
CS 395, Section 22 Introduction to Computer Systems Dinda, Fall 2001

 Page 1 of 2

Homework 4
25% of homework grade, 2.5% of overall grade

out: 11/28 in class; in: 12/7 at the beginning of class

Virtual Memory and I/O

1. Suppose we have a machine with a 2^48 (48 bit) virtual address space, a maximum of

2^36 bytes of physical memory, and a page size of 2^14 bytes. Assume a single-level
page table to begin.

a. Draw a virtual address, splitting it into the virtual page number and the virtual
page offset. Note how many bits are used for each.

b. Draw a plausible page table entry, showing the length in bits of each of the
fields. How many of your entries fit on a page?

c. Assume virtual addresses from 0x100000000000 to 0x1000ffffffff and from
0x700010000000 to 0x9fffffffffff are in use. How much space does your page
table occupy?

d. Describe a plausible 2-level page table approach for this system and repeat a-c
assuming that approach.

2. We talked in class about mapping the same shared library into each application’s
address space, letting us get by with having only one copy of the library’s code in
memory. However, real libraries also have data. For example, the gethostbyname()
function returns a pointer to a hostent structure statically allocated in the library:

struct hostent thehostentry;

struct hostent *gethostbyname(const char *name) {
...write thehostentry...
return &thehostentry;

}

We might expect that all applications using this shared library would share the same
copy of thehostentry with disastrous results, but, in fact, each application seems to
have its own thehostentry, just as if the library were statically linked to the
application. Describe how such semantics could be implemented using virtual
memory mechanisms. You may want to re-read the section on copy-on-write in your
textbook.

3. Make sure that you are comfortable with problems such as 10.11 – 10.13 in your text.
There is nothing to hand in as the answers are in the back of the book.

4. Your book talks about mark-and-sweep garbage collection. A completely different
approach is known as stop-and-copy garbage collection. In this approach, the heap
memory is divided in half into the “working memory” and the “free memory”. The

CS 395, Section 22 Introduction to Computer Systems Dinda, Fall 2001

 Page 2 of 2

program always uses just the working memory. When the program runs out of
memory, it stops and garbage collection is invoked. As the garbage collector
traverses the graph of nodes reachable from the root nodes, it copies each reachable
node to the free memory, placing the nodes sequentially in the free memory in the
order in which they are traversed. By means of mechanisms that are not important
here, each node is copied only once, and all the pointers between the reachable nodes
are updated appropriately. Then, the garbage collector simply starts treating the free
memory as the working memory and vice versa, essentially throwing away all the
unreachable nodes en masse. One often finds that stop-and-copy greatly increases
cache hit rates, especially for pointer-based data structures such as lists, trees, and
graphs. Why?

5. Today, gigabit Ethernet adaptors cost $150 and offer 300 us round-trip latency and 60
MB/s bandwidth between machines on the same switch using TCP/IP. Because of
this, it has been proposed that we use the physical memory on other machines as a
backing store instead of using local disk. This looks particularly interesting if pages
are small and very few are transferred at a time and less interesting if pages are large
or a considerable number are transferred at a time. Explain why.

6. Traceroute (/usr/sbin/traceroute) lets you trace the route which your packets take from
source to destination. Read about traceroute and find the routes to several of your
favorite sites. Ping lets you measure the round-trip latency to a host. Use ping to
determine the latencies to several sites. Dig (/usr/bin/dig) and whois (/usr/bin/whois)
let you find detailed information about DNS names. Tcpdump (only
/usr/local/sbin/tcpdump will work for you on the tlab machines) will show you all the
packets your machine sees. Try them out. There is nothing to hand in here.

