
CS 213 Fall 2002
Malloc Lab: Writing a Dynamic Storage Allocator

Assigned: Friday November 15, Due: Friday, December 6,
11:59PM

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
malloc, free and realloc routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient and fast.

You should work in a group of two people. Any clarifications and revisions to the assignment will be
emailed..

2 Hand Out Instructions

The handout tar file, malloclab-handout.tar is available in /home/pdinda/HANDOUT on the
tlab machines.

Start by copying malloclab-handout.tar to a protected directory in which you plan to do your
work. Then give the command: tar xvf malloclab-handout.tar. This will cause a number of
files to be unpacked into the directory. The only file you will be modifying and handing in is mm.c. The
mdriver.c program is a driver program that allows you to evaluate the performance of your solution. Use
the command make to generate the driver code and run it with the command ./mdriver -V. (The -V
flag displays helpful summary information.)

By default, mmdriver.c uses a subset of the traces stored in /home/pdinda/TRACES. You can use
other traces in that directory or create your own using the various scripts available there.

Looking at the file mm.c you’ll notice a C structure team into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.

When you have completed the lab, you will hand in only one file (mm.c), which contains your solution.

1



3 How to Work on the Lab

Your dynamic storage allocator will consist of the following four functions, which are declared in mm.h
and defined in mm.c.

int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

In this lab, you will not be graded on the performance of your implementation of mm realloc, hence it
is OK to implement it in the obvious way. You can gain extra credit points for an efficient implementation,
however. More details are in a later section.

The mm.c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
static functions), so that they obey the following semantics:

� mm init: Before calling mm malloc mm realloc or mm free, the application program (i.e.,
the trace-driven driver program that you will use to evaluate your implementation) calls mm init to
perform any necessary initializations, such as allocating the initial heap area. The return value should
be -1 if there was a problem in performing the initialization, 0 otherwise.

� mm malloc: The mm malloc routine returns a pointer to an allocated block payload of at least
size bytes. The entire allocated block should lie within the heap region and should not overlap with
any other allocated chunk.

We will comparing your implementation to the version of malloc supplied in the standard C library
(libc). Since the libc malloc always returns payload pointers that are aligned to 8 bytes, your
malloc implementation should do likewise and always return 8-byte aligned pointers.

� mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc or mm realloc and has not yet been freed.

� mm realloc: The mm realloc routine returns a pointer to an allocated region of at least size
bytes with the following constraints.

– if ptr is NULL, the call is equivalent to mm malloc(size);

– if size is equal to zero, the call is equivalent to mm free(ptr);

– if ptr is not NULL, it must have been returned by an earlier call to mm malloc or mm realloc.
The call to mm realloc changes the size of the memory block pointed to by ptr (the old
block) to size bytes and returns the address of the new block. Notice that the address of the
new block might be the same as the old block, or it might be different, depending on your imple-
mentation, the amount of internal fragmentation in the old block, and the size of the realloc
request.

2



The contents of the new block are the same as those of the old ptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new block are identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding libc malloc, realloc, and free rou-
tines. Type man malloc to the shell for complete documentation.

4 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

� Is every block in the free list marked as free?

� Are there any contiguous free blocks that somehow escaped coalescing?

� Is every free block actually in the free list?

� Do the pointers in the free list point to valid free blocks?

� Do any allocated blocks overlap?

� Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the function int mm check(void) in mm.c. It will check any invari-
ants or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages when mm check fails.

This consistency checker is for your own debugging during development. When you submit mm.c, make
sure to remove any calls to mm check as they will slow down your throughput. Style points will be given
for your mm check function. Make sure to put in comments and document what you are checking.

5 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in memlib.c:

3



� void *mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unix sbrk function, except that mem sbrk accepts only a positive
non-zero integer argument.

� void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

� void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

� size t mem heapsize(void): Returns the current size of the heap in bytes.

� size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

6 The Trace-driven Driver Program

The driver program mdriver.c in the malloclab-handout.tar distribution tests your mm.c pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set of trace files
that are included in the malloclab-handout.tar distribution. Each trace file contains a sequence of
allocate, reallocate, and free directions that instruct the driver to call your mm malloc, mm realloc, and
mm free routines in some sequence. The driver and the trace files are the same ones we will use when we
grade your handin mm.c file.

The driver mdriver.c accepts the following command line arguments:

� -t <tracedir>: Look for the default trace files in directory tracedir instead of the default
directory defined in config.h.

� -f <tracefile>: Use one particular tracefile for testing instead of the default set of trace-
files.

� -h: Print a summary of the command line arguments.

� -l: Run and measure libc malloc in addition to the student’s malloc package.

� -v: Verbose output. Print a performance breakdown for each tracefile in a compact table.

� -V: More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

7 Programming Rules

� You should not change any of the interfaces in mm.c.

� You should not invoke any memory-management related library calls or system calls. This excludes
the use of malloc, calloc, free, realloc, sbrk, brk or any variants of these calls in your
code.

4



� You are not allowed to define any global or static compound data structures such as arrays, structs,
trees, or lists in your mm.c program. However, you are allowed to declare global scalar variables
such as integers, floats, and pointers in mm.c. Note that pointers, pointer arithmetic, and type casting
provide a very powerful set of tools.

� For consistency with the libc malloc package, which returns blocks aligned on 8-byte boundaries,
your allocator must always return pointers that are aligned to 8-byte boundaries. The driver will
enforce this requirement for you.

8 Evaluation

You will receive zero points if you break any of the rules or your code is buggy and crashes the driver.
Otherwise, your grade will be calculated as follows:

� Correctness (20 points). You will receive full points if your solution passes the correctness tests
performed by the driver program. You will receive partial credit for each correct trace.

� Performance (35 points). Two performance metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated via mm malloc or mm realloc but not yet freed via mm free) and the size
of the heap used by your allocator. The optimal ratio equals to 1. You should find good policies
to minimize fragmentation in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a performance index,�
, which is a weighted sum of the space utilization and throughput���������
	���������������������� �"!$#&%�'

where
�

is your space utilization, � is your throughput, and �(�"!$#&% is the estimated throughput of libc
malloc on your system on the default traces.1 The performance index favors space utilization over
throughput, with a default of

�)��*,+.-
.

Observing that both memory and CPU cycles are expensive system resources, we adopt this formula to
encourage balanced optimization of both memory utilization and throughput. Ideally, the performance
index will reach

�/�0����	���1�����2�
or
�3*4*65

. Since each metric will contribute at most
�

and�78�
to the performance index, respectively, you should not go to extremes to optimize either the

memory utilization or the throughput only. To receive a good score, you must achieve a balance
between utilization and throughput.

We will NOT use realloc traces to evaluate the performance of your implementation. This makes
getting a high performance score much easier. Please note that we will test your realloc for
correctness. You may also want to develop a high performance realloc for extra credit. See below.

1The value for 9;:=<.>@? is a constant in the driver (600 Kops/s) that your instructor established when they configured the program.

5



� Style (10 points).

– Your code should be decomposed into functions and use as few global variables as possible.

– Your code should begin with a header comment that describes the structure of your free and
allocated blocks, the organization of the free list, and how your allocator manipulates the free
list. each function should be preceeded by a header comment that describes what the function
does.

– Each subroutine should have a header comment that describes what it does and how it does it.

– Your heap consistency checker mm check should be thorough and well-documented.

You will be awarded 5 points for a good heap consistency checker and 5 points for good program
structure and comments.

9 Extra Credit!

You can earn up to 20% extra credit by implementing an efficient mm realloc. If you decide to do so, we
will add several additional realloc traces to the set of traces used to do your performance evaluation. NOTE
THAT THIS COULD CAUSE YOUR PERFORMANCE SCORE TO DROP. We will then multiply your
final score by 1.2.

Realloc makes this lab considerably more difficult. We strongly suggest that you create a correct and well
performing implementation first, tackling realloc only after you have something decent to fall back on.

You will find various realloc traces in /home/pdinda/TRACES.

10 Handin Instructions

To hand in your code, run make handin. This will email your mm.c file to us.

If you have done the extra credit, send us a followup email so that we grade your lab appropriately.

11 Hints

� Use the mdriver -f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short1,2-bal.rep) that you can use for
initial debugging.

� Use the mdriver -v and -V options. The -v option will give you a detailed summary for each
trace file. The -V will also indicate when each trace file is read, which will help you isolate errors.

� Compile with gcc -g and use a debugger. A debugger will help you isolate and identify out of
bounds memory references.

6



� Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list. Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit list allocator.

� Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the casting that is necessary. You can reduce the
complexity significantly by writing macros for your pointer operations. See the text for examples.

� Do your implementation in stages. The first 9 traces contain requests to malloc and free. The
last 2 traces contain requests for realloc, malloc, and free. We recommend that you start by
getting your malloc and free routines working correctly and efficiently on the first 9 traces. Only
then should you turn your attention to the realloc implementation. For starters, build realloc
on top of your existing malloc and free implementations. But to get really good performance,
you will need to build a stand-alone realloc.

� Use a profiler. You may find the gprof tool helpful for optimizing performance.

� Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

7


