
EECS 213 Introduction to Computer Systems Spring 2014

 Page 1 of 5

Introduction to Computer Systems

Syllabus
Web Page
 http://pdinda.org/ics

 We will not be using Blackboard for anything in this course.

Instructor
 Peter A. Dinda

Tech L463
 pdinda@northwestern.edu
 Office hours: Wednesdays,9-12, or by appointment

Teaching assistants
Kyle Hale
Ford 2-221
kh@u.northwestern.edu
Office hours: Mondays, 1-4, or by appointment

Kaicheng Zhang
Tech L476
kaichengz@u.northwestern.edu
Office hours: Tuesdays, 3:30-6:30, or by appointment

Conor Hetland
Wilkinson Lab
conorhetland2015@u.northwestern.edu
Office hours: Thursdays, 3:30-6:30, or by appointment

Location and Time
 Lecture: Tuesdays and Thursdays, 2-3:20pm, Tech LR5 (M193)

Recitation: Mondays, 6pm, Tech L251

Prerequisites
 Required EECS 211 or equivalent
 Required Experience with C or C++

EECS 213 is a required core course in the Computer Science curriculum in both
McCormick and Weinberg. It is also a required course for CS minors in both

EECS 213 Introduction to Computer Systems Spring 2014

 Page 2 of 5

schools. 213 can also be taken for credit within the Computer Engineering
curriculum. 300-level systems courses have 213 as a prerequisite.

Textbook
Randal E. Bryant and David R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, Second Edition, Prentice Hall, 2010, (ISBN-10: 0136108040 ISBN-
13: 978-0136108047) (Required - Textbook)

• Details on http://csapp.cs.cmu.edu
• Make sure you have the second edition of the book.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,
Second Edition, Prentice Hall, 1988 (ISBN 0-131-10370-9) (Recommended)

• This remains the definitive book on C by its creators

Richard Stevens and Stephen Rago, Advanced Programming in the Unix
Environment, Third Edition, Addison-Wesley, 2013 (ISBN-10: 0321637739 |
ISBN-13: 978-0321637734) (Recommended)

• This describes how to think like a Unix systems programmer
• The older editions, even the first edition, are very good

Objectives, framework, philosophy, and caveats
This course has four purposes. First, you will learn about the hierarchy of
abstractions and implementations that comprise a modern computer system. This
will provide a conceptual framework that you can then flesh out with courses such
as compilers, operating systems, networks, and others. The second purpose is to
demystify the machine and the tools that we use to program it. This includes
telling you the little details that students usually have to learn by osmosis. In
combination, these two purposes will give you the background to understand
many different computer systems. The third purpose is to bring you up to speed in
doing systems programming in a low-level language in the Unix environment.
The final purpose is to prepare you for upper-level courses in systems.

This is a learn-by-doing kind of class. You will write pieces of code, compile
them, debug them, disassemble them, measure their performance, optimize them,
etc.

The specific computer architecture we will focus on in this class is the Intel/AMD
x86 architecture, which is used in virtually all cloud, cluster, server, desktop, and
laptop/notebook computers today.1 The specific operating system we will use is
Linux, which is used in most cloud and server environments, and is also the

1 For the most part, the lecture and programming assignments in this class look at x86 processors in 32 bit
mode. We will try to touch on x86 in 64 bit mode as well. We may also look briefly at the ARM
architecture used in iPhones/iPads and many Android devices. If this doesn’t make sense to you yet, don’t
worry about it.

EECS 213 Introduction to Computer Systems Spring 2014

 Page 3 of 5

foundation of the Android platform. The specific programming toolchain we will
use is GCC (and GDB), which is the core toolchain on pretty much all platforms,
except Windows.

This course is ideally taken after 211 early in your academic career.

Discussion and Getting Help
In addition to lecture and office hours, the TAs will also hold an optional
recitation section once a week. This quarter we will try to use Piazza for class
discussions. There is also a Google discussion group for the class, but we will
only bring that up if needed.

Resources
You will have Linux accounts on the Wilkinson and Tlab machines, and it should
be possible to do a lot of your work on them, or other 64 bit Linux machines.
However, you will also have access to a considerably more powerful server
machine that can support many users simultaneously, and we expect most
students will use that. We will test your labs on that machine.

Labs
There will be four programming labs. Their goal is to make you apply the
concepts you’ve learned and to gain familiarity with Unix tools that can help you
apply them. Labs should be done in groups of two.

Homework
Four problem sets will be assigned. Their goal is to help you improve your
understanding of the material. Homework should be done alone.

Exams
There will be a midterm exam and a final exam. The final exam will not be
cumulative.

Grading
10 % Homeworks (2.5% per homework)
50 % Programming labs (12.5% per lab)
20 % Midterm (covers first half of the course)
20 % Final (covers second half of the course)

Peter ultimately assigns all grades. If you have a problem with a grade, you are
welcome to bring it up with either Peter or the TAs, but only Peter is empowered
to change grades.

EECS 213 Introduction to Computer Systems Spring 2014

 Page 4 of 5

Late Policy
For each calendar day after the due date for a homework or a lab, 10% is lost.
After 1 day, the maximum score is 90%, after 2 days, 80%, etc, for a maximum of
10 days.

Cheating
Since cheaters are mostly hurting themselves, we do not have the time or energy
to hunt them down. We much prefer that you act collegially and help each other
to learn the material and to solve development problems than to have you live in
fear of our wrath and not talk to each other. Nonetheless, if we detect blatant
cheating, we will deal with the cheaters as per Northwestern guidelines.

Schedule

Lecture Date Topics Readings Homework/Labs
1 4/1 T Mechanics, Introduction,

overview of abstractions
Chapter 1 Data lab out

2 4/3 Th Physics, transistors,
photolithography, Moore’s
Law, bits, bytes, logic, cores,
and multicores

2, 2.1,
handout

HW 1 out,

Last day for late registration: Friday, 4/4
3 4/8 T Integers and integer math 2.2-2.3
4 4/10 Th Floating point 2.4-2.5
Instructor away 4/11, possibly also 4/10
5 4/15 T The Machine Model –

instruction set architecture,
microarchitecture, and basic
instructions

3, 3.1-3.5,
5.7

HW 1 in, HW 2
out

6 4/17 Th Control flow
Instructor out of town

3.6 Data lab in
Bomb lab out

7 4/22 T Procedures 3.7
8 4/24 Th Data 3.8-3.12
9 4/29 T 64 bit x86 and perhaps some

ARM
3.13-3.15,
possible
ARM
materials

HW 2 in, HW 3
out

Midterm Exam: TBD, but around this time – will be in the evening
10 5/1 Th Memory and cache 6, 6.1-6.4
11 5/6 T Cache performance 6.5-6.7 Bomb lab in,

Buffer lab out
12 5/8 Th Linking Chapter 7
Last day for class drops: Friday, 5/9
13 5/13 T Exceptional control flow 8,8.1-8.4

EECS 213 Introduction to Computer Systems Spring 2014

 Page 5 of 5

14 5/15 Th Exceptional control flow 8.5-8.8 HW 3 in
15 5/20 T Virtual memory

Memory system
9, 9.1-9.8 Buffer lab in,

Fourth lab out,
16 5/22 Th Memory allocation 9.9-9.12 HW 4 out
17 5/27 T Slack Day / Catchup / TBD
18 5/29 Th Input and Output Chapter 10
19 6/3 T Network programming Chapter 11

Handout

20 6/4 Th Concurrency, Distributed
Systems and Wrap-up

Chapter 12
handouts

Fourth lab in
HW 4 in

Finals week – Exam is Monday, June 9, 9-11 AM

Note that in the latter part of the course, we will cover Chapters 10-12 at a very high level. I want you to
read these chapters, but I will not cover them in their entirety in class.

We will skip Chapter 4 (Processor Architecture), 5 (Performance Optimization), and others. Chapter 4 is
worth reading if you’re interested in how a simple processor with an Intel-like instruction set is
implemented. Chapter 5 is all about understanding how to make programs run faster.

