
CS 213 Introduction to Computer Systems

 Page 1 of 2

Homework 3
25% of homework grade, 2.5% of overall grade

out: 10/30; in: 11/8 at the beginning of class

Memory and Cache

1. Reorder the fields in this structure so that the structure will (a) consume the most

space and (b) consume the least space on an IA32 machine on Linux.

struct foo {
 char a[3];
 short b;
 int c;
 char d;
 float e[2];
 short f;
}

2. The IA32 architecture includes the scaled index addressing mode, which is useful for

accessing arrays, especially in loops. The instruction

movl (%ecx, %ebx, 4), %eax

loads the word starting at address %ecx+4*%ebx, Mem[Reg[%ecx]+4*Reg[%ebx]]
in the notation of your textbook. Notice how the parentheses denote one level of
indirection. Some architectures include an indexed addressing mode that is doubly
indirect, meaning that you compute the address, then you fetch a word, then use the
word as an address to fetch the final value. An example instruction, in IA32 GAS
style, might look something like

movl ((%ecx, %ebx, 4)), %eax

which would mean that we would fetch the word
Mem[Mem[Reg[%ecx]+4*Reg[%ebx]]].

Give an example (in C) of a loop that could make use of such an addressing mode.

3. Consider a processor which uses 20 bit addresses and can address 2^20=1 M bytes of

memory. Suppose that it has one level of cache. As in Figure 6.25 of your textbook,
the address is split into a t bit tag, an s bit set index, and a b bit block offset. The
cache consists of 2048 bytes, with a block size of 32 bytes. Do the following for a
direct mapped, an 8-way set associative, and a fully associate cache structure:

a. How many cache lines are there?
b. What is b?

CS 213 Introduction to Computer Systems

 Page 2 of 2

c. What is s?
d. What is t?

4. For the cache in problem 3, draw the cache given it is structured as follows. You can

elide replicated components, but annotate your drawing with how many components
there are.

a. Direct-mapped
b. 8-way set associative
c. Fully associative

5. Our company wants to optimize the performance of the following code

void vector_add(int n, int *a, int *b, int *c) {
 int i;
 for (i=0;i<n;i++) {
 c[i]=a[i]+b[i];
 }
}

run on the same processor and cache as described in problem 3. The cache is write-
back, write-allocate, and has an LRU replacement policy. Integers are 32 bits.

a. Suppose the cache is direct mapped. Let n=2048, a=0x40000, b=0x80000,
c=0xc0000. On average, how many times per loop iteration will you load a
cache block from main memory? How many times per loop iteration will you
flush a cache block back to main memory?

b. What is the minimum degree of associativity (i.e., the n in n-way) that the
cache needs to reduce the answers in (a) to 0.375 cache blocks read per
iteration and 0.125 cache blocks written per iteration?

c. While we’re all fired up to buy ultra-cool mega-associative cache hardware
(which comes only in black and includes lots of blinkenlichten), a smart alec
programmer claims that we can get the same effect by having a=0x40000,
b=0x80020, and c=0xc0040. Is he right? Why or why not?

