
September 26, 2001 
Introductions 

CS 395 Introduction to computer systems 
WF 10:30-12 
Peter Dinda, office hours: M2-4 or appt 
Dong Lu, office hours: F3-5 or appt 

Description 
Three goals 

Learn about hierarchy of abstractions that make 
up a computer system so that you can flesh them 
in later 

This course is “what everyone should know” 
Demystify the machine and the tools 

Go deep 
Bring you up to speed in doing systems 
programming on Unix 

Elements 
Soup to Nuts – Physics to Distributed Systems 
Strong emphasis on 

Data representations (integer and floating point) 
The machine model (instruction set architecture) 

And understanding compiler-generated 
code for it 

Memory systems and memory management 
Linking 
Exceptions 
Unix systems programming 

Less emphasis on 
Physics to logic 
Networking programming 
Concurrency 
Distributed systems 

Elements 
C programming on Linux 
De-compiling code and understanding assembly 
(but it’s not an assembly language programming 
course) 
Understanding a bit of how the machine works 
(the P3), but it’s not a computer org class 

Learn by doing 
Labs that will make you hack 
Homeworks that will also make you hack 

Where it fits into curriculum 
Intended as a sophomore class 
May become a regular class 



May become a required class 
After 211 or 311, before OS, Networking, 
Compilers, etc. 
A lot is riding on what you think of this 

IT’S A BETA TEST 
It’s been taught several times at CMU 

But on a semester system 
This is the first time in a quarter system 
We’re going to cover networking programming, 
concurrency, and performance 
optimization/measurement only at a high level 
and leave the rest for OS, Networking, 
Compilers, and later courses 

New textbook due out in 2002 (you’ll get a free 
copy) 

It’s a quite unique textbook.   
Although we won’t go through all of it, you might  
find yourself reading the parts we skip. 

Although we may screw things up, your grade will 
not be effected by the beta nature of the course 
Feedback is helpful to us and to the authors 
We’re going to evaluate the course for use here 
permanently and we’re going to evaluate the book 
to help with the next edition. 

Mechanics 
Course web site: 
http://www.cs.nwu.edu/~pdinda/ics-f01 
Communication 

Email list will be started 
IRC server for chat 
Newgroup 
All info will be on the web site for this 

Textbook and C book 
Have Dong hand out Textbooks at end of class – 
if can’t make it, get copies from Olga 
Textbook is also available from the web page 
Limited copies – if you’re not in yet, please don’t 
take a paper copy 

Machine access 
You will need TLAB(125)  windows and linux 
accounts and a cardkey for 125.  See Pam for the 
accounts and Olga for the cardkey 
TLAB-10 through 15 will be running linux 
dedicated, so you can do remote login 



It’s OK to work on your own machines or with 
cygwin or whatever, but everything will be graded 
in the TLAB environment.  It’s your responsibility 
to be sure that it runs there. 

Grading 
10 % Homeworks 
50 % Labs 
20 % midterm 
20 % final 
Note that Homeworks may be more in-depth than 
the amount of grade assigned to them.  Please 
consider this when you are allocating time.  I 
wanted completeness 
Note that the book has lots of problems with the 
answers in the back. 

Syllabus, TLAB, Physics, Datalab handouts 
Syllabus may change a bit, especially toward the 
end 

Survey next time to see if we need to do an 
“introduction to programming on unix” 

But the web page has lots of material on this 
already 

The Great Realities according to your textbook 
Information is bits in context 

A program must interpret the bits for it to make 
sense 
Understanding these interpretations is important 
to writing good programs and debugging. 
Ints are not Integers and floats are not reals 

•Is x2 ≥ 0? 
–Float’s:  Yes! 
–Int’s: 
» 65535 * 65535 --> -131071 (On most 
machines)
» 65535L * 65535 --> 4292836225 (On Alpha) 
•Is (x + y) + z  =  x + (y + z)? 
–Unsigned & Signed Int’s:  Yes! 
–Float’s:  
» (1e10 + -1e10) + 3.14 --> 3.14
» 1e10 + (-1e10 + 3.14) --> 0.0

It’s important to understand these unusual
properties

Programs are translated by other programs into 
different forms 

Fx program – parallel fortran 
Compiled to regular fortran (77) 



F77 translated to C  
Gcc C preprocessor(cpp)  handles macros 
Gcc compilers (cc1) converts to assembly 
language (.s) 
Assembler (as) converts to object code (.o) 
Linker (ld) combines many object codes and 
libraries to create an executable 

It pays to understand how compilation systems 
work 

Linking problems 
Security holes 
Performance optimization 
Compiler bugs 
It pays to be able to look at the assembly output 
and understand what the compiler has done. 

Let’s you try different approaches for 
performance critical code 

Processors read and interpret instructions stored 
in memory 

Once you understand what your program is doing 
at the machine level, you can understand what 
parts of the system architecture and 
microarchitecture  it is using and when and you 
can use this to spot bottlenecks and understand 
it’s performance 
Your book gives an example of how “hello world” 
exercises the system architecture of a typical 
Pentium iii machine. 

Caches matter 
Caches match big and slow kinds of memory with 
small and fast kinds of memory 
You don’t have to know about caches to write a 
correct program 
You probably need to think about caches when 
you write a FAST correct program 

Storage forms a hierarchy 
On-chip registers to local disk 
Think of each layer as a cache on the layer below 
Your book talks about the network (and 
distributed systems) as the lowest layer on the 
hierarchy.  This is debatable. 

The Operating System Manages the hardware 
Protection and abstraction 



Processes, Threads, Virtual memory, I/O 
abstraction 
The kernel, interrupts, and System calls 

Systems communicate with each other using 
Networks 

TCP/IP is a virtual network 
Berkeley Sockets as the standard way of 
programming network applications 

Another View: The Abstraction Hierarchy 
As computer scientists, we like to raise the level of 
abstraction – Ideally, we create interfaces with 
simple syntax, semantics, and timing on top of 
complex things 
For the most part, we can just happily use our 
highest level abstractions when we program 
Sometimes, though, we need to strip away an 
abstraction to understand what is happening 
beneath 

Debugging 
Performance 
Security (buffer overflow exploits) 
Research to develop better abstractions 

Abstractions are sort of like layers on an onion, 
but not quite.  Sometimes and abstraction can 
depend on several abstractions below it.  And 
sometimes on abstractions more than one layer 
below it. 
Show hardware graph 
Show software graph 
Indicate where we will be going 
Physics up to ISA and micro and system in one day 
Then a week on data representations – making 
using of logic 
Then a couple of weeks on the ISA –assembler and 
the compiler 
Then a couple of weeks on memory 
A week on exceptions 
A week on aspect of the unix virtual machine 
Two+ weeks on other elements 

Concurrency in programs 
Network programming 



…  
What does this mean for a web server 

Limits 
Let’s say it’s written in C 
Single threaded, no concurrency, one request at a 
time 
And it uses sockets 

Compiler toolchain path 
Gcc httpd.c –o httpd 
As before, except now we start in C 
Dynamically link with sockets and C shared 
libraries 

Execution 
Type “httpd” into shell 
Shell calls fork, which triggers an exception 
OS figures out that the exception means “fork 
OS creates new process with its own virtual 
environment – it’s a clone of the shell process 
process calls “exec”, which triggers an exception, 
which the OS catches.  OS cleans up the virtual 
enviroment, loads the first page of httpd 
OS figures out that you want to run “exec” 
Loads image (really first page) into memory and 
transfers control to its entry point 
Entry point function loads shared libraries.  They 
are probably already in memory, so the OS just 
maps them into httpd’s address space 
Entry point calls main (stack discipline) 
Main runs of the end of the page, triggering an 
exception.  OS sees it’s a missing page and loads 
it from the httpd file 
… 
httpd creates, binds, and listens and accepts on a 
socket.  Each call is an exception that the OS has 
to figure out. 
Now the process “blocks” because there is no 
client.  By blocks, we mean the OS does not run it. 
A network packet comes in and causes an 
exception 
The OS looks at it, passes it to network stack. 
Network stack notices it’s the beginning of a TCP 
three-way handshake and send back appropriate 



response (OS+device drivers hide the details of 
using the NIC) 
Third packet arrives, network stack establishes 
TCP connection, passes it to OS 
OS notices connection matches httpd’s 
outstanding accept request, unblocks httpd 
Eventually, httpd runs again, accept finishes, now 
it has a file descriptor for the open connection 
At any point, extra packets arrive, get handled by 
network stack and added to a buffer of received 
data for the connection 
Httpd reads on fd, causes exception, OS notices it 
has data available, passes data back to httpd, 
copying it up to app 
Httpd returns from read, processes request, sends 
write, causes exception, etc. 
 Notice that data is pushed across memory bus, i/o 
bus, and NIC. 

 Make sure to get handouts and book 
September 28 

Survey handout 
How to represent a bit 

A bit as a range of voltage levels 
“1” threshold 
“0” threshold 

Transistor device 
MOSFET – CMOS technology 
Show symbol, and complementary device 

Transistor down 
Metal, Oxide, Semiconductor -> Conductor, 
insulator, semiconductor 
Semiconductor 

Silicon  ~ Sand 
Grow giant single crystals of pure silicon and cut 
them up to form the base on which to work 
Resistive behavior easily changed by addition of 
impurities “doping” 

Also changes its quantum behavior 
Electric fields affect resistence 

Interesting stuff happens when we put differently 
doped materials, and metal and oxide together 

This is how transistors are made 
Electric fields can affect resistence 



MOSFETs are easy transistors to think about 
Photolithography 

Transistors (and chips) are built up by layers, like 
a stack of pancakes. 
Think of each layer as a photograph 
Each layer generally “deposits” a single kind of 
material 
The negative (or mask) determines where it is 
deposited 
Picture of how a MOSFET is built up in layers is 
in your handout 
Small – about the size of a fingernail 
But 10s to hundreds on each slab 
Then they get cut apart, each is tested, if it passes, 
it gets mounted in a carrier and sold 
One reason why they are small is defects 
The other reason is that smaller=faster 

Speed of light – one ns is about a foot 
100 GHz -> 3 mm 
Plus, electricity moves considerably slower than 
light 

Currently, photolithography can put about 100 
million transistors on a single chip 

P4 ~ 42 million transistors 
Regular structures can be much denser 

Moore’s Law 
Resolution of the mask keeps cranking up 
Doubling of the number of transistors ever year 
It’s been happening since the ‘60s 
First microprocessor 4004 had 2300 transistors 
Likely to continue for the next 10 years. 

Transistor 
Transfer characteristic 
Nonlinear operation “off, linear, on” 
Think of it as an electrically controlled switch for 
our purposes 

Regular -> push the switch closed 
Complementary -> pull the switch closed 

Now we have bits = voltage, and we have 
electrically controlled switches 
Combinational Logic 

Truth tables 
~A, A&B, A|B, ~(A&B),  A xor B A nxor B 

not, and, or (either or both), not-and, xor 
different, nxor – same 

Implementing these using transistors 



Invertor 
Nand 

More complex logic can be built from these 
primitives 

All you really need is nand 
A bit adder 

Xor as almost an add 
But two bits in need at least two bits out, right?  
What about carry? 
Carry = a and b 
This is a half-adder 
A full adder takes three bits in (x,y,carryin) and 
produces two bits out (sum, carry) 

Half-add a and b giving s1 + c1 
Half-add s1 and cin giving sum and c2 
Carry is c1 or c2 

Then we can arrange full-adders to make adders 
for arbitrary length data 

Logic can get quite complex.  We sometimes talk 
about a “cone of logic” that drives some output 
Note that there is no memory 

Memory 
Asynchronous 

DRAM cell 
Leakage + refresh 

SRAM cell 
Synchronous 

These combinational circuits work 
asynchronously.  

What if output 1 arrives before output 2?  
The notion of a clock 

All outputs must be ready at certain intervals 
The clock edge places them into a synchronous 
memory 
Latch, flip flop (won’t talk about these) 
REGISTER (usually not visible to the 
programmer) holds the STATE of the machine 

Putting it together 
Inputs + state => combinational logic cone => 
outputs + next state 
Clock edge releases the hounds, inputs arrive 
Slowest path through the logic cone determines 
the speed of the chip 

Microprocessor 



A chip like this designed to interpret some of the  
inputs as a simple language 
We’ll talk more about microarch in a week or so 

 
Bytes 

8 bit quantity 
Darn near universal 
Sufficient to capture alphabet of western languages 

Machine Word Size 
Integer number of bytes 
Ordinary size of integer data on the machine 

What it’s good at working on 
32 bit word size on IA32 
64 bit on itanium, alpha, sparc64 

Binary, Hexadecimal representation 
0000 0001 0011 0100 1000 1001 1111 0011 

0x013489f3 
1101 1110 1010 1101 1011 1110 1110 1111 

0xdeadbeef 
Can have multiples and fractions of words 

Always integer number of bytes 
C data types and how they map into bytes 

October 3 
Mechanics 

Info on the web page 
Reading: 2.4-2.5 
Homework out at end of class 
Course newsgroups cs.cs395-ics.discussion, 
cs.cs395-ics.announce 
IRC Server 

Dualsword, password is CSAPP 
Who would like an intro to tools evening session? 

Maybe Thursday at 6pm in classroom 
Finish up logic 

Bit-wise Logic is a “Boolean Algebra” 
Integers are a ring 
Boolean algebras and rings have similar, but not 
identical properties – the book will tell you more 
We’ve talked about Not, And, Or, nand, not, nor, 
xor, nxor 

Conversions 
DeMorgan’s Laws – convert between ands and 
ors 



Xor from or, not and and 
Ultimately, you only need a nand 

Logic on a machine operates in parallel across the 
bits of a word 
Logic in C 

Int a, b;  // say ints are words are 32 bits 
When you say A&B, you get a 32 parallel ands 
Generalize to bit vectors, both < 32 bits and >32 
bits 
Bit vectors = sets 

Or = union 
And = intersection 
Not = completment 
Xor = symmetric difference – what isn’t in both 
sets 

& | ~ are different from && || and ! 
Treat the whole word as a giant bit 
All zero = false 
Any one = true 
latter return 0 or 1 

Shift operators << >> 
Arithmetic versus logical 

Xor swaps 
X^=y; 
Y^=x’ 

X^=y; Words as the unit of operation of machine 
Determine size of a c type:  sizeof(type) 
Usually an int is the size of the word 

Memory as an array of bytes ultimately 
But also an array of machine words 
Addresses are byte addresses 
Endianness 

Little endian – LSB has lowest address 
Big endian – MSB has lowest address 
Intel is little-endian 

Showbytes code in your text to print a region of 
memory in hex 
All C data types end up being a sequence of bytes 
in memory 

Interpretation of those bytes is up to the processor 
and to the language, compiler, and program 
Int short char float double pointers 
Pointers 

Machine + OS contrive to create virtual address 
space for programs 



0..2^n-1-1 bytes 
compiler makes pointers n bits (n usually 
multiple of 8) 

ALL POINTERS ARE THE SAME 
Often, sizeof(int)=sizeof(char*), but not always, 
common mistake 

C strings: 
Char = byte 
Sequence of bytes ending with a null (0) byte 

Programs in memory 
Sequence of bytes that the processor can 
interpret as a sequence of instructons 

Math and logic operations 
Memory operations (combined with ML 
in intel) 
Branches 

Intel encoding is variable length instructions 
RISC machines usually have fixed length 
instructions 

Exceptions 
Integers 

Lowercase -> bits, uppercase->quantity 
Let’s use 3 bit examples to make things a little 
easier 
Unsigned versus signed 

Unsigned B = -b_n-1*2^n-1 + sum(0..n-
2,b_I*2^I) 
Unsigned goes from –2^n-1 to 2^n-1-1 => -4 to 3 
Signed goes from 0..2^n-1 => 0..7 
Signed A = sum(0..n-1, a_I*2^I) 
MSB indicates sign1=>negative 
But notice wacky representation 
0=000, -1=111 –2=110 –3=101 –4=100 
What is the complement? 

~x+1 
This signed number convention is called 2’s 
complement arithmetic 
All operations are identical, from logic pov, to 
unsigned math 

No extra logic 
Only interpretation 

Other possibility 
One’s complement 

Complement = ~x 
Has two zeros 

Sign+magnitude 



How big are the ints/shorts/etc on my machine… 
Compile-time constants given to you by the 
compiler 
K&R – look for limits.h 

How do I get specific size items 
Make #ifdef typedefs that adjust according to the 
architecture 
On many platforms, use #include <stdint.h> and 
then int32_t, etc 

Casting 
Explicit Casts 
From smaller unsigned to larger unsigned 

Zero-fill extra bytes 
Same number 

From larger to smaller unsigned 
Like zeroing out upper bytes 
Potentially different number 

From smaller to larger signed 
SIGN EXTEND 
Same number(!) 

From larger to smaller signed 
Like zeroing out upper bytes 
Likely to be a different number! 
Even sign may change! 

From unsigned to signed 
BIT REPRESENTATION STAYS THE SAME 
Postive numbers and zero OK 
Small Negative number becomes large positive 
number 
Large negative number becomes small positive 
number 

IMPLICIT CASTS 
Signed arith unsigned => cast to unsigned! 
Including for comparisons <, > ,etc. 

-1 > 0 => no 
-1 > 0U => yes! 

Call to function with signed or unsigned with 
args that are opposite => implicit cast 
Importants of gcc –Wall 

Casting order 
Short x = -1; 
Unsigned int x= (unsigned)(int)x; 
Unsigned int x = (unsigned)(unsigned short)x; 

When to use unsigned 
Don’t use it just because you think the number is 
going to be positive 

Loop index from I=0, I<n;I++ 



Someone will change the loop body later on 
Modular math 
Extended precision (arbitrary length fixed point 
math codes) 
When you really really need an extra bit of 
precision 

Integer Math 
Integer math on computers, like logic, has a 
theoretical foundation 

The theory of groups: modular arithmetic-
>Abelian group 
Your textbook has more to say on this 

Again, 3 bit examples 
Unsigned addition 

Draw it just like grade school math 
U +v => (u+v) modulo 2^n 

U+v is output if u+v < 2^n 
U+v –2^n if >= 

Real sum => range 0 to 2^n+1 => 0 to 2^n 
The carry out is thrown away 

It’s thrown into a condition bit, which we’ll talk 
about later, but from the C POV, it’s thrown 
away 

U+v > 2^n is known as integer overflow 
How do we check for overflow in C? 

S=u+v;  is s < u ? 
Or, equivalently, is s<v ? 

Signed addition with 2’s complement numbers 
Exactly the same operation as with unsigned 
numbers, but the interpretation of the inputs and 
the results are now different 
Overflows are now more complicated 
S= u+v 
Sum must be the range –2^w-1 to 2^w-1-1 else 
overflow 
If >2^w-1-1 then wrapps aroundto –2^w-1 
If <-2^w-1 then wraps around to +2^w-1-1 
How to check for overflow 

U,v<0 and s>0 => overflow 
U,v>=0 and s<0 => overflow 
 

Subtraction 
Addition with 2’s complement: u-v = u+ ~v+1 

October 5 
Mechanics 



Should have been receiving mail messages from me 
(ICS: …) 
Reading 3, 3.1-3.5, 5.7 
IRC moved to grayling 
Lab session…  next Tuesday, 6-7:30. 

Finish up integer math 
Comparisons 

u>v ? 
one approach: u-v and check if positive 
all the overflow cases need to be sanity checked 
Split into three tests 

U<0, v>=0 ? => false 
u>=0, v<0 ? => true 
else (u-v)>0 (will not overflow) 

At assembly level can use the carry bit 
Multiplication 

Unsigned 
Need 2n bits as output 
Range is 0 to (2^n-1)^2 

Signed 
Range is -2^(n-1)*(2^(n-1)-1) to( -2^(n-1))^2 

Unsigned mult in C 
Top n bits of product are thrown away! 
Really u*v modulo 2^n 

Signed mult in C 
Same deal!  Same operation! 
Note that sign can once again flip! 
Think of this as cast to unsigned, do mult, then 
cast back to signed 

When we do multiplications, we are assuming that 
the values will actually fit within the output 

Ie, for 32 bit machines, that the input values 
really only use 16 bits  

Casting games 
Say you want to multiply two shorts and assign to 
an int.   
If you multiply first and then cast, you’ll get only 
16 bits 
So cast first, then multiply 

At the machine level, the whole product is usually 
generated, often put into two registers 
Thus, in assembly code, it is easy to deal with it 
Arbitrary precision math packages 

Using shifts to do unsigned multiplies by powers of 
2 

X<<a => x*2^a 



Compilers will make this optimization for you in 
most cases 
If you use shifts on signed numbers, results can 
be surprising 

3 bit notion:  011 << 1 => 110 
3 turns into –2 

Using shifts to do unsigned divides by powers of 2 
X>>a => floor(x/2^a)  
Also a compiler optimization 
Note that floor(x/2^a) is wrong direction of round 
for negative x 

Instead want ceil(x/2^a) 
Compute as floor((x+2^a-1)/2^a) 
X+(1<<a)-1)>>k 
 

Division 
X / y  = floor(x/y) – dividend if x, y > 0 
X%y  = remainder if x,y >0 
How this is done is beyond topic of the course. 

Floating Point Numbers 
IEEE 754 standard, mid ‘80s 

Used to many different standards 
There still are, but almost all processors do IEEE 
by default 
Developed by numerical analysts, hard to make 
really fast 
Has kind of stymied moving research results in 
number representations and computer math into 
new processors 

Log-based math 
Interval math 
… 

Basic idea 
Fractional binary numbers 
Shift so that everything is 1.x and keep track of 
the shift amount 

What does this mean… 
You can only represent numbers that look like 
(int)x/2^n – ie, a subset of the rational numbers 
Repeating bit patterns 

1/3 
1/10 

Representation 
Sign bit (1 = negative) s 
Exponent E (exp 



)Significand (mantissa) M (mant) 
Normal range is 1.0 to less than 2.0 

 
Float = sign bit 8 bit exp, 23 frac bits = 32 

“single precision” 
Double = sign, 11 exp, 52 frac = 64 

“double precision” 
Normalized Number Representational 

Exp != 0 or 111111111 
exp is biased… 

Actual exponent E = exp – bias 
Single => bias is 127, exp=1..254, E=-
126 to 127 
Double => bias = 1023, exp=1..2046, 
E=-1022 to 1023 
Bias is generally 2^(m-1)-1 where m is 
number of exp bits 

Mantissa has implied leading 1 
Only the bits after the binary point are 
stored (free bit!) 
Min=1.0 (0000) 
Max=2.0-epsilon (1111111) 

Example 
399.0 

399 = 0x18f hex 
0001 1000 1111 binary 
1.10001111 x 2^8 

float. 
M=1.10001111, mant = 
10001111 (+23-8 bits of zero) 
E=8, exp=E+ bias = 8+127 = 
135 = 10000111 
Sign = 0 

Denormalized Number representation 
Exp=0000000 
E = -bias + 1  (-127 +1 = -126) 
Signicand assumed to be 0.xxxxxxxx (x=bits in 
word) 
Very very small numbers – closer to zero than the 
closest normalized numbers 

Precision decreases as get smaller 
Gradual underflow 

If significand is all 0 => “true zero” (note +/-) 
Special Representations 

Exp=1111111111 
Frac=0000000 => INF 

+/- infinity 



if an operation overflows, the 
number becomes infinite 
1.0/0.0 => +inf 
1.0/-0.0 => -inf 

frac!=00000 => NAN 
sqrt(-1) = NAN 
inf-inf = NAN 
… 

Number line 
NAN separate 
-inf … - normalized… -denorm –0 +0 +denorm 
+norms +inf 

Special properties of the encoding 
FP Zero == Integer 0 (all bits zero) 
Unsigned compare almost works with fp numbers 

Operations 
Rounding 

FPU has much higher internal precision than the 
number representaitions support 
FPU first computed “exact” result, then reduces 
it to the desired precision.   

Overflow if exp too large 
Rounding to make fit into fractional part 

Rounding 
Zero => lob off the extra bits in the frac 
Round down (towards –inf) 

Result is no greater than actual 
result 

Round up (towards +inf) 
Result is no smaller than actual 
result 

Round to nearest even (default) 
Tiebreaker -> round so that least 
sig digit is even 
Statistically unbiased 

Generally the default rounding mode is 
all you have unless you dive down to 
assembly 

Multiplication is pretty easy 
S =s1 xor s2 
M = m1 * m2 
E = e1*e2 
Normaize 

Shift right so that M < 2, incrementing E 
each time 
E out of range => overflow 
Round M to fit precision 

Or give denormed result 



BUT 
NOT ASSOCIATIVE DUE TO 
OVERFLOW, ROUNDING 
NOT DISTRIBUTIVE 

A*(B+C) != A*B +A*C 
NOT MONTONIC IN PRESENCE OF 
INF AND NAN 

Addition 
Align mantissa 
Shift mantissa with smaller exp right until  same 
exp 
Do sign mag add of mantissas giving output 
mantissa, sign.  Exponent is exp of larger input 
Normalize and round like in multiplication 
BUT 

NOT ASSOCIATIVE DUE TO 
OVERFLOW + ROUNDING 
CAN GET INFINITIES + NANS 
INF AND NANS DON’T HAVE 
ADDITIVE INVERSES 
NOT MONOTONIC IN PRESENSCE 
OF INF AND NAN 

 
FP in C 

Float, double 
Casts between ints, floats and foubles CHANGES 
BITS 

FP type to int type  => get truncated fractional 
part.  Meaningless if out of range, but usually get 
saturating math 
Int type->fp type => perfect if enough bits in 
matissa. Otherwise will round according to 
rounding mode. 

Questions 
Int x; float f; double d; 

X==(int)(float)x ?  NO 
X==(int)(double)x ? YES 
F==(float(double) f ?  YES 
D==(float)d NO 
F==--(-f) ? YES 
2/3 == 2/3.0 ? NO 
d < 0.0 => ((2*d) < 0.0) ? YES 
d > f => -f < -d YES 
d*d >= 0.0 YES 
(d+f)-d == f NO 

Intel IA32 FP 
8087(paired with 8086 or 8088) was first CPU to 
implement IEEE 



Merged into one chip since 486. 
Hardware 

Separate FPU from integer unit  
Add, multiply, divide 
Sometimes others (CORDIC for trig 
Extended precision “long double” => 80 bits 

Can sometimes be a source of trouble 
because the registers are 80 bits and data 
is converted on read/write 

FPU is a demented  stack machine – programmed 
very very differently from the integer part of the 
processor 

We will talk a bit more about this after we have 
done integer assembly 

October 10 
Mechanics 

Handout HW2 
Reading still 3, 3.1-3.5, 5.7, but add 3.6 

Floating point rehash 
Representation 

Sign bit (1 = negative) s 
Exponent E (exp 
)Significand (mantissa) M (mant) 

Normal range is 1.0 to less than 2.0 
 
Float = sign bit 8 bit exp, 23 frac bits = 32 

“single precision” 
Double = sign, 11 exp, 52 frac = 64 

“double precision” 
Normalized Number Representational 

Exp != 0 or 111111111 
exp is biased… 

Actual exponent E = exp – bias 
Single => bias is 127, exp=1..254, E=-
126 to 127 
Double => bias = 1023, exp=1..2046, 
E=-1022 to 1023 
Bias is generally 2^(m-1)-1 where m is 
number of exp bits 

Mantissa has implied leading 1 
Only the bits after the binary point are 
stored (free bit!) 
Min=1.0 (0000) 
Max=2.0-epsilon (1111111) 

Example 
399.0 

399 = 0x18f hex 



0001 1000 1111 binary 
1.10001111 x 2^8 

float. 
M=1.10001111, mant = 
10001111 (+23-8 bits of zero) 
E=8, exp=E+ bias = 8+127 = 
135 = 10000111 
Sign = 0 

Denormalized Number representation 
Exp=0000000 
E = -bias + 1  (-127 +1 = -126) 
Signicand assumed to be 0.xxxxxxxx (x=bits in 
word) 
Very very small numbers – closer to zero than the 
closest normalized numbers 

Precision decreases as get smaller 
Gradual underflow 

If significand is all 0 => “true zero” (note +/-) 
Special Representations 

Exp=1111111111 
Frac=0000000 => INF 

+/- infinity 
if an operation overflows, the 
number becomes infinite 
1.0/0.0 => +inf 
1.0/-0.0 => -inf 

frac!=00000 => NAN 
sqrt(-1) = NAN 
inf-inf = NAN 
… 

Number line 
NAN separate 
-inf … - normalized… -denorm –0 +0 +denorm 
+norms +inf 

Special properties of the encoding 
FP Zero == Integer 0 (all bits zero) 
Unsigned compare almost works with fp numbers 

Operations 
Rounding 

FPU has much higher internal precision than the 
number representaitions support 
FPU first computed “exact” result, then reduces 
it to the desired precision.   

Overflow if exp too large 
Rounding to make fit into fractional part 

Rounding 
Zero => lob off the extra bits in the frac 
Round down (towards –inf) 



Result is no greater than actual 
result 

Round up (towards +inf) 
Result is no smaller than actual 
result 

Round to nearest even (default) 
Tiebreaker -> round so that least 
sig digit is even 
Statistically unbiased 

Generally the default rounding mode is 
all you have unless you dive down to 
assembly 

Multiplication is pretty easy 
S =s1 xor s2 
M = m1 * m2 
E = e1*e2 
Normaize 

Shift right so that M < 2, incrementing E 
each time 
E out of range => overflow 
Round M to fit precision 

Or give denormed result 
BUT 

NOT ASSOCIATIVE DUE TO 
OVERFLOW, ROUNDING 
NOT DISTRIBUTIVE 

A*(B+C) != A*B +A*C 
NOT MONTONIC IN PRESENCE OF 
INF AND NAN 

Addition 
Align mantissa 
Shift mantissa with smaller exp right until  same 
exp 
Do sign mag add of mantissas giving output 
mantissa, sign.  Exponent is exp of larger input 
Normalize and round like in multiplication 
BUT 

NOT ASSOCIATIVE DUE TO 
OVERFLOW + ROUNDING 
CAN GET INFINITIES + NANS 
INF AND NANS DON’T HAVE 
ADDITIVE INVERSES 
NOT MONOTONIC IN PRESENSCE 
OF INF AND NAN 

 
FP in C 

Float, double 



Casts between ints, floats and foubles CHANGES 
BITS 

FP type to int type  => get truncated fractional 
part.  Meaningless if out of range, but usually get 
saturating math 
Int type->fp type => perfect if enough bits in 
matissa. Otherwise will round according to 
rounding mode. 

Questions 
Int x; float f; double d; 

X==(int)(float)x ?  NO 
X==(int)(double)x ? YES 
F==(float(double) f ?  YES 
D==(float)d NO 
F==--(-f) ? YES 
2/3 == 2/3.0 ? NO 
d < 0.0 => ((2*d) < 0.0) ? YES 
d > f => -f < -d YES 
d*d >= 0.0 YES 
(d+f)-d == f NO 

Intel IA32 FP 
8087(paired with 8086 or 8088) was first CPU to 
implement IEEE 
Merged into one chip since 486. 
Hardware 

Separate FPU from integer unit  
Add, multiply, divide 
Sometimes others (CORDIC for trig 
Extended precision “long double” => 80 bits 

Can sometimes be a source of trouble 
because the registers are 80 bits and data 
is converted on read/write 

FPU is a demented  stack machine – programmed 
very very differently from the integer part of the 
processor 

We will talk a bit more about this after we have 
done integer assembly 

Machine-level programming 
The model: Instruction set architecture 

Hardware software intferface 
Model versus reality ISA means hardware can 
change underneath 
Language + programmer visible state + I/O = ISA 
Defines a primitive language – how bits are to be 
interpreted as instructions that do input, output, 
and change the state of the machine 

IA32 is a “CISC” ISA 



Idea: raise level of abstraction closer to 
the language to make programmers more 
productive 

Other archs are “RISC” ISAs 
Idea: lower level of abstraction to make 
hardware faster and compiler has easier 
time of it anyway.  

Some new archs are basically just the logic cone! 
Reconfigurable machines 
Custom-computing machines 
FPGAs 

RISC is a very nice idea.  Was thought that CISC 
can’t be made fast, but intel (and IBM! With 370) 
managed to do it. 

Lots of money 
Silicon is 1st order effect 
Not “insanely” CISC – Lisp machine or 
VAX 

State of the machine (programmer visible) 
Memory in all its forms 

Language: instructions 
Instructions 

Just another interpretation of bits 
In most ISAs, instructions = words 
In Intel (IA32), instructions can be 1 to 
several bytes long 

Data flow… Take 1-2 items from memory, apply 
some logical or arithmetic operation to them, and 
then write the result back to memory 
Control flow… decide which instruction will be 
executed next 

Implicit control flow -> the next 
instruction in memory 
Also the fastest 

State: Memory 
Registers 

Fastest form of memory – programmer 
visible because compilers are very good 
at scheduling them 
Scratchpad memory 

Main memory 
Most of the rest of the memory hierarchy 
That there is a main memory is a part of 
the ISA.  How it is structured is not. 
Programmer can ignore how it works 
and not worry about correctness, but 
knowing how it works on a specific 



implementation can make it possible for 
her to optimize performance 

I/O: special memory locations that other devices 
than CPU can read and write 

We’ll talk about this more later when we look at 
I/O in Unix 

IA32 
Dates back to 8-bit archs in the mid 1970s (~8K 
transistors) 
Then 16 bit in late 70s, early 80s (first PCs) (30-
150K transistors) 
32 bit with the 386 in 1985 (300K transistors). 
P4 (42M transistors) 
Essentially, IA32 = 386 
What do the transistors do 

Essentially optimize your code as it is running 
Scheduling 
Parallelism, out of order execution, speculative 
execution 
LOTS OF CACHE MEMORY 

Compare IA64 = Itanium (10 M transistors) 
IA64 very different 
VLIW machine 
Program it not with individual instruction but 
with packets that the compiler/user guarantees 
can be done in parallel 
Lots of debate whether this is a disaster for intel 
or not 
Not clear whether compilers can do this and not 
clear if hardware will scale 
Floating point perf if 1st implmenetations great 
Int really terrible 
Ultra-slow IA32 compatibility mode 

Switch to overheads at this point class 05 ~slide 7 
The model 

CPU / memory, addresses, data, instructions 
CPU 

EIP => program counter, adx of next inst 
Registers 
Condition codes – “extra outputs” from 
instructions – ie add’s carry out 

Generally use CCs to decide 
branche 

Memory 
Byte addressable array 
Per-thread stack abstraction 

Used to support procedure calls 



 
October 12-October 24 were slides 
October 25, 2001 

Mechanics 
HW2 in 
HW3 will be available later 
Lab session: Monday 8-9:30 in the lab 
Midterm: Tuesday, 11/6, 6-7:30, CS classroom – 
makeups before or after, will cover up to but not 
including linking 
Reading for next time: 6.5-6.7 

The memory hierarchy 
Register, L1, L2 Cache, main memory, disk 
Different technologies 

registers – latches or similar 
Cache -> typically SRAM 
Main memory -> DRAM 

Register 
Flip-flop 
Works at clock rate 
Usually arranged in to register file 
Typically can read 2 values and write another 
simultaneously.  Often can do more than that. 
Typically, a few hundred bytes 
Block size: word size – 4 or 8 bytes 
Paces processor performance 2x every year 

Cache: SRAM cell 
Six transistors (as per handout) 
Bit constantly circulates – auto-refreshing 
Mutual feedback keeps value from degrading 
Fast: ~5ns 
Expensive:  $100/MB 
Typically 32K to a few MB 
Block size: 32 bytes or so 
Performance paces processors, but remains $$  

Main Memory: DRAM cell 
One transistor, one cap 
Needs to be refreshed externally 
Charge quickly leaks away 
Slow: 60ns 
Cheap $1/MB 
Maybe 512 MB or a GB 
Block size: 8 K or so 



Density grows 4X per year, but performance 
remains flat 

Disk 
Non-volatile 
Ultra-slow: 10ms or so 
Ultra-cheap: $0.02/MB 
100 GB common 
Mechanical 
Density grows even quicker, but performance very 
flat 

Processor<->memory gap 
Reg<->cache BS~=8 bytes 
Cache<->memory BS ~=32 bytes 
Mem<->disk BS~=8 KB (virtual memory) 
Generally cheaper per byte to access a lot of 
memory than a little.   

A memory chip as an array of bits 
SRAM (typicall) 

N x m sram: 
A linear array of  n m bit words (blocks) 
Array drives sense amplifiers at bottom that give 
bits and/or allow us to write 
Address decode selects appropriate row 
Read and/or write 

DRAM 
N x m dram: 
N blocks, arranged in a square (sqrt(n)^2) 
Bottom is a sqrt(N)*m bit row buffer and a 
multiplexor 
Each block contains m bits 
Address given in two parts 
Supply row address, do RAS, copies row to buffer 

This is slow 
Supply column address, do CAS, m bits in that 
column are supplied 

This is fast 
Fast access: RAS, multiple CAS 
Writing: RAS, CAS+write (multiple) and the copy 
entire row back into the array. 

SIMM/DIMM 
Linear array of DRAMS, each m bits wide 

8 DRAMs x 8 bits each => 64 bits wide 



Parity “ECC”, SECDED and higher level error 
correcting codes on memory systems 

Disk 
Ferromagnetic coatings 

Think of cassette tape 
Domains – minimagnets that can be made to point 
in one direction or another 
Areal Density – bits/area 

Areal density has become phenomenal and 
continues to grow faster than in any other memory 
technology 
Platters, cylinder, head, sector 
Arm, HSAs, and heads – flight! 
Low end disks: 5400 RPM, typical: 7200 rpm 
High end: 15000 RPM 
Typically variable number of sectors per track 
Sector markers 
Standards for treating the disk as a linear array of 
logical disk blocks or sectors 

EIDE / ATA 
SCSI 

Access a sector at a time 
Select appropriate head (fast) 
Kick the arm into motion (SLOW) 
Wait for it to settle, then read sector marker 
Repeat until on the right track (SLOW) 

SEEK TIME 
Now wait until the sector comes around (slow) 

ROTATIONAL LATENCY 
Read bits and send to controller 
Controller writes them into memory 

TRANSFER TIME 
The System’s Buses 

CPU 
Reg file, ALU 
Bus Interface 

I/O Bridge 
Main memory 
I/O Bus 
Disk controller 
Disk 

CPU/Memory 



Movl A, %eax 
Generate address 
Put address on bus  
Memory responds with data 
Bus interface puts data in register 

Movl %eax, A 
Generate address 
Put address on bus 
Put data on the bus 

Memory/Disk 
Initiation from CPU -> bus->io bridge/io 
bus/controller 
Controller writes memory 
Controller produces interrupt 

Locality 
Temporal  
Spatial 
Consider instruction fetch 

Temp – happens one after the other 
Spatial – typically in order 

Consider sum of 1d array 
Temp: loop iteration 
Spatial: sequential 

Consider sum of a 2d array 
Order of the loops matters 
Columns in inner loop -> better spatial locality 

Caches exploit locality 
Put a small amount of faster, more expensive 
memory in from of a larger, slower, and cheaper 
memory 
Caches keeps copies of data in the larger memory 
Managed so that cache “usually” has the data that 
we will want next 
Caches are managed in units of cache blocks 

For processor<->main memory, 32 bytes is typical 
L1, L2 caches managed by hardware 
Memory as cache of disk blocks managed by 
software 

Cache hit, cache miss 
Recently used data is  likely to be in the cache -> 
exploit temporal locality 



Cache blocks are big and contain nearby data -> 
exploit spatial locality 
Cache hit rate 
Average access time 

Hitrate*speed of cache + missrate*speed of 
memory + overhead 

Next time… 
Types of caches and how to write code that that 
makes them behave well 

October 31, 2001 
Mechanics 

HW3 out 
Problem 3 bug: 
Do for direct mapped, fullyassoc, and 4-way set 
associative  

HW1 solutions on web 
Bug in solutions for problem 4 in floating point 
Gave a cross-the-board point boost 

HW2 solutions on the web on Friday to allow for 
late handinds 
Bomblab in tonight 

Snapshot of mail spool file tonight at midnight for 
first grading 
If late, please send mail to that effect and then 
send mail again when you are done and want to 
be graded 

Bufbomblab out 
Reading: chapter 7 
Midterm: Tuesday, 6-7:30, classroom, one 8.5x11 
sheet OK.  Look at homeworks  

The system architecture 
Disk 

Ferromagnetic coatings 
Think of cassette tape 
Domains – minimagnets that can be made to point 
in one direction or another 

Want to make domain as small as possible, but 
still distinguishable from agacent domains 

Reading using induction – coil+head+differences 
Areal Density – bits/area 



Areal density has become phenomenal and 
continues to grow faster than in any other memory 
technology 
Platters, cylinder, head, sector 
Arm, HSAs, and heads – flight! 
Low end disks: 5400 RPM, typical: 7200 rpm 
High end: 15000 RPM 
Typically variable number of sectors per track 
Sector markers 
Standards for treating the disk as a linear array of 
logical disk blocks or sectors 

EIDE / ATA 
Pretty simple, grew out of PC MFM disks 
Really rightly coupled to storage, and 
particularly hard disks 
Cheap 
Slower disks 
Two devices plus controller 
Runs on wire 

SCSI 
Complex and powerful 
General purpose – scanners, etc. 
Fastest disks and hardware 
Runs on wire and on fiber 
Six devices plus controller plus subdevices 
(logical units) 

Access a sector at a time 
Select appropriate head (fast) 
Kick the arm into motion (SLOW) 
Wait for it to settle, then read sector marker 
Repeat until on the right track (SLOW) 

SEEK TIME 
~10 ms 

Now wait until the sector comes around (slow) 
ROTATIONAL LATENCY 
7200 RPM,  
 

Read bits and send to controller 
Controller writes them into memory 

TRANSFER TIME  
Tseek+trot+ttransfer 

Disk in the tlab machines 
Lab machines: IBM Deskstar 45 GXP (DTLA-
307045) 
EIDE/ATA 
11 gbits/in^2 



3 platters 
6 heads 
7200 rpm => 120/s => 8.3 ms for one revolution 
27,724 cylinders => 166,344 tracks 
512 byte sector => 88 million sectors 
Variable densisty encoding 
avg #sectors per track =>  530 sectors per track 
avg bytes/sec off disk = 530*512 / 8ms = 33 MB/s 

max is about 56 MB/s 
max from cache is about 100 MB/s (rarely 
achieved) 

t_seek= 8.5 ms  (15 ms from first to last 
cylinder,1.2 track to track)  
t_rot = 8.3/2 = > 4.2 ms 
t_xfer = 8ms/530 = 15 us  
time to read a sector (512 bytes): 

t_seek+t_rot+t_xfer 
8.5+4.2+0.015 = 12.7 ms 
~40 KB/s 

time to read the average track (530*512 = 271K) 
8.5+0+8.3 = 16.8 ms 
16 MB/s 

time to read the average cylinder (530*512*6 = 
1.6 MB) 

8.5+0+6*8.3 = 58.3 ms 
28 MB/s 

time to read 10 ajacent cylinders 
(530*512*6*10=160 MB) 

8.5 +0+9*(1.2+6*8.3) = 468 ms 
~33 MB/s 

RAID 
Basic idea:  spread data across the disks so that 
sequential sectors (or larger blocks in, say, a file) 
spread to different disks 
Then, a large request gets spread out to all the 
disks, which work in parallel on it, increasing the 
bandwidth to the data 
Speedup is rarely linear 
Striping 
Higher levels of RAID add redundancy using 
error correcting codes (erasure codes) 

Code words also striped across the disk 
If a disk fails, the raid controller can still 
reconstruct the data from the other disks 



When you plug in a new disk, the raid controller 
reconstructs the data that was on the failed disk 
rebuilding your redundancy 
Hot Plug 

Lab machines: IBM Deskstar 45 GXP (DTLA-
307045) 
11 gbits/in^2 
3 platters 
6 heads 
7200 rpm => 120/s => 8.3 ms for one revolution 
27,724 cylinders => 166,344 tracks 
512 byte sector => 88 million sectors 
avg #sectors per track =>  530 sectors per track 
avg bytes/sec off disk = 530*512 / 8ms = 33 MB/s 

Locality and caches 
Temporal 

If we accessed it now, we’re likely to access it 
again in the near future 
So, caches prefer data that we’ve accessed 
recently 

Spatial 
If we accessed it now, we’re likely to access things 
near it in the memory map in the near future 
So, caches prefer data that’s near data we’ve 
accessed before 

Caches usually fetch big chunks around the 
addresses that we ask for 
Consider instruction fetch 

Spatial – typically in order  
Temporal - loops 

Consider sum of 1d array 
Temp: loop iteration, access to sum var 
Spatial: sequential 

Consider sum of a 2d array 
Order of the loops matters 
Columns in inner loop -> better spatial locality 

Caches for main memory (others similar!) 
Put a small amount of faster, more expensive 
SRAM in from of a larger, slower, and cheaper 
DRAM 
An access is a memory address read or write 
The memory address is used to find a word in the 
cache (if it’s there) 



Details are in managing this memory 
General rule is that the management rules are 
derived from looking at lots of memory reference 
traces taken from programs that we want our 
processor to be fast on 

SPEC benchmarks 
Newer ideas:  Make memory references explicit 
ahead of time 

Prefetch instruction 
Pipelined load in DSPs 
Predict next access 
Predict next value! 

High level concerns: 
Caches are managed in units of cache blocks 

For processor<->main memory, 32 bytes is typical 
L1, L2 caches managed by hardware 
Memory as cache of disk blocks managed by 
software 

Cache hit, cache miss 
Cache misses 

Capacity 
Conflict 
Tension between these two kinds of misses\ 

Working set of a program/loop 
Average access time 

Hitrate*speed of cache + missrate*speed of 
memory + overhead 
0.95*10ns + 0.05*60ns = 12.5 ns 
Making the hit rate even a little bit better makes a 
big difference 

Cache management basics 
Replacement policy – who is the victim 

Replace the one that will next be accessed furthest 
in the future 
LRU and its approximations 

Write policy 
Write-through 
Write-invalidate 
Write-back 
Write-allocate 

Instructions or data or unified 
Cache structure 



Linear array of cache lines grouped into sets 
Cache line contains cache block, tag, valid bit 
B=2^b bytes in the block 
Line contains B byte block, t bit tag, and valid  and 
dirty bit 
S=2^s sets in the cache 
E lines per set 
Cache size=B*S*E 
Correspond to partition of the address into t | s | b 

Cache access (read) 
Chop address into t, s and b 
Select set indexed by s bits 
Scan within that set looking for tag t bits 
If match, and is valid, select data item from block 
using b bits plus data item length 
If not match or match and not valid, return fail, 
and now read goes to main memory 

But the read will be for the whole block associated 
with the address 
When read comes back, select oldest line in the set 
and replace it 

If the replaced line is dirty, write it back to 
memory first 

Note that we are really just hashing on the address.  
You can think of this as a hash table with buckets 
or trees 

Trees more typical – log lookup within the set 
In hardware, the tree is n log n size, and usually 
bigger 
Why not use the higher order bits?  Think about 
what a hash needs to do – it needs to randomly 
smear out agencent things 

Direct-mapped caches 
Each set is a single line 
Cheap, less effective. 
Lots of conflict misses  
Common layout for L2 cache, which are big 
Easy to do in hardware 
Note how collisions can happen easily 

Memory copy code, for example 



One way to get around this is to be very cognizant 
of where objects are allocated in memory that are 
likely to be used together in loop nests. 
Essentially, you can manage the cache yourself by 
placing objects carefully and structuring loop nests 
well 

Blocked matrix multiply 
n-way associative caches 

Each set is of size n 
More expensive, more effective 
Fewer conflict misses 
Common for L1 caches, which are small 
Harder to do in hardware 
Easier to resolve collisions 

Fully associative caches 
There is only one set 
Expensive, very effective 
No conflict misses 
Rarely done in hardware 
Commonly done in software 

Disk cache often does this 
Buffer cache for disk in the OS 
Virtual memory in the OS 
Network filesystem caches 
Web caches 

Basic principle behind all caches 
Exploit spatial and temporal locality 
Hash on the address (or key) to select a subset of 
the data in the cache then search within that subset 
for the actual address – or other ways to do this 
Associativity tradeoff between hit rate and time to 
do search. 
Degree of associativity largely determined by 
disparity in performance between the two 
components that cache is impedance matching. 

Memory mountain characterization 
Communication in a parallel or distributed system 
Memory to memory copys tend to dominate so you 
try to eliminate them. 



But some you often can’t – gather of data in 
application space into application buffer for 
handoff to send 
Parallel arrays and strided reference patterns for 
this gather 
Memory mountain characterizes in terms of 
temporal locality by manipulating the working set 
size and spatial locality by manipulating the stride 

Other interesting points 
Processor memory gap means that if you’re going 
to main memory anyway, you have more time to 
compute addresses – can store addresses in clever 
ways 

Inspector / executor 
November 2 

Mechanics 
Buffer lab delayed until next week 
Midterm: T 6-7:30, classroom, one sheet 

Hi-level view of linking 
Combine .o files and .a files from different sources 
to produce an executable 
The loader can then load that executable into 
memory and start it running 
Works at a pretty low level on on symbols 

Symbol = functions and global variables 
Symbol definition: named blob of data with a 
rudimentary type 
Symbol reference: a name with a rudimentary 
type 

Does two pretty simple things (devil is in the 
details) 

Resolve references to external symbols 
Relocate symbols 

Dynamic linking 
Delay part or all of the linking step to compile 
time 
Lets us update pieces of the software without 
relinking 
Lets us keep only one copy of shared software in 
memory (more on this latter in VM) 

Why? 
Separate compilation 



Modularity 
Libraries  
Shared libraries 

Toolchain 
Compiler driver -> cpp -> cc1 -> as -> ld 

As generates a relocatable object file (.o) 
Can be patched to work at any address 
Has external references that must be resolved 

Ld takes multiple relocatable object files and 
libraries (.a files, which basically contain lots of .o 
files) and generates an executable in which all 
references are interna 

Example 
a.c: 

#include <stdio.h>  
int foo(); 
int x=5; 
int main() { 

printf(“%d\n”,foo()); 
} 

b.c 
extern int x; int foo() {… return x; }  

The ELF format for .os 
Slides 
All .os start from zero 
Executable and shared library format is the same – 
different magic numbers and special symbols 

Entry point 
All references are internal and resolved 

Symbol table 
Definitions  

Strong versus weak definitions 
Strong = functions+initialized global variables 
Weak = uninitialized global variables 

a.o: 
Function main, size 50 initial value 0, is in .text at 
offset 30 and is strong 
Global variable x, size4, initial value 5, is in .data 
at offset 55 and is strong 

b.o: 
Function foo, size 30, initial value 0, is in .text at 
offset 3 and is strong 

Declarations (external references) 
a.o 



Function foo, size unknown, initial value 
unknown, … is an external ref 
Function printf, size unknown, initial value 
unknown, is an external reference 

b.o 
Global variable x, size 4, initial value unknown, is 
and external reference 

Symbols in C++ 
Carry namespace and typeid information encoded 
in the name 

Name-mangling 
You write void Packet::Serialize(const int fd) 
const 
Symbol is like 

Serialize__C6Packeti 
Symbol resolution 

Read each .o file’s symbol table into memory.  
Look for multiple definitions 

Multiple definitions for strong symbols are not 
allowed 

If you have them, fail 
Strong symbol definition takes precedence over 
weak symbol definitions 
If you only have weak symbol defs, pick one. 

Note nondterminism? 
What if a had int y; and b and float y 

Now you’ve got one definition for each symbol 
Now look through all the external references and 
match them to your definitions 
Unresolved external references -> fail 
No unresolved -> done 
Now you have a mapping from each symbol name 
to the symbol location (.o file, section, which offset) 

Symbol relocation 
Assembler has to generate code whether it knows 
the ultimate location of the symbol or not 

Jumps and calls 
References to external global variables 

So, whenever it doesn’t know the ultimate location, 
it makes a note of it in.relo.text or .relo.data 

Note indicates where the reference is, in terms of 
the segment and the segment offse., which symbol 
it is using, and how it is using that symbol 

Linker needs to know the addressing mode 



Easy one: absolute  
Location represents the ultimate absolute address 
of the symbol 

Harder one: PC relative 
Location represents the offset from the 
instruction pointer when it is executing this 
instruction. 

When we merge all the .o files, we will have to 
move symbols from their “initial” locations to their 
final locations in the merged ELF file’s sections 

Each section is also assigned a location where it 
will be placed when the program is loaded 
We patch to get to the locations that the symbols 
will have at load time. 

Once the new locations are determined, we need to 
patch all of the references that we noted in the .relo 
segments so that they point (either directly or 
indirectly) to the appropriate things. 

Final fixup 
Write the appropriate entry point into the elf file 

_start  
Loading 

The exec family of OS calls 
Create virtual address space from 0 to 2^n-1 (more 
on this later) 
Split address space into kernel and user space 
Map kernel (more on this later) 
Create a read-only memory segment at “bottom” 
of memory and “copy” ELF’s .init, .text, and 
.rodata into it.  
Create a read-write segment above that and 
“copy” .data and .bss into it.   
Set OS concept of “brk” (end of heap) above 
read/write segment 
Set %esp (top of stack) to top of memory 
The _start 
_start->…->cstartup (RTL)->main 

Libraries 
.a files 
Basically, a convenient concatentation of .o files 
Can change one .o file and then replace it in the .a 
file 



Linker looks inside of .a files in strange ways 
(symbol resolution) 
Load the library 
Scan through the .o files in it to fix external 
references 
Keep scanning until the set of external refs doesn’t 
change any more. 
Then throw out the .o files and keep going 
Library interdependencies 

Dynamic linking 
Basic idea: partially link the executable and have 
the loader fully link it when it is run 
Lets us change modules without recompiling and 
re-linking 
Lets us reuse modules that are already in memory 
Compilation with -fPIC 
Link step (-shared) 

Don’t copy data into executable, just copy enough 
info so that you can do relocation and resolution 
at run-time. 
.interp section 

loader runs the dll loader here 
DLL loader 

Creates a segment between heap and stack for 
each shared object. 
Relocates the shared object to that position 
Relocates references to symbols in those libraries 

PIC 
Make it possible for each process to map the 
library into a different segment location without 
being updated by the dll loader 
Basically, do external refs through a global offset 
table whose position is known 
Lazy update of the table and the functions they 
point to so that calls are basically just one extra 
indirection 

November 7, 2001 
Mechanics 

hw2 back 
exploit lab out 
reading for today: 8,8.1-8.4 
reading for next time: 8.5-8.8 



control flow: order in which instructions are executed 
flow from I1 to I2 to I3 ….  
high level movement of eip (successive 
instructions) 
branches and jumps and call/return cause eip to 
change drastically 

Exceptional control flow 
but eip can also change in response to external and 
internal events not captured by program state 
Events 

Network packet arrives 
Disk read finishes 
user hit ctrl-c 
division by zero 
timer 

Exceptional control flow exist at all levels of 
abstraction 

Application 
Handling program errors 

Langauge:  
C++ or java exceptions: try/catch 
setjmp longjmp 

operating system 
signals 
process context switch 
error returns  

General idea 
process chugging along, get to instruction Icurr 
event happens, next eip is in an exception handler 
exception handler finishes execution 
control passes back to either Icurr or Inext 
depending on type of exception (or it may not 
return at all) 

Exceptions at the operating system level 
Hardware and software 
Hardware defines the types of exceptions that are 
possible.  OS supplies a handler for each type 
Exception table 

maps from the exception number to a pointer to 
the exception handler for that exception 
Processor detects when exception occurs and 
jumps through the table to the exception handler 



When we jump through the table, the machine is 
put into supervisor/kernel mode (as opposed to 
user mode) 

Protection model in i386 is actually way more 
powerful and cooler than what we describe here, 
but the market has seen fit not to use it. 

exception handler runs code to fix the problem or 
otherwise address it, and then “returns”  
Memory map 

Kernel mapped into user space, free space at 
bottom for exception table.  Special hardware 
register points to start of table. 
Now running in supervisor mode, the kernel code 
and data can be accessed. 

Types of exceptions 
Fault 

Synchronous 
examples: 

divide by zero, general protection fault 
page fault 

Abort 
Synchronous 
Typically a hardware error or a serious software 
problem 
Handler does not return 
example: 

parity check 
machine check 
double fault 

Trap 
Intentional exception 
Special INT instruction 
For system calls 
Synchronoous 

Interrupt 
Caused by external event (signal from I/O device) 
A wire going to the processor.  voltage change-
>interrupt asserted 
Asynchronous 
Draw processor/memory/io/controller, interrupt 
controller 
returns to next instruction 
Examples: 

I/O event: network packet, disk read, 
keyboard, serial, TIMER 
Reset button 
CTRL-ALT-DEL 

maskable versus unmaskable 



Process abstraction 
Imagine that we can have as many of these 
address spaces in the system as we want (tell you 
how later in VM) 
Imagine that they are independent 
Imagine that we can select between them pretty 
quickly. 
Can use exceptional flow control to switch 
between them.   

Exception handler can select ANOTHER address 
space and then return control to IT.   

Exception handler must change the whole 
execution context 

Registers, including eip 
Address space 

Code, stack, heap, … 
OS-structures 

open files, environment vars, .. 
This execution context is called a process 

Operating system lets you have many of them 
Each process “thinks” it’s the only program 
running on the system 
private address space 
logical control flow 
to the process, it just looks like certain 
instructions take a really long time to finish.  
Not allowed to touch kernel space, though. 

Has to request that the kernel do things 
through a trap. 
Kernel can then “vet” what the process 
wants it to do. 

Exception handler changing context (and 
switchting to another process is called a 
CONTEXT SWITCH 

Possible point of confusion…  context switch 
versus call to exception handler 
exception handler operates in context of the 
current process, but it is in kernel mode so it can 
touch the kernel stuff 
Call to exception handler is cheap 
Context switch is expensive 

When do context switches happen? 
Timer interrupt handler 

~100 times per second on linux 
Context switch if there is another 
process ready to run and the current 
process’s quantum is done.  quantum 
typically >10ms 



System call 
read from disk slow, so OS initiates the 
read and then context switches to 
another process 

I/O interript handler 
read from disk done.  So OS can now 
switch back to the process that called 
read. 

Scheduler 
Actually, you can think that when the 
handlers are done, they call the 
scheduler.  Scheduler decides whether a 
context switch is now appropriate and 
which process to switch to. 
Scheduling outside scope of class 

Process control in programs 
Error handling for unix systems calls 

negative return value indicates error has 
occurred. 
error code stored in the global variable 
errno, translate to string using sterrror, 
print unsing perror 
Typical schemes 

error => exit 
book uses wrappers for 
the system calls that 
basically just print the 
error string and then exit. 

Translate error code into app 
error code and pass back for 
higher levels to deal with. 
translate error into C++ or java 
exception and pass up the call 
chain 

Processes are arranged as a tree 
Each process has a pid and a ppid 
getpid, getppid 
pstree –a 
ps auxww 
The root of the tree is the init process, 
which the kernel starts after it has 
booted. 

Process state from programmers perspective 
Running or ready to run 
stopped due to signal (suspended) 
terminated 

by signal 
return or exit 



Process progress 
sleep(secs) / usleep(usecs) / pause() 
system calls that context switch away 
from the process 

read/write/lseek/open/close/selec
t… 

Signals 
Process environment 

argc and argv[] and envp[] passed in to 
main 
getenv to get environment variables 
setenv to set environment variables 

only for itself and its children 
Process execution returns a value to its parent 
when it terminates 

via return from main or by exit(rc) call 
Processes are created by cloning parent processes 

The fork() call 
rc=fork(); 

<0 => error 
=0 => am child process 
>0 => pid of child process 

RETURNS TWICE when sucessful 
Child process has a new address space 
that is separate from, but a duplicate of 
the parent. 
Child process executes concurrently with 
the parent process 
Child but shares open files (file 
descriptors) of the parent) 

The parent must explicitly request the child’s 
return code 

waitpid(pid,&status,options) 
normal case – stall until child with pid 
terminates, get return code back in status 
Can set to be non-blocking 
Also, regular wait() call to wait for any 
one 
status encodes the return value from the 
child AND the circumstances of how it 
was terminated.  Macros in book discuss 
how to get each component book 
Zombies: processes that have terminated 
but their parent process hasn’t called 
wait on them yet.  Kernel needs to keep 
the return value around until it can give 
it to a parent. 



A process can run a new program in place of the 
program it currently contains 

exec family of functions 
execve(char *filename, *argv[], char 
*envp[] 

argv=>multilevel array 
argv[argc]=0; 
stack layout on after call 

env strings 
arg strings 
env points [0] is lowest in 
memory 
argv pointers [0] is lowest in 
memory 
envp, argv, argc (high to low 
address) 
stack from from main 

Putting it together -> shell 
normal state – stalled in read waiting for 
user, other processes running 
command typed -> interrupts -> 
keystrokes -> read returns -> fgets 
When complete command line, does 
parse 

example: ls *.c 
Shell expands wildcards 

ls foo.c bar.c 
shell forks 

parent waits on child 
child execs ls with foo.c and 
bar.c and environment 
when ls finishes, parent gets its 
return code. 

shell goes back to reading 
ls *.c &  

same except don’t call wait right 
away 
instead, ask kernel to send you a 
SIGCHILD when any of your 
children die.  Then you just do 
waitpids to find out which one 
More on signals on Friday. 

Aside: virtual machines 
An operating system that handles all exceptions 
in such a way that it appears to its “applications” 
that they are running on the raw hardware.   



The “applications” can then be entire operating 
systems with their applications – or more virtual 
machines. 
Old idea from the ‘70s that’s hot once again 

IBM mainframe VM OS 
Typical: run VM, under VM run MVS 
for batch/transaction processing, also run 
a bunch of interactive CMSes (ie, 
mainframe DOS).  Run development 
VM and its children, run development 
OSes 

Current IBM idea 
run multiple copies of linux on 
mainframe hardware – a whole virtual 
cluster.   
As your traffic grows, you migrate some 
of the virtual linux machines to real 
hardware to make them fast. 

VMWare 
Run linux on windows, run windows on 
linux, … 

November 9, 2001 
Mechanics 

Expect to have midterms back next Wednesday 
Bomblab performance back today – good job 
HW 4 and Malloc lab shifted back (new syllabus 
for info) 
Reading for next time: 10, 10.1-10.6 

Exceptions as underlying mechanism that OS can use 
to create the process abstraction 
Beyond the process abstraction – threads 

We’ll only talk briefly about this here and then a 
little bit more at the tail end of the course when we 
consider Concurrency within an application 
Weak area of the book is that it concentrates on 
threads as concurrency, ignoring other approaches 
that are also commonly used.  We’ll try to touch on 
them all 
Much more on concurrency and its issues in an 
operating system class 

Kernel Threads 
So far: single thread of execution in a process 
Context switch means we go to a completely 
different address space, completely different 



register set, and a completely different kernel 
context (open files) 
Thread context switch – we only change the 
register sets 
Multiple threads of execution in a process => 
multiple stacks 
Have to be careful stacks don’t collide 
The threads communicate through their shared 
address space – this also means that access to 
shared region has to be very carefully controlled 

Hard to get right 
One of the reasons why there are non-thread 
approaches to concurrency 
Two threads, each doing I++; 

I=0 at start 
movl (location of i), %eax; 
incl %eax 
movl %eax, (location of i) 
What is value of I after both execute function? 

Believe it or not, we can also build thread context 
switches entirely at user level 

Signals 
Exceptions pushed up to the application level 
Can be many different signals – it’s an OS 
abstraction 
Intended to look similar to an interrupt 
Process provides signal handler instead of kernel 
When kernel delivers the signal, it calls the 
handler out of the blue – control suddenly jumps 
there. 
Sending a signal 

kill(process id|process group ,signal number) 
Or from from command line using the kill 
command 

What’s a process group? 
All the processes that have the same process 
group number 

getpgid(); 
Processes inherit process group numbers from 
parents 
Processes can change their or other process’s 
pgids 

setpgid(pid,pgid) 



Shell uses this to group processes into jobs 
(especially background jobs) so that it’s easy to 
stop/kill/etc jobs 

What are some signals? 
SIGHUP – user disconnected 
SIGINT – ctrl-c 
SIGILL – illegal instruction 
SIGFPE – floating point exception 
SIGBUS – trying to access memory that doesn’t 
exist 
SIGSEGV – trying to access memory you don’t 
have rights to 
SIGABRT – Abort! 
SIGKILL – kill immediately 
SIGQUIT. SIGTERM, – please quit gracefully 
SIGSTOP , SIGCONT 
SIGCHLD – a child stopped or died 
SIGALRM – user timer went off 
SIGWINCH – window size changed 
SIGPWR – power just died (sent due to a UPS) 
SIGIO – I/O now possible on some file you asked 
me to keep an eye on. 
SIGURG – urgent data on some network 
connection 
SIGUSR1, SIGUSR2 – user signals 

How do we react to signals by default? 
Terminate 
Terminate and dump core 

postmortem debugging 
gdb myprocesss corefile 

Stop until get SIGCONT 
Ignore it 

How do we change how we react? 
signal and sigaction 
oldhandler* =signal(signalnum,our handler*) 

void handler(int num); 
Special handlers 

SIG_IGN 
SIG_DFL 

signal(SIGINT,myctrlchandler) 
signal(SIGPIPE,mypipehandler); 
signal(SIGSEGV,myrepairhandler); 
Can’t do it with all signals – some are 
unmaskable 

SIGKILL will always terminate.  You 
can’t override it. 
SIGSTOP will always stop 

How do we get periodic signals 
alarm(seconds_between_ticks); 
signal(SIGALRM,myalarmhandler); 



Kind of like a timer interrupt, eh? 
Combine SIGALRM, 
setjmp/longjump(later), SIGIO and you 
have the building blocks to implement 
threads at user-level within your 
process! 
Lots of packages that do this 

signal semantics are a bit of a mess (different on 
different unix implementations) 

interaction with system calls 
posix sigaction call 
interaction with threads 

Setjmp/longjmp 
Non-local jumps 
tag where you are in the stack (perhaps one of 
many), and then later can return instantly to that 
place. 

setjmp(jmpbuffer); 
la la la 
longjmp(jmpbuffer); 

Perhaps even a signal handler can do a longjmp 
in response to a signal 

SIGPIPE in web server => cleanup connection, 
longjmp back to accept 
SIGALRM => figure out current location in 
current thread, setjmp that context, then longjmp    
to saved context of another thread 

November 14, 2001 
Mechanics 

reading 
today: 10-10.5 
next time: 10.7-10.8 

exploit lab extra time to Monday 
malloc lab out this Friday 
exams back 

distributions 
props 

disk, simm, processor 
Playing around with the tools 

ps auxww 
pstree –a loop 
strace a process to see system calls 
gdb foo core 
kill3 
The /proc filesystem 



The /dev devices 
Virtual memory 

So far we’ve made a identity mapping from 
addresses our program generates to addresses that 
we send to the memory system 

Physical addressing 
And we assumed that all the data was kept in main 
memory 
We talked a little about multiple address spaces 
and how when we switch from process to process, 
we need to “copy” in the new process’s memory 

Remember that the process thinks that it has 
memory from 0 to 2^n-1 
But EACH process thinks this. 
And what happens if the machine doesn’t really 
have 2^n bytes of memory???? 

How can we be smarter than copying while still 
maintaining protection? 

Address space abstraction is what we want.  The 
idea of copying is just a possible implementation. 

Virtual addressing 
Basic idea: pass addresses generated by program 
through a function or table that maps them to 
actual physical addresses. 
Now our process can have its 0..2^n address 
space but the actual data can be at arbitrary 
memory locations 

But I still don’t have enough memory! 
Translation can fail => you’re trying to access 
parts of your address space that you don’t have 
physical memory for 

Not as much of a problem as you might think – 
remember that the address space of a linux 
process has lots of giant holes in it. 
Can either completely fail when we try to access 
memory in a “hole”, or the operating system can 
allocate memory for us and update the 
translation table. 

Translation can be to memory that is currently on 
disk (CACHING!) 

Translation fails, OS brings memory in from disk 
and places it SOMEWHERE in physical memory, 
updates translation table, and tries again. 
All the issues of caching exist here too 



miss rate, hit rate, average access time 
cache structure (usually fully associative 
because disk is so slow) 
replacement policy, write policy, etc. 

Disk is called “backing store” 
Usually you think of caching as being over a swap 
partion or paging file, but we can also think of a 
regular FILE as being the backing store for pages 
of memory  

But isn’t this really really slow – after all, you’re 
adding a translation to each memory reference 

Page granularity 
Entries are contiguous blocks of memory, not one 
byte 
Page size on Intel: 4K 
Like blocksize in a cache – big benefit if there is 
spatial locality in the references 

Translation table -> page table 
Page Table Base Register 
Page tables are stored in main memory 
But the pages that they are on are marked as 
accessible only by the kernel 

Address is  
virtual page number | page offset 
do virtual page number -> physical page number, 
concat with page offset 
send to memory 

Hardware cache the translations 
Translation lookaside buffer (TLB) 

Generally very small and very associative 
But won’t these page tables themselves be big? 

multi-level page tables (just like multi-level 
arrays) 
Split VP number into VP number for 1st table, 2nd 
table, … 
On some hardware: giant pages 

What’s the path? 
common case 

generate virtual address in program 
mapping is in the TLB and permissions are 
appropriate 
generate physical address 
goto main memory 

uncommon case  
generate address in the program 
mapping is in TLB, but permissions wrong: raise 
protection fault and let OS figure out what to do. 



mapping is not in the TLB 
(on intel)  hardware looks through page tables in 
main memory to find translation, updates TLB 

translation found and permissions OK: 
update  TLB, translate and go 
translatikon found and permissions not 
OK: raise a protection fault 
translation not found: raise a page fault 
page fault  and protection fault handlers 
takes care of situation 

permissions are really bad (there 
are some tricks that are played 
here – copy on write) => send 
process signal 
permissions are only appear to 
be bad (copy on write, mark 
writable, allocate) => update 
memory, PT, and restart 
instruction 
entry is missing => should we 
allocate page?  If so, do it and 
restart.  If not, send process a 
signal. 
entry is invalid => page fault => 
Is the page on disk?  If so, bring 
it back into memory and restart 
instruction 

Note, scheduler gets 
involved here. 

(on some other machines) – if it’s not in TLB, 
simply generate a page fault and let the OS figure 
out what to do (normally just runs through page 
tables and does the above itself) 

But what about multiple programs? 
each process has its own page table. 

Page table is part of the OS context of the process 
Each entry has permissions associated with it 

valid, dirty, read write exec (user), read write 
exec (kernel)   

Only the kernel can change the translation table, 
so the kernel can protect one process from 
another 

And itself from the process! 
What are some useful things to do here 

aid to multiprogramming / protection 
keep processes separate from each other 
keep them from touching the kernel except 
through system calls 



aid to linking and loading 
linker sees simple linear address space model…  
process is always 0..2^n-1 
loader is easy -> make regions of the executable 
file be backing store for their appropriate regions 
in the address space (remember that ELF is 
really basically a memory image).  Then the OS 
will “page-in” the executable as it runs – demand 
paging 

Sharing 
Can map a physical page into MULTIPLE 
processes’ address spaces.   That page is then 
shared between them and can be used for 
communication 
Even read only pages -> map the libc shared 
library file into everyone’s address space 

Malloc 
Memory allocators can treat the heap as being 
physically continguous memory 

November 16, 2001 
Mechanics 

Exams back 
HW3 back 
Reading: 10.9-10.12 
malloc lab out 
exploit lab due Monday – note comments about 
what your readme should contain 

Summarize VM so far… 
OS wants to provide the following abstractions 

Each process has a 0..2^n-1 address space 
Simplifies linking/loading 
Simplifies dynamic memory allocation within the 
program 
Address space may have holes 

Not all addresses have data 
Each process’s address space can be larger than 
the amount of physical memory in the machine 

“extra” data  seamlessly stored  on the disk 
Physical memory is thus a cache over actual 
memory on the disk 

There are multiple processes, each with a separate 
address space 

Processes can not touch each other’s memory 
unless permission is explicitly provided. 

Some parts of the address spaces can be shared 
shared memory for shared libraries, 
communication 



A process’s address space (virtual address space) is 
split up into pages (virtual pages) 

4K pages on the intel 
Each address now consists of a virtual page 
number and an offset within the page 

The machine’s memory (physical address space) is 
also split up into pages (frames or physical pages) 
For each process, the OS maintains a page table, 
which maps from a virtual page number to a 
physical page number 

virtual page number is index into table 
content of table is 

valid bit (ie, in memory?) 
Does that virtual page number currently 
map to any physical page? 
An invalid page may simply be on disk – 
the OS has auxillary structures to figure 
this out. 

permissions (read/write/execute for user and 
kernel mode) 
physical page number (if valid) 

often a disk block if it does not 
The table is itself stored in memory and may be 
pageable. 

OS tells hardware where the page table is via a 
special register (page table base register) accessible 
only in kernel mode 

This means that switching from one table to 
another (ie, on a context switch) is just a register 
load 

each memory reference is translated by the 
hardware through the page table 

If the PT entry is invalid or the permissions are 
not sufficient for the kind of access, the hardware 
raises an exception and the OS becomes involved 

invalid + really on disk?  load and resume 
process.   
invalid+not really on disk+on stack? allocate  
bad permissions? sends the process a signal 

plus other tricks like COW 
The hardware makes this acceptably fast by 
having a cache on translations, a translation 
lookaside buffer (TLB) so that it doesn’t always 
have to go to the page tables. 



Multilevel page tables 
Since virtual address space has lots of “holes” 
having one large table for it can be inefficient 
Instead, create a table of tables.  Or table of tables 
of tables. 
Split virtual page number part of address into 
sections corresponding to each table 

For example, 32 bit address, 4K page => 20 bits of 
virtual page number => 2^20 entry table 
Split into 2 10 bit regions.  => 2^10 entry table, 
each entry is a pointer to another 2^10 entry 
table. 
1st table is indexed by 1st 10 bits of address.  Thus, 
each entry represents 2^22 bytes in the address 
space (2^12 byte page * 2^10 pages) 
if 1st level entry is “blank”, then translation stops. 
Thus we can chop up holes into 1024 page chunks 
and only have one page table entry for each 
chunk 

Virtual memory on Intel + Linux (Slides) 
November 21, 2001 (SLIDES) 

Mechanics 
HW4 delayed until after thanksgiving 
Delay on grading, HW4, etc due to, ironically, a 
security breech this weekend 
ssh compensation attack patch has a kind of stack 
overflow bug itself, machine cracked.  2.5 days to 
clean out from the mess so far. 
Note that reading is all of chapter 10 
Responsible for more sophisticated allocators, 
garbage collection 
Reading for next time: 12-12.4 

SLIDES 
November 28, 2001 

Essentially, this covers the unix systems programming 
in a nutshell handout and the book’s material  
Mechanics 

Exploit labs back 
HW4 out 
Final exam: December 11, 9 am, cs class room 



Reading: Today 12-12.4, next time: 12.5 + unix 
systems programming handout and sockets 
programming handout. 

Revisit mmap 
mapping chunks of files into the address space 

The file abstraction 
A stream of bytes without interpretation 

The namespace for files 
single rooted hierarchy 
maps from a pathname to an inode number 
mount points 
links and symlinks 
filename versus pathname\ 
absolute path versus relative path 

the current diretory 
may be multiple pathnames for a file 

The partition and inode number 
Each file has only one partition+inode number 
Flat 
inode has detailed info about the file 
int stat(pathname,struct stat *s) 
inode properties 

owner, group 
permissions for owner, group, all 

Stdio versus the Unix interface 
File descriptors and what they mean to the OS 

Inode table 
cached inode data from the disk + reference 
counts 

The OS’s open file table 
inode, refcount, position, type of access 

The process’s file descriptor table 
pointers to open file table entires 
On fork, get copy of this table + open file table 
counts are increased. 

The open/read/write/lseek/close interface 
Unix error handling -> return –1 and set errno 
fd = open(pathname, flags) 

O_RDONLY, O_RDWR, O_WRONLY 
fd is a handle to the open file 
implicit position, initially set to zero. 

count = read(fd,buf,len) 



may read fewer than the requested number of 
bytes, returns –1 on error.  returns 0 on end-of-
file 
increments position by the count. 
Blocks until there is data (can change this) 

count = write(fd,buf,len) 
may write fewer than requested number, returns –
1 on errors 
increments position by count 
blocks but can be set to non-blocking 

position=lseek(fd,offset,whence); 
Seeks to a new position offset from current 
position, beginning of file, or end of file. 

close(fd) 
Non-blocking I/O 

open with O_NONBLOCK 
or use ioctl to set to non-blocking 
“blocking” functions now return “EAGAIN”  

Signal-driven I/O 
fcntl(fd,F_SETSIG) 
OS sends you a SIGIO signal whenever there is 
data available on the fd or it can be written 
It’s up to your signal handler to figure out which 
fd caused the signal and why  

Select and poll 
What if you have a bunch of file descriptors and 
you want to read from them as data becomes 
available?  ie, you have multiple I/O things 
happening in arbitrary order and you must handle 
them. 

could do a thread per fd 
could do non-blocking I/O and just keeps scaning 
over the fds. 

int num=select(int maxfd, fd_set *read, fd_set 
*write, fd_set *except, timeval *timeout). 
blocks the process until one or more fds become 
available for read, write, have exceptions, or a 
timeout occurs, or (in some systems) a signal is 
delivered. 
Event-driven programming based on select is 
common 

Beyond files 



Unix attempts to map many things into the 
filesystem model and lets you access them using the 
same read/write/etc interface 

But the abstraction breaks down in different ways 
for different devices 

/proc filesystem 
/proc/processid/mem – the virtual address space of 
the process 
/proc/… various locations in the kernel and device 
drivers, presented in nice ways 

Non-unix filesystems 
mounted on the namespace 
“virtual filesystem” drivers create “virtual inode” 
layer on top of underlying filesystem 
remote filesystems: nfs, afs, alex 

/dev devices 
communication with device drivers 
/dev/hda – your hard drive 
/dev/hda1 – a parition on the hd 
/dev/st0 – the first scsi tape drive 
/dev/dsp – the sound card 

fd=open(“/dev/dsp”,O_WRONLY); 
write(fd,data,len) 
whamo, you’re playing sound. 

ttys (terminals) and pttys (pseudoterminals) 
Your process automatically inherited your open 
ptty when it was forked 
fd 0 -> stdin 
fd 1 -> stdout 
fd 2 -> stderr 

pipes 
anonymous (unnamed) files that support oneway 
communication 

fifos (named pipes) 
named files, mkfifo call, otherwise like pipes 

unix domain sockets 
named meeting points for establishing 
connections between processes using sockets 
interface. 

ioctl – the kitchen sink of device-specific stuff 
fd is /dev/dsp fd 
ioctl(fd,…) might be used to set the the type of 
data, or to adjust the mixer, etc. 

November 30, 2001 



Essentially, this covers the sockets in a nutshell 
handout and the reading in the book 
Mechanics  

Reading: 11-11.4, sockets in a nutshell handout, 
systems programming in a nutshell, concurrency 
handout TBA 

The network stack as another hierarchy of abstractions 
“stack” here means “layered architecture” 
Each layer may also have several components 
Internet protocol stack model and our presentation 

physical – wires, signaling 
copper, optical Ethernet; atm; modem line 
bit encodings 

data link – MAC, LAN stuff (Ethernet) 
Ethernet collision control 
Ethernet switch and hub auto-configuration 
Learning bridges 

network – routing 
IP 

transport – end-to-end communication 
TCP 

application 
HTTP 

Also OSI stack model 
Abstractly, a network is a graph 

nodes are either hosts or “routers” 
Packet switching 

Slice up messages into little chunks.  Stamp their 
destination address on them, and inject them into 
the network 
Each router gets the chunk a little bit closer to its 
destination 

A network (ours and beyond) 
Ethernet network: TLAB, 125, (100 mbit switches) 

NIC in machine 
switch -> full connectivity given permutation 
hub -> only one NIC speaks at a time 

2nd+3rd floors 
Ethernet network: 100 mbit port -> 100 mbit 
switches -> gigabit links to router 
Ethernet network: 10 mbit port -> 10 mbit hub -> 
100 mbit switch -> gigabit 

Networks of networks 



the birl router – ties these networks and the 
outside world together 
Outside connections: 2 gigabit links to campus 
network 
campus network peers with other networks 
NON ETHERNET NETWORKS 

ATM-based 
modems 
DSL 

Point of IP: virtual network on top of these networks of 
networks 

Think of a network as being a node as far as IP 
routing is concerned 
But IP is also end-to-end, so application doesn’t 
have to know the details.  Can just use IP. 

IP is UNRELIABLE DATAGRAMS 
may not arrive 
may not be corrupted 
may not be reordered 
Visible at application layer as the UDP protocol 
(UDP is a thin layer on top of IP) 
No connections 

TCP implements RELIABLE BYTE STREAMS on top of 
IP 

bidirectional 
A byte pushed in one end of a TCP connection will 
eventually emerge at the other end uncorrupted 
and in the order in which it was pushed in. 
Connection oriented 

Application-level protocols such as HTTP, FTP, 
database protocols, etc. typically implemented on top 
of TCP 
Streaming media typically done on UDP 

Programming 
Berkeley socket interface 

windows has it to, although it’s been subsetted and 
then extended so it’s a little different 

Core idea: 
“opening” and “closing” a connection is different 
from a file 
What’s the name?  There are two principles now 

Clients and servers 



Active open 
Passive open 

Associations: 
(client ip, client port, proto, server ip, server port) 
opening means basically to fill in these parameters 
on both client and server side 

Opening is a little inverted: 
create a socket (gives you a file descriptor for a 
socket with proto) 
give it a name (ip + port) 
Connect the other end 
use the fd just like a file 

except no seeking 
reliability 

Client: 
int fd = socket(AF_INET, SOCK_STREAM,…) 
connect(fd, sockaddr *address_of_server, int len); 

Local side is automatically bound to some 
available port and INADDR_ANY 

sockaddr_in 
address family (AF_INET) 
ip address of host (network byte order) 
port in network byte order 

read/write 
close(fd); 

Server 
int fd = socket(AF_INET,SOCK_STREAM,…) 
bind(fd,sockaddr 
*address_on_this_machine,intlen); 
listen(fd,5); 
int fd2 = accept(fd,…) 
read/write fd2   

accept more connections on fd! 
close(fd2) 

December 5, 2001 
Essentially, this covers the reading and the 
concurrency handout (the handout in more detail) 
Mechanics 

Malloclab and HW4 due Friday 
Final: Tuesday, December 11, 9-10:30, covers 
linking to end of class, non-cumulative, one 8.5x11 
paper sheet allowed, calculator recommended 



Reading for next time: 12.6-12.9, handout TBA 
Key reasons for concurrency in programs 

Need to respond to events that arrive in an 
unknown order 

ssh 
Program logically decomposes into tasks that can 
run in parallel 

word processor 
connections to a web server 

Performance: exploiting multiprocessors and 
distributed environments 

Concurrency and communication typically go together 
Communicating tasks 
Two high-level models 

message passing (send/receive) 
messages ordered in the communication channel 
messages generally buffered, but buffers are not 
infinitely large 

shared memory 
synchronization primitives needed to control 
access 

Each has theoretical basis 
Each includes data transfer and synchronization 
Neither lets you avoid critical issues like deadlock 

Concurrency/Communcation and its goals 
Model 

Application consists of tasks that must be 
executed to completion 
Tasks communicate with each other 

Goals 
One task blocking should not make other tasks 
block 
Every task should make progress 
Tasks should be treated fairly (notion of fairness 
depends on application – ie, priorities) 
Concurrency and communication must avoid 
deadlock, livelock, and data corruption/bugs  
Minimize overhead 
Extensibility to multiprocessors and distributed 
environments 

Subtlety of concurrency/communication bugs – the 
software engineering side of choosing a concurrency 
model 



Bugs can now show up under specific timing 
conditions that may be difficult to reproduce 

“Heisenbugs” 
Often painful to debug 

software is deployed, deadlocks… 
No core file, no one at customer site to connect to 
program with gdb and see what’s going on 
Little information about the chain of events that 
what lead to the deadlock (logs, perhaps) 

More synchronization than is “Sufficient” 
(defensive programming) may make the program 
less likely to contain such bugs, but it will also 
probably make it slower…  where is the right 
tradeoff? 
The benefits and costs of using pre-emptive multi-
tasking instead of cooperative multitasking 

pre-emption – less code 
cooperative – exact control over when context 
switches happen 

Concurrency Approaches with application to a web 
server 

Web server socket pseudocode 
Want to accept new connections as they come in 
Want to handle existing connections as they 
become ready for reading/writing 
Will ignore synchronization in this… 

Processes 
Fork-based web server 

1. startup 
2. accept connection 
3. fork new process 

4. child does read/write/close 
close fd in parent 
5. non-blocking waitpids for outstanding 
children 
6. goto 2 
Writing logs – perhaps in parent before step 6 
Or have children do it, but they must lock the file 
- flock 
Or, shared semaphore among all children 

Creation overhead for processes – Process pools 
mechanism for passing fd to a process 

Threads 
OS schedules thread contexts 

thread context = registers + stack 



Thread executes in context of a process, sharing 
address space, open files, other OS-level 

pthread interface 
int pthread_create(pthread_t *tid, pthread_attr_t 
*attributes, void * (*f)(void*), void *arg) 
int pthread_detach(tid) 
int pthread_exit(void *threadret)  

joins all threads if called from main 
int pthread_cancel(tid) 
int pthread_join(tid, void **return) 

Semaphores 
int sem_init(sem_t *sem, int pshared, int val); 
int sem_wait(sem_t*) – (P)  (atomic:  while 
(sem<=0) {}; sem--;   
int sem_post(sem_t*) - V: atomic sem++ 

Web server with threads 
1. startup 
2. accept connection 
3. spawn thread + detach to handle connection 

thread function does read/write/close 
4. goto 2 
Synchronization – log file 

Creation overhead for threads - Thread pools 
Started talking about select-based I/O here.  
Contents in next lecture. 

December 7, 2001 
Mechanics 

HW4 due at exam 
Lab due at midnight tonight, handin as described 
Exam: 12/11, Tuesday, 9am here, sheet of paper, 
calculator 

Today’s goal:  finish up select and signal-driven I/O, 
talk at a high-level about protocols like http, talk at a 
high level about distributed systems 
Cooperative versus pre-emptive approaches to 
concurrency 

cooperative approaches put total control in your 
hands, but require that you implement state 
maintenance, and scheduling.   Also has very low 
overhead. 

Big advantage: when your task is running, it 
executes just like a purely sequential program – 
easier to debug, easy to incorporate other code, 
etc.   
Big disadvantage: you personally have to insure 
liveness – that all tasks make progress. 



pre-emptive approaches tend to make state 
maintenance easier, and take care of scheduling 
for you, but you no longer have as much control.    
Higher overheads 

Big advantage: liveness is taken care of by the 
thread or process scheduler. 
Big disadvantage: synchronization – your task is 
no longer equivalent to a sequential program 

Task state and context switches 
In thread-based or process-based concurrency, 
task state can live in stack and registers.  It is 
automatically saved and restored through the 
process of context switches 

Not completely correct – you can have state 
outside of these in which case you need to manage 
it yourself 

In cooperative schemes like select, it is your 
responsibility to do save/restore of state.   

Harder to get right, but potentially much faster 
Applies also to partially pre-emptive, partially 
cooperative approaches like signal-driven I/O. 

Select-based I/O: an example of cooperative 
multitasking 

The connection list: file descriptors, current state 
(how much read, how much written, what phase of 
the protocol, etc) 
Have OS wait on multiple events 
setup 
put acceptfd on read list 
create fd lists for read, write, exception 
call select 
scan output fd lists for active fds 

if accept, do accept and put new fd in read list 
if fd, do read/write/close as necessary 

This is the same as we discussed in I/O 
No preemption! 
However,  must explicitly maintain  the state of 
each fd from select call to select call 
What if something blocks or takes a long time?  Uh 
Oh.  Programmer’s responsibility to see that this 
doesn’t happen. 



Signal-driven I/O: an interesting in-between case – 
preemption and cooperation. 

Have OS send a signal to you whenever an fd is 
readable/writable 
setup 
install signal handler for sigio 
fcntl(acceptfd,F_SETFL,O_NONBLOCK); 
fnctl(acceptfd,F_SETSIG,0); 
goto sleep 
signal handler wakes up, sees what fd is active 
if acceptfd, do accept, add connectionfd to list, do 
fcntls on it, return 

if other, do I/O,  possibly close, return 
Signal handler is sequential, so can just access log-
file directly 

Note that main line of program CAN get pre-
empted and thus there should be careful 
synchronization between it and the signal handler 
Note that the handler has to maintain the state of 
each of its fds so that when it is called again it 
knows where to pick up from 
What if signal handler blocks or takes a long 
time?  Uh oh.  It’s the programer’s responsibility 
to see that this doesn’t happen. 

HTTP protocol 
Text-based 
Request/response (Like RPC, but with only a few 
methods, GET, PUT, etc) 
Request 

GET filename HTTP/version 
Attributes 
empty line 
GET / HTTP/1.0 

Response 
HTTP/version return_code text_status 
Attributes 
Content-Length: length of following data in bytes 
Content-Type: MIME type of content 
HTTP/1.1 200 OK 
Date: Fri, 07 Dec 2001 15:39:18 GMT 
Server: Apache/1.3.12 (Unix) (Red Hat/Linux) 
Last-Modified: date 



Content-Length: 12543 
Content-Type: text/html 
empty line 
html document 

Client and server like the echo server in the book 
CGI is basically just running a program to 
generate the response 
Book has example of an iterative web server with 
CGI 

Distributed and parallel systems (most of this will be 
discussion of the handout materials) 

Why? 
Resource requirements 
Reliability 
Performance 

Algorithms 
Distributed algorithms must work in the face of 
errors, failed connections, etc. 

Consensus algorithm example (voting)  I have a 
database that’s replicated across many sites.   
The databases are loosely consitent.   Write an 
algorithm so that if I can communicate with any 
m of the n databases, I can reconstruct the actual 
value of a record. 
Given a distributed database, make sure that all 
updates to a record are perceived by all users 
within a fixed amount of time 

DNS 
Parallel algorithms try to go to a new level of 
performance.   

Sorting takes O(nlogn) on a single machine.  How 
much faster can it be on a parallel machine with 
infinite processors 
Work complexity – the number of operations 
performed in total 
Depth complexity – the length of the longest 
dependent chain of operations.   
Sorting 

Sequential: O(nlogn) work (depth 
irrelevant) 
Parallel: O(nlogn) work, O(logn) depth – 
what this means is that given an infinite 
number of processors, you complete as 
sort in O(logn) time while not doing any 
more work than the sequential version 



For lots of tasks, depth complexity is much 
smaller than work complexity, so there is 
tremendous potential for speedup. 

Processes and communication (sockets or message 
passing) are the assembly language of higher 
layers – very primitive 
Unfortunately, abstractions have not raised much 
beyond that, at least from the perspective of the 
typical developer.  Lots of good research results, 
few products. 
Higher-level communication abstractions 

Message Passing 
Collective Communication 
Remote Procedure Call (RPC) and friends 
Disributed Shared Memory (DSM) 

Languages – mostly from parallel computing, not 
that much work has been done on languages for 
distributed computing. 

automatic parallelization and vectorization 
Explicitly parallel languages 

array-oriented,  
collection-oriented 

Interface definition languages (IDLs) 
Consensus and Consistency 

Consensus problem occurs at all levels of a system 
Data shared in some way among multiple tasks 
Each task has a view of the data 
How to make these views consistent with each 
other? 

Consistency models 
Observe the updates to the shared data that some 
other task is making.  What is the order in which 
they are seen 
Sequential consistency 

Seen in the order they are issued. 
Corresponds to SOME interleaved 
execution of the tasks 
Very difficult and costly to achieve in 
practice 

Release consistency 
Total order between releases (or 
barriers) 
No ordering guaranteed for updates 
happening between two barriers 

Even more “relaxed” forms of consistency. 
Virtual Synchrony 



Hope the class has been enjoyable.  Don’t forget to do 
the CTECs and please give me any feedback you’d like.  
Recall that we want to determine whether to adopt this 
class for sophomores. 
 


