the display of all the stocks in the portfolio, it should be possible to click on any
stock to see a new page that shows a graph of the stock's past value (the close price) for
some interval of time. It should be possible to set the interval (typical intervals for daily
information include a week, a month, a quarter, a year, and five years). Recall again that
you need to integrate both historic and current stock price data.

Future Prices of Stocks
This is the most open-ended part of the project. You should create (or use) a tool that
predicts the future value (close price) of a stock from its past. In the portfolio view, the
user can then click on a stock and see a graph showing your predictions, for some user-
selectable interval of time into the future.

It's important to note that this is a databases course, not a course on machine learning or
statistics. You're not being graded on your predictor. We want you to have the
experience of integrating this kind of tool with a database. If you think a bit about
prediction in addition, that's nice, but not essential. We've included a few fun kinds of
predictors in the handout directory, of varying difficulty to use. These include:
● Markov models (markov_symbol.pl to get you started)
● Genetic programming (genetic_symbol.pl – this is probably the toughest to use in the

context of this project since it's set up to evolve a predictor1, but it doesn't actually use
the predictor it evolves to make predictions. To use this you’d need to write an
interpreter for the mini-language the predictor is implemented in.)

● Time series models (time_series_symbol.pl and time_series_symbol_project.pl – the
latter is probably the easiest to integrate.)

The current scripts access only the historic data. You will need to adjust them to use both
the historic data and the new data you collect.

Automated Trading Strategy
An automated trading strategy is simply a program that decides on each day whether to
buy, sell, or hold a stock, or collection of stocks, based on all the stock information
available up to that point. Your system should permit the user to select one stock from
his portfolio, one or more trading strategies, and some window of time, and see the
results.

We provide code for the “Shannon Ratchet” trading strategy. The Shannon Ratchet
balances the amount of one stock and the amount of cash. It's a very simple strategy – it
just keeps exactly the same market value in the stock and the cash (50/50), buying and
selling stock to do so. Claude Shannon proposed this strategy (to an MIT student
group!) in response to the “efficient market hypothesis”, which argues that since markets
already incorporate all information into prices, the prices must be efficient and thus the

1A predictor here means the source code of a function, in a Lisp/Scheme-like language, that computes the

next value of a stock based on the values seen over window of previous days.

EECS 339 Project B Dinda

 Page 6 of 8

price of a stock is really an (unpredictable geometric) random walk2 The Ratchet
converts volatility in the random walk into gains, confusingly making unpredicabilty into
a virtue.

Trading strategies are fun to play around with, especially when you have lots of data to
evaluate them on. We encourage you to be adventurous here.

Project Steps
The preceding part of this document is essentially an informal specification given by me,
your client. In the course of the project, you will formalize it and implement it. You
will document this work on a project web site, and ultimately link to your project.

Here are the steps to the project, and what is expected to be made available on the web
site for each one.

1. Application design. In this phase, you will “storyboard” and “flowchart” the
application, drawing out all the pages and showing how one page switches to the
next based on user input. It should be possible to understand the user interface
you aim to achieve from the storyboard/flowchart. You should also note the
transactions and queries needed for each page or page switch. The document itself
can be simple. It's OK to develop the document by hand and then scan it in.
HANDIN: storyboard and flowchart available on project web site.

2. Entity-relationship design. In this phase, you will create an ER diagram for the
data model that is needed to support your application design. Note that you
already have some of the ER diagram in the format of the historical data we
provide.
HANDIN: ER diagram available from project web site.

3. Relational design. In this phase, you will convert your ER diagram to the
relational model.
HANDIN: Relational design document on web page.

4. SQL DDL. Here you will write the SQL “create” table/sequence/view/etc code
that implements your relational design, including its constraints and relationships
as inherited from the ER design.
HANDIN: Code available from web page.

5. SQL DML and DQL (transactions and queries). In this phase you will write the
SQL for the transactions and queries needed to support your application design.
Naturally, some of these will templates because you expect them to be generated
from your application logic.
HANDIN: Code available from web page.

6. Application: You will now write the actual application. We want you to use Perl
and Oracle. Note that the historical data in the cs339 account is “read-only”.
Only the historical data is available there, and everyone can access the same.

2It's considerably more subtle than this. Please read A Random Walk Down Wall Street and Fortune's

Formula, if you'd like to learn a bit more.

EECS 339 Project B Dinda

 Page 7 of 8

We advise you to start with the basic portfolio functionality, which should be
straightforward. Then add functionality to introduce new quotes, either from the
user or automatically from a stock quote server. Next, add the capabilities for
historical graphs. Finally, continue on to the predictions and the automated
trading strategy.

Notice that while we encourage you to have fun with the predictions and
automated trading strategy parts of the project, we also provide “canned”
examples of both which you can use – you just have to figure out how to interface
with them.

HANDIN: The code itself and a running instance on the web site.

Where to go for help
The goal of this project is to learn how design and build a database-based web application
starting from a rather informal specification. We don’t want you to get stuck on the
details of Perl, CGI, or HTML, so please use the following resources:

 Google discussion group. Don’t forget to help others with problems that you’ve
already overcome.

 Office hours. Make sure to use the office hours made available by the instructor
and the TA.

 Handouts: the high-level introduction to the Perl programming language will
come in handy.

 Videos. There are videos available on the course web site that will bring you up
to speed on Linux, if needed.

 Web content. You will find many examples of Perl CGI and DBI programming
on the web.

 Other portfolio systems. These things are easier to explain by example. We
strongly suggest that you look at Google Finance, Yahoo Finance, E*Trade, and
other sites to get a sense of a portfolio manager looks like. Note that very few
sites provide the prediction or automated trading strategy features to end-users,
though. These are usually tools targeted at institutional investors, large scale
traders, or developed internally at trading firms.

Hand-in
To hand in the project, you will do the following:

 Update your project web page with all of the hand-in materials listed above
 Provide a link to your running application
 Tar up your whole project page, code, etc. Everything.
 On or before the project deadline, email the instructor and the TAs with a copy of

the tar file, a URL for your project page, and the account/password to access your
running application.

EECS 339 Project B Dinda

 Page 8 of 8

Extra Credit (30% Maximum)
You can gain extra credit by trying the following extensions. If you are interested in
doing extra credit, talk to us first, so that we can determine the precise credit that might
be available for what you propose to do.

Additional Portfolio and Stock Statistics: There is a wide range of statistics available
to summarize a portfolio or a stock, in addition to the ones required. Read about some
and then implement them within your application. You should use the database to
compute the summary statistics whenever possible.

Additional Predictors and Trading Strategies: You only need to implement one of
each, but if you implement more, we will give you extra credit.

Automated Stock Updates: Learn how to interface with a stock quoting service (we
give example code for this) and develop code that continuously records new historic data
for all stocks in all portfolios. Notice that this tool would be a daemon that runs
independently of web accesses and inserts new data into your database.

Best Possible Return With Hindsight: The idea here is to determine for a given stock,
for some interval of time in the past, what the maximum amount of money that any
trading strategy could have made, if allowed to trade once per day.

Holdings-based Operations: In the main project, you only need to consider the price of
an individual stock within the historical plot, prediction plot, and trading strategy
components of the project. Even in the portfolio statistics part of the project, only
covariance is computed across the stocks the user holds. In a more powerful portfolio
system, it would be possible to do historical plots, prediction plots, and trading strategies
over groups of stocks, for example the group in the portfolio. Furthermore, instead of
considering the price of a stock, you would consider the market value of the portfolio.
For example, if you own, say, 100 shares of AAPL and 200 shares of GOOG, you would
plot the market value of the portfolio as 100*close_price_of_APPL(t) +
200*close_price_of_GOOG(t) as a function of time (t). Note that both the price of a
stock and the amount of shares you own vary over time. You can gain extra credit by
making it possible to plot portfolio market value, predict portfolio market value, and/or
do automated trading on portfolio market value.

