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Distributed and Parallel Systems 
 
We have discussed the abstractions and implementations that make up an individual 
computer system in considerable detail, and we’ve talked about how networks enable 
processes running on individual computers (hosts) to communicate.   Communicating 
processes are the basis of a whole new set of abstractions that try to make it easier to 
program collections of hosts for greatly enhanced performance and reliability.   A good 
analogy is that communicating processes are the assembly language of distributed and 
parallel systems.    
 
This handout tries to summarize some of the important ideas at these higher levels.  It is 
by no means exhaustive.  Furthermore, there are many open areas of research at these 
levels.  Perhaps this research will make distributed and parallel programming as easy as 
programming an individual machine. 

Why Distributed and Parallel Programs? 
There are generally three drivers behind using multiple hosts.  First, some applications 
simple require more resources than are available on a single machine.  For example, a 
web search engine like Google gets so much traffic that there simply aren’t enough cycles 
on a single machine.  Spreading the work out across multiple machines (100s in the case 
of Google) makes such application possible.  The second driver is performance.  
Throwing more hosts at a problem, a scientific study or simulation such as SETI@Home, 
can get it done much faster than using a single machine.  At its peak, SETI@Home 
exploited hundreds of thousands of machines.  The third driver is reliability.  Let’s say 
you have a critical service.  Suppose you map it to a single host and that host has a 0.1 
chance of failing in a year.  If it takes a day to recover, then you have an expected 
downtime of  2.4 hours every year.  If you instead replicate the service over 10 hosts, the 
chance of all of them failing is 0.1^10 and your expected downtime is in the microsecond 
range.   

Distributed and Parallel Algorithms 
Although we haven’t talked much about algorithms in this course, it is important to point 
out that the design of distributed or parallel algorithms is a bit different from their 
sequential counterparts.  Distributed algorithms are designed to accomplish their work 
despite failures of hosts and network links, all without putting undo amounts of traffic on 
the network.  On the other hand, parallel algorithm design usually assumes that failures 
are not an issue.  Their design is strongly concerned with worst-case asymptotic 
performance.  However, unlike sequential algorithms, there are two ”big O” values of 
concern.  One is “work complexity” – the amount of work that is done.  The other is 
“depth complexity” – the longest path in the computation, or how long the algorithm 
takes given an infinite number of processors.   For example, a parallel quick sort is of 
work complexity O(n log n), but it has depth complexity of only O(log n)! 



CS 213 Introduction to Computer Systems   
 

 Page 2 of 4 

Higher-level Communication Abstractions 
Socket programming is too low level for many purposes.  It’s complex to set up a 
communication channel, there is no help in starting remote processes, communication is 
byte-stream oriented, and only communication between two individual hosts is a part of 
the model.  However, we can build more sophisticated communication abstractions on 
top of sockets. 
 
The simplest abstraction is that of message passing.  Systems like PVM and MPI provide 
support for starting remote processes and communicating simply with messages instead 
of byte streams.  Beyond simple host-to-host communication, these systems also 
implement collective communication.  What this means is that you can express a 
communication pattern involving all of the hosts, and the system will optimize it.  For 
example, the all-to-all pattern, in which, en masse, each host sends a message to every 
other host, is important in many parallel algorithms, but it is very difficult to schedule 
optimally on even a simple network.  By making the pattern explicit instead of writing 
the message sends and receives directly, the programmer gives the message passing 
system the critical information it needs to even begin to do this scheduling. 
 
A powerful abstraction in distributed systems is the remote procedure call or RPC.  In 
RPC, we use a special interface definition language (IDL ) compiler (also called a stub 
generator) to generate wrappers (stubs) that interface a regular procedure to the RPC run-
time system.  By using these wrappers and the RPC run-time, you can export any 
function you write so that it can be called by any host on the network.  The caller uses 
another wrapper which makes it look like he’s calling your function locally.  In effect, he 
links with a wrapper that does the hard work of finding your function and calling it over 
the network, dealing with different endianness, alignment requirements, etc.   Your 
wrapper does the hard work of making your function callable over the network.  RPC 
technology dates to the early 80s, but it is continually reinvented.  The latest commercial 
implementations are CORBA, Microsoft DCOM, and Java RMI.  These systems are 
called distributed object systems, because they extend the RPC idea to objects.  
CORBA also allows you to call an object written in any language from some other 
language, solving some of the linking problems that we discussed. 
 
Distributed shared memory or DSM extends the idea of communication via shared 
memory regions to the network, allowing regions to be shared between processes running 
on different hosts.  However, this is not as simple as it seems because networks are (still) 
considerably slower than memory systems.  Furthermore, if the hosts are heterogenous 
(different kinds of architectures and/or OSes), a simple extension of the intra-host shared 
memory model is not possible.  Typically, DSM systems require that the programmer 
create shared blocks of data, carefully defining the type of data in the block so that the 
DSM system can translate between different kinds of hosts.  Another issue is the 
granularity of updates to these shared blocks and the degree of consistency that is needed 
between different hosts’ views of them.  We discuss these consistency model issues 
further below because they apply in other distributed system contexts as well. 
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Languages for Distributed and Parallel Computing 
One of the things that makes a single computer system so eminently programmable is the 
existence of programming languages that raise the level of abstraction at which one 
programs considerably.  Furthermore, the compiler toolchains that implement these 
languages hide many details from us.  Even C, which is about as primitive of a 
programming language as there is, is a huge step up from assembly language 
programming.  Other languages, such as C++, Java, Perl, Python, Rexx, Matlab, Fortran 
9X, Lisp, Scheme, and ML, raise these abstractions much further.  ML programs, for 
example, are mathematical objects about which a compiler can reason using logic. 
 
Sadly, the state of the art in languages for distributed and parallel computing is much less 
refined.   Over the past 25+ years, massive amounts of research dollars have been spent 
with little success in pursuit of automatic parallelization – producing parallel and 
distributed programs by compile-time analysis of programs written in ordinary sequential 
languages like Fortran. The major success story here is in automatic vectorization, 
which is particular to vector machines (the registers hold vectors and the instructions 
operate on vectors).  While vector machine technology was originally confined to very 
expensive supercomputers, it has slowly migrated to the desktop.  Intel’s MMX and 
IBM/Motorola’s Altivec are simple implementations of vector processing on mainstream 
processors. 
 
There has been much greater success in developing explicitly parallel programming 
languages and compilers that support them.  However, the target for these languages has 
largely been the scientific community and the parallel algorithms community.  These 
languages allow the programmer to specifiy collections of objects and explicitly 
operations on these collections.  The compiler and run-time distribute these collections 
across hosts and implement parallel operations on them as sequential operations and 
message passing.  In the case of High Performance Fortran (HPF) or Parallel Matlab, the 
collections are arrays and the operations are operations on whole arrays, vectors, or slices 
of either.  Other collections are possible.  For example, the Nesl language supports 
arbitrary nested lists of arbitrary objects.  A parallelizing compiler for one of these 
languages will typically translate a high-level, explicitly parallel program down to a 
sequential program the includes message passing. For example, HPF might compile to 
Fortran (or C) with message passing calls to MPI.   
 
The state of languages for distributed computing is still quite immature.  One bright spot 
is interface definition languages and their compilers, which form the backbone of RPC 
systems.  An IDL lets you define the interface of an object or function without specifying 
how it is implemented.  The compiler can then generate code that allows that object to be 
used in many contexts, including across a network.  A common example is CORBA IDL. 

The Consensus Problem and Consistency Models 
Many issues in distributed computing ultimately boil down to either the consensus 
problem.  Since we have multiple machines, we will often want to replicate an object, 
perhaps having one copy of the object per machine.  The consensus problem is how to 
keep those copies consistent with each other.  At a high level, this seems like an either-or 
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propostion: either two replicas are the same or they are not.  However, the known 
approaches for forcing replicas to be exactly the same at all times in the face of 
independent updates happening on the different processors are simply too slow to be used 
in practice – they ameliorate the very benefits that we expect to get from having multiple 
machines. 
 
To make progress, researchers have defined different forms of consistency.   One we 
might refer to as “consensus consistency”.  The idea here is that the replicas are 
consistent if we can query some small subset of them for their values and combine their 
answers to produce the “actual” value.   Another family of consistency models comes 
from considering how updates to a replica on one processor are perceived on another 
processor.  Your book described one model here, the sequential consistency model, in 
the context of thread programming.  The idea of sequential consistency and its family 
apply at many levels of computer systems.  The idea here is that the observing processor 
sees the updates in precisely the order in which they were issued.  For various reasons, 
this model is very difficult to implement efficiently.  Hence, “looser” consistency models 
have been developed.  For example, release consistency introduces specific updates, 
often called barriers.  The updates between barriers are perceived in any order, but the 
barriers are totally ordered.  Hence, when the observing processor sees the barrier, it 
knows it has seen all the updates prior to the barrier.   DSM systems such as Treadmarks 
rely on even more relaxed forms of consistency in order to function. 
 
Another approach to consistency is based effectively on barriers with respect to time 
instead of with respect to updates.  This is known as virtual synchrony.  ISIS and 
HORUS are the best known implementations. 
 
Consensus problems occur frequently in the Internet, because many services, such as 
DNS, web caches such as Akamai and Squid, and netnews, rely on caching to provide 
high performance.   Consensus in distributed systems is a deep, intellectually fascinating, 
area of work. 


