
EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 1 of 5

Homework 3

Memory and Cache

1. Reorder the fields in this structure so that the structure will (a) consume the most

space and (b) consume the least space on an IA64 machine on Linux.

struct foo {

 char a;

 double b;

 float c;

 int d;

 long e;

 int *f;

 short g;

}

2. Consider a processor that uses 24-bit addresses and can address 224=16M bytes of

memory. Suppose that it has one level of cache. As in Figure 6.25 of your textbook,

the address is split into a t bit tag, an s bit set index, and a b bit block offset. The

cache consists of 32768 bytes, with a block size of 256 bytes. Answer each of the

following for direct-mapped, 2-way set associative, and fully associative versions of

the cache.

a. How many cache lines are there?

b. What is b?

c. What is s?

d. What is t?

3. For the cache in problem 3, draw the cache given that it is structured as follows. You

can elide replicated components, but annotate your drawing with how many

components there are.

a. Fully associative

b. Direct mapped

c. 4-way set associative

EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 2 of 5

4. Our company wants to optimize the performance of the following code

void vector_add(int n, int *a, int *b, int *c) {

 int i;

 for (i=0;i<n;i++) {

 c[i]=a[i]+b[i];

 }

}

run on the same processor and cache as described in problem 3. The cache is write-

back, write-allocate, and has an LRU replacement policy. Integers are 32 bits.

a. Suppose the cache is direct mapped. Let n=4096, a=0x0a000, b=0x0c000,

c=0x0e000. On average, how many times per loop iteration will you load a

cache block from main memory? How many times per loop iteration will you

flush a cache block back to main memory?

b. While we’re all fired up to buy ultra-cool mega-associative cache hardware

(which comes only in machined aluminum), a smart alec programmer claims

that we can get the same effect by having a=0x0a000, b=0x0c080, and

c=0x0e100. Is he right? Why or why not?

5. You should now be coming to realize just how important leveraging locality of access

is for performance. Modern processors take advantage of this locality in hardware

using many mechanisms, but one important one is called prefetching. The prefetch

unit of a CPU will monitor memory accesses and try to predict accesses that might

follow soon after. That way, when the CPU issues a load or store to the next address,

the cache will have already been populated with it, and it will not need to wait for an

expensive access to main memory to complete. However, hardware prefetch units

have limited foresight, and sometimes it may be better for the programmer to provide

some hints as to what memory will be accessed in the near future. Consider the

following piece of code that simply sums up a large 2D array.

#define _prefetch(x) __builtin_prefetch((x), 0, 3)

EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 3 of 5

#define ROWS (1024*1024*16)

#define COLS 16

int 2darray_sum() {

 int sum = 0;

 int i, j;

int * a = malloc(sizeof(int)*ROWS*COLS);

/* skip array initialization code */

for (i = 0; i < ROWS; i++) {

for (j = 0; j < COLS; j++) {

 sum += *(a+i*COLS+j);

 }

 _prefetch(a+(i+1)*COLS);

}

return sum;

 }

This code loops through a 2D-array using pointer arithmetic and sums the elements. The

interesting thing we’ve added here is the call to _prefetch. GCC provides a builtin

function named __builtin_prefetch that we’ve wrapped with a macro, because for our

purposes we only care about the first argument. _prefetch takes a memory address and

instructs the hardware to preload the cache with one line starting at that address. For the

following question, assume that our data cache size is 32KB and the block size is 64

bytes.

a. How big is the array that a points to? Will it fit in the cache?

b. Why did we choose to prefetch at the address a+(i+1)*COLS and why did we

place it in the outer loop? Explain your reasoning. (Hint: it’s no coincidence

that COLS is 16)

c. Running the above code on our class machine with the prefetch produces a

speedup over the case without the prefetch by about 56%. Suppose we make

this same comparison, but we make it for various array sizes. When would

you expect the prefetch to help us more, with much smaller arrays or with

larger arrays? Why?

6. Your CPU performs best when it executes straight-line code, i.e. a sequential stream

of instructions, one following immediately after the other in the program text. This

instruction locality makes it easy for it to prefetch subsequent instructions, just as it

does for data. Control flow instructions like jle and, to a lesser extent, jmp, disrupt

these sequential streams and force the program counter to change in a less predictable

manner, making the instruction prefetcher less effective. One goal of an optimizing

compiler is to make these regions of straight-line code (called basic blocks) as large

as possible to improve performance. Consider the following function and the

assembly it generates.

EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 4 of 5

foo.c

int foo (int x, int y) {

 if (x > y)

 return 1;

 else

 return 0;

}

foo.S

0000000000000000 <foo>:

 0: 55 push %rbp

 1: 48 89 e5 mov %rsp,%rbp

 4: 89 7d fc mov %edi,-0x4(%rbp)

 7: 89 75 f8 mov %esi,-0x8(%rbp)

 a: 8b 45 fc mov -0x4(%rbp),%eax

 d: 3b 45 f8 cmp -0x8(%rbp),%eax

 10: 7e 07 jle 19 <foo+0x19>

 12: b8 01 00 00 00 mov $0x1,%eax

 17: eb 05 jmp 1e <foo+0x1e>

 19: b8 00 00 00 00 mov $0x0,%eax

 1e: 5d pop %rbp

 1f: c3 retq

Notice how GCC orders the jumps. Consider the case when x is less than y. The

CPU has to break sequential execution and jump to address 0x19. This will

negatively affect the performance of the instruction prefetcher. But what if we

know that x will be less than y 99 out of 100 times? That performance hit would

be unnecessary. Assume the following logical block layout for this code:

a. CPUs can deal with conditional branches like this by predicting which

way they will go using a hardware branch predictor. Assume that we

have a dumb branch predictor in our CPU that always predicts that a

branch is not taken. In other words, it always predicts that it will

continue executing at the next instruction. How often will our branch

predictor be wrong (i.e., what is its misprediction rate)?

b. Given our knowledge of x and y, how would you reorder the blocks to

maintain straight-line code? Now what is the misprediction rate using

the same branch predictor?

c. With your blocks reordered, what will the cmp and subsequent

conditional jump look like in assembly? (will it still be a jle?)

d. GCC provides a built-in branch hint function named

__builtin_expect that will do this reordering for you. It is typically

renamed to a pair of functions so that it can be used like this:

if (likely(cond)) { //do something }

if (unlikely(cond)) { //do something }

prelude cmp (x>y) code
(no branch)

(x<=y) (take
branch)

the rest

EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 5 of 5

Using likely will tell the compiler that it should order the block of the if

statement first, as it is likely to be executed more often. unlikely does the

reverse. These are used to increase performance in real-world projects like

the Linux kernel. Again, given your knowledge of x and y, how would

you rewrite the C code for foo using these functions?

