CS 213 Introduction to Computer Systems Dinda, Fall 2025

Homework 3

Memory and Cache

1. (a) Describe the layout of the following struct on an x64 machine running Linux. Your
description should include its padding, and indicate how many bytes are used and how many
bytes are wasted for padding.

(b) Reorder the fields in the struct so that it will consume the most space. Describe its layout.
How many bytes is the reordered struct?
(c) Reorder the fields of the struct so that it will consume the least space. Describe its layout.
How many bytes is the reordered struct?

struct foo {
short a;

double b;
long *c;
short d;
char e;
int f;

}s

2. Consider a processor that uses m=32-bit addresses and can address 2**= 4 Gigabytes of
memory. Suppose that it has one level of cache. As in Figure 6.25 of your textbook, the
address is split into a ¢ bit tag, an s bit set index, and a b bit block offset. The cache consists
of 16,384 bytes, with a block size of 64 bytes. Answer each of the following for direct-
mapped, 8-way set associative, and fully associative versions of the cache.

a. How many cache lines are there?
b. Whatis b?
c. Whatis s?
d. Whatis ¢?

3. For the cache in problem 2, draw the cache given that it is structured as follows. Please elide
replicated components, but annotate your drawing with how many components there are.

a. Direct-mapped

b. 8-way set associative
c. Fully associative

Page 1 of 3

CS 213 Introduction to Computer Systems Dinda, Fall 2025

. Our company wants to optimize the performance of the following code

void vector add(int n, int *a, int *b, int *c) {
int 1i;
for (1i=0;i<n;i++) {
cli]l=al[i]+b[i];

}

run on the same processor and cache as described in problem 2. The cache is write-back,
write-allocate, and has an LRU replacement policy. Integers are 32 bits.

a. Suppose the cache is direct mapped. Let n=4096, a=0xa0000, b=0xc0000,
c=0xe0000. On average, how many times per loop iteration will you load a cache
block from main memory? How many times per loop iteration will you flush a cache
block back to main memory?

b. While we’re all fired up to buy ultra-cool mega-associative cache hardware (which
comes only in machined titanium), a smart alec programmer claims that we can get
the same effect by having a=0xa0100, b=0xc0200, and c=0xe0300. Is she right?
Why or why not?

. Modern processors take advantage of locality using many mechanisms in addition to caches.
Another important one is called prefetching. The prefetch unit of a CPU will monitor memory
accesses and try to predict accesses that might follow soon after. That way, when the CPU
issues a load or store to the next address, the cache will have already been populated with it,
and it will not need to wait for an expensive access to main memory to complete. However,
hardware prefetch units have limited foresight, and sometimes it may be better for the
programmer to provide some hints as to what memory will be accessed in the near future.
Consider the following piece of code that simply sums up a large 2D array.

#define ROWS (1024*1024*16)
#define COLS 16

int 2darray sum() {
int sum = 0;
int 1, 3;
int * a = malloc(sizeof (int) *ROWS*COLS) ;
/* skip array initialization code */
for (i = 0; 1 < ROWS; 1i++) {
for (3 = 0; J < COLS; j++) {
sum += * (a+i*COLS+7]);
}
_prefetch(a+ (i+l) *COLS) ;
}

return sum;

Page 2 of 3

CS 213 Introduction to Computer Systems Dinda, Fall 2025

This code loops through a 2D-array using pointer arithmetic and sums the elements. The
interesting thing we’ve added here is the call to _prefetch. prefetch takes a memory
address and instructs the hardware to preload the cache with one line starting at that address. For
the following question, assume that our data cache size is 32KB and the block size is 64 bytes.

a. How big is the array that a points to? Will it fit in the cache?

b. Why did we choose to prefetch at the address a+ (1i+1) *COLS and why did we
place it in the outer loop? Explain your reasoning. (Hint: it’s no coincidence that
COLS is 16)

c. Running the above code on one machine we tried with the prefetch produces a
speedup over the case without the prefetch by about 56%. Suppose we make this
same comparison, but we make it for various array sizes. When would you expect
the prefetch to help us more, with much smaller arrays or with larger arrays? Why?

6. Caches form a hierarchy, with slower, bigger caches operating below faster, smaller caches. At
the top of the hierarchy, the L1 cache is often split into two caches, one for data, and one for
instructions. When the CPU fetches an instruction, it first looks in the L1 instruction cache. If it
misses there, the request proceeds to the L2 cache, which is shared among instructions and data,
and then on to the L3 shared cache, and so on.

a. The L1 data cache works equally well for reads and writes, but the L1 instruction cache
focuses on reads. Why? What characteristic of fetching and executing instructions
might lead to this kind of design?

b. It is possible to build self~modifying code, where the program actually overwrites itself as it
runs. Some rare parts of the operating system and application support libraries use this
capability. A common reaction of an L1 instruction cache design when it sees a write to
memory it is caching is to flush and clear the whole cache, not just the line that contains the
write, and let the write proceed to the L2 cache. Why might this be considered a
reasonable design?

c. Why are only some caches unified? Why don’t we split some of the unified L2 into an
instruction-L2 (L2i) and data-L.2 (L2d)? Or why not add more cache so we can have the
non-unified cache without needing to split the unified one? This question also holds for L3.

Page 3 of 3

