The Linux Kernel

Copyright (© 1996-1999 David A Rusling

david.rusling@digital.com
REVIEW, Version 0.8-3

January 25, 1999

This book is for Linux enthusiasts who want to know how the Linux kernel works. It is
not an internals manual. Rather it describes the principles and mechanisms that Linux
uses; how and why the Linux kernel works the way that it does. Linux is a moving tar-
get; this book is based upon the current, stable, 2.0.33 sources as those are what most
individuals and companies are now using.

This book is freely distributable, you may copy and redistribute it under certain conditions.
Please refer to the copyright and distribution statement.

For Gill, Esther and Stephen

Legal Notice

UNIX is a trademark of Univel.
Linux is a trademark of Linus Torvalds, and has no connection to UNIX™ or
Univel.

Copyright © 1996,1997,1998,1999 David A Rusling
3 Foxglove Close, Wokingham, Berkshire RG41 3NF, UK

david.rusling@arm.com

This book (“The Linux Kernel”) may be reproduced and distributed in whole or
in part, without fee, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved
complete on all complete or partial copies.

e Any translation or derived work must be approved by the author in writing
before distribution.

o If you distribute this work in part, instructions for obtaining the complete
version of this manual must be included, and a means for obtaining a com-
plete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in
other works without this permission notice if proper citation is given.

Exceptions to these rules may be granted for academic purposes: Write to the
author and ask. These restrictions are here to protect us as authors, not to restrict
you as learners and educators.

All source code in this document is placed under the GNU General Public License,
available via anonymous FTP from prep.ai.mit.edu:/pub/gnu/COPYING. It is also
reproduced in appendix D.

Preface

Linux is a phenomenon of the Internet. Born out of the hobby project of a student it
has grown to become more popular than any other freely available operating system.
To many Linux is an enigma. How can something that is free be worthwhile? In
a world dominated by a handful of large software corporations, how can something
that has been written by a bunch of “hackers” (sic) hope to compete? How can
software contributed to by many different people in many different countries around
the world have a hope of being stable and effective? Yet stable and effective it is
and compete it does. Many Universities and research establishments use it for their
everyday computing needs. People are running it on their home PCs and I would
wager that most companies are using it somewhere even if they do not always realize
that they do. Linux is used to browse the web, host web sites, write theses, send
electronic mail and, as always with computers, to play games. Linux is emphatically
not a toy; it is a fully developed and professionally written operating system used by
enthusiasts all over the world.

The roots of Linux can be traced back to the origins of Unix™ . In 1969, Ken
Thompson of the Research Group at Bell Laboratories began experimenting on a
multi-user, multi-tasking operating system using an otherwise idle PDP-7. He was
soon joined by Dennis Richie and the two of them, along with other members of the
Research Group produced the early versions of Unix™. Richie was strongly influenced
by an earlier project, MULTIC and the name Unix™ is itself a pun on the name
MULTIC . Early versions were written in assembly code, but the third version was
rewritten in a new programming language, C. C was designed and written by Richie
expressly as a programming language for writing operating systems. This rewrite
allowed Unix™ to move onto the more powerful PDP-11 and 11 70 computers
then being produced by DIGITAL. The rest, as they say, is history. Unix™ moved
out of the laboratory and into mainstream computing and soon most major computer
manufacturers were producing their own versions.

Linux was the solution to a simple need. The only software that Linus Torvalds,
Linux s author and principle maintainer was able to afford was . is a
simple, Unix™ like, operating system widely used as a teaching aid. Linus was less
than impressed with its features, his solution was to write his own software. He took
Unix™ as his model as that was an operating system that he was familiar with in his
day to day student life. He started with an Intel 386 based PC and started to write.
Progress was rapid and, excited by this, Linus offered his efforts to other students
via the emerging world wide computer networks, then mainly used by the academic
community. thers saw the software and started contributing. Much of this new
software was itself the solution to a problem that one of the contributors had. Before
long, Linux had become an operating system. It is important to note that Linux

iii

contains no Unix™ code, it is a rewrite based on published P I standards. Linux
is built with and uses a lot of the G U (G Us ot Unix™) software produced by
the ree oftware oundation in Cambridge, Massachusetts.

Most people use Linux as a simple tool, often just installing one of the many good
CD R M-based distributions. A lot of Linux users use it to write applications or
to run applications written by others. Many Linux users read the H WT s avidly
and feel both the thrill of success when some part of the system has been correctly
con gured and the frustration of failure when it has not. A minority are bold enough
to write device drivers and offer kernel patches to Linus Torvalds, the creator and
maintainer of the Linux kernel. Linus accepts additions and modi cations to the
kernel sources from anyone, anywhere. This might sound like a recipe for anarchy
but Linus exercises strict uality control and merges all new code into the kernel
himself. At any one time though, there are only a handful of people contributing
sources to the Linux kernel.

The majority of Linux users do not look at how the operating system works, how
it ts together. This is a shame because looking at Linux is a very good way to
learn more about how an operating system functions. ot only is it well written,
all the sources are freely available for you to look at. This is because although the
authors retain the copyrights to their software, they allow the sources to be freely
redistributable under the ree oftware oundations G U Public License. At rst
glance though, the sources can be confusing; you will see directories called ,

and but what do they contain and how does that code work? What is needed
is a broader understanding of the overall structure and aims of Linux. This, in
short, is the aim of this book to promote a clear understanding of how Linux, the
operating system, works. To provide a mind model that allows you to picture what
is happening within the system as you copy a le from one place to another or read
electronic mail. T well remember the excitement that I felt when I rst realized just
how an operating system actually worked. It is that excitement that I want to pass
on to the readers of this book.

My involvement with Linux started late in 199 when I visited im Paradis who was
working on a port of Linux to the Alpha A P processor based systems. I had worked
for Digital E uipment Co. Limited since 198 , mostly in networks and communi-
cations and in 199 I started working for the newly formed Digital emiconductor
division. This division s goal was to enter fully into the merchant chip vendor market
and sell chips, and in particular the Alpha A P range of microprocessors but also
Alpha A P system boards outside of Digital. When I rst heard about Linux I
immediately saw an opportunity to have fun. im s enthusiasm was catching and I
started to help on the port. As I worked on this, I began more and more to appreciate
not only the operating system but also the community of engineers that produces it.

However, Alpha A P is only one of the many hardware platforms that Linux runs
on. Most Linux kernels are running on Intel processor based systems but a growing
number of non-Intel Linux systems are becoming more commonly available. Amongst
these are Alpha A P, ARM, MIP , parc and PowerPC. I could have written this
book using any one of those platforms but my background and technical experiences
with Linux are with Linux on the Alpha A P and, to a lesser extent on the ARM.
This is why this book sometimes uses non-Intel hardware as an example to illustrate

some key point. It must be noted that around 9 of the Linux kernel sources are
common to all of the hardware platforms that it runs on. Likewise, around 9 of
this book is about the machine independent parts of the Linux kernel.

ea e o le

This book does not make any assumptions about the knowledge or experience of
the reader. I believe that interest in the subject matter will encourage a process of
self education where neccessary. That said, a degree of familiarity with computers,
preferably the PC will help the reader derive real bene t from the material, as will
some knowledge of the C programming language.

ga iatio o ti oo

This book is not intended to be used as an internals manual for Linux. Instead
it is an introduction to operating systems in general and to Linux in particular.
The chapters each follow my rule of “working from the general to the particular”.
They rst give an overview of the kernel subsystem that they are describing before
launching into its gory details.

I have deliberately not described the kernel s algorithms, its methods of doing things,
in terms of - calls - which increments the eld of the
data structure. You can read the code to nd these things out. Whenever I need to
understand a piece of code or describe it to someone else I often start with drawing
its data structures on the white-board. o, I have described many of the relevant
kernel data structures and their interrelationships in a fair amount of detail.

Each chapter is fairly independent, like the Linux kernel subsystem that they each
describe. ometimes, though, there are linkages; for example you cannot describe a
process without understanding how virtual memory works.

The Hardware Basics chapter (Chapter 1) gives a brief introduction to the modern
PC. An operating system has to work closely with the hardware system that acts
as its foundations. The operating system needs certain services that can only be
provided by the hardware. In order to fully understand the Linux operating system,
you need to understand the basics of the underlying hardware.

The oftware Basics chapter (Chapter) introduces basic software principles and
looks at assembly and C programing languages. It looks at the tools that are used
to build an operating system like Linux and it gives an overview of the aims and
functions of an operating system.

The Memory Management chapter (Chapter 3) describes the way that Linux handles
the physical and virtual memory in the system.

The Processes chapter (Chapter) describes what a process is and how the Linux
kernel creates, manages and deletes the processes in the system.

Processes communicate with each other and with the kernel to coordinate their activ-
ities. Linux supports a number of Inter-Process Communication (IPC) mechanisms.

ignals and pipes are two of them but Linux also supports the ystem V IPC mecha-
nisms named after the Unix™ release in which they rst appeared. These interprocess
communications mechanisms are described in Chapter

The Peripheral Component Interconnect (PCI) standard is now rmly established
as the low cost, high performance data bus for PCs. The PCI chapter (Chapter 6)
describes how the Linux kernel initializes and uses PCI buses and devices in the
system.

The Interrupts and Interrupt Handling chapter (Chapter 7) looks at how the Linux
kernel handles interrupts. Whilst the kernel has generic mechanisms and interfaces
for handling interrupts, some of the interrupt handling details are hardware and
architecture speci c.

ne of Linux s strengths is its support for the many available hardware devices for
the modern PC. The Device Drivers chapter (Chapter 8) describes how the Linux
kernel controls the physical devices in the system.

The ile system chapter (Chapter 9) describes how the Linux kernel maintains the
les in the le systems that it supports. It describes the Virtual ile ystem (V.)
and how the Linux kernel s real le systems are supported.

etworking and Linux are terms that are almost synonymous. In a very real sense
Linux is a product of the Internet or World Wide Web (WWW). Its developers and
users use the web to exchange information ideas, code and Linux itself is often used
to support the networking needs of organizations. Chapter 10 describes how Linux
supports the network protocols known collectively as TCP IP.

The Kernel Mechanisms chapter (Chapter 11) looks at some of the general tasks and
mechanisms that the Linux kernel needs to supply so that other parts of the kernel
work effectively together.

The Modules chapter (Chapter 1) describes how the Linux kernel can dynamically
load functions, for example le systems, only when they are needed.

The Processors chapter (Chapter 13) gives a brief description of some of the proces-
sors that Linux has been ported to.

The ources chapter (Chapter 1) describes where in the Linux kernel sources you
should start looking for particular kernel functions.

o e tio e 1 t1 00

The following is a list of the typographical conventions used in this book.

serif font identi es commands or other text that is to be typed
literally by the user.
refers to data structures or elds
within data structures.

Throughout the text there references to pieces of code within the Linux kernel source
tree (for example the boxed margin note adjacent to this text). These are given
in case you wish to look at the source code itself and all of the le references are
relative to . Taking as an example, the full lename
would be If you are running Linux (and you should),
then looking at the code is a worthwhile experience and you can use this book as an
aid to understanding the code and as a guide to its many data structures.

a e a

ARM is a trademark of ARM Holdings PLC.
Caldera, penLinux and the “C” logo are trademarks of Caldera, Inc.
Caldera penD 1997 Caldera, Inc.
DEC is a trademark of Digital E uipment Corporation.
DIGITAL is a trademark of Digital E uipment Corporation.
Linux is a trademark of Linus Torvalds.
Motif is a trademark of The pen ystem oundation, Inc.
M D s a trademark of Microsoft Corporation.
Red Hat, glint and the Red Hat logo are trademarks of Red Hat oftware, Inc.
U I is aregistered trademark of pen.
ree86 is a trademark of ree86 Project, Inc.

Window ystem is a trademark of the Consortium and the Massachusetts In-
stitute of Technology.

e t o

I wasbornin 19 7, a few weeks before putnik was launched, in the north of England.
I rst met Unix at University, where a lecturer used it as an example when teaching
the notions of kernels, scheduling and other operating systems goodies. I loved using
the newly delivered PDP-11 for my nal year project. After graduating (in 198 with
a irst Class Honours degree in Computer cience) I worked for Prime Computers
(Primos) and then after a couple of years for Digital (VM , Ultrix). At Digital I
worked on many things but for the last years there, I worked for the semiconductor
group on Alpha and trongARM evaluation boards. In 1998 I moved to ARM where
I have a small group of engineers writing low level rmware and porting operating
systems. My children (Esther and tephen) describe me as a geek.

People often ask me about Linux at work and at home and I am only too happy
to oblige. The more that I use Linux in both my professional and personal life the
more that I become a Linux zealot. You may note that I use the term zealot and
not bigot ; I de ne a Linux zealot to be an enthusiast that recognizes that there
are other operating systems but prefers not to use them. As my wife, Gill, who
uses Windows 9 once remarked “I never realized that we would have his and her
operating systems”. or me, as an engineer, Linux suits my needs perfectly. It is
a superb, flexible and adaptable engineering tool that I use at work and at home.
Most freely available software easily builds on Linux and I can often simply download
pre-built executable les or install them from a CD R M. What else could I use to
learn to program in C , Perl or learn about ava for free?

c o lege et

I must thank the many people who have been kind enough to take the time to e-
mail me with comments about this book. I have attempted to incorporated those

comments in each new version that I have produced and I am more than happy to
receive comments, however please note my new e-mail address.

A number of lecturers have written to me asking if they can use some or parts of
this book in order to teach computing. My answer is an emphatic yes; this is one
use of the book that I particularly wanted. Who knows, there may be another Linus
Torvalds sat in the class.

pecial thanks must go to ohn Rigby and Michael Bauer who gave me full, detailed
review notes of the whole book. ot an easy task. Alan Cox and tephen Tweedie
have patiently answered my uestions - thanks. I used Larry Ewing s penguins to
brighten up the chapters a bit. inally, thank you to Greg Hankins for accepting
this book into the Linux Documentation Project and onto their web site.

1.1

1.3

1.6

3.1

The CPU e
Memory v o i e e e e e e e e e e e e e e e e
Buses
Controllers and Peripherals
Address paces e e
Timers L e 6
Computer Languages o i oo e 7
1.1 Assembly Languages oo oo 7
.1. The C Programming Language and Compiler 8
13 Linkers 9
What is an perating ystem?, 9
.1 Memory management 10
Processes 10
..3 Devicedrivers. e 11
The ilesystems, 11
Kernel Data tructures 11
3.1 Linked Lists o o e 1
3. HashTables. 1
3.3 Abstract Interfaces oL, 13
An Abstract Model of Virtual Memory 16
3.1.1 Demand Paging. 18
3.1. WapPPING o e e e e e e e e e e e 19
3.1.3 hared Virtual Memory 19
3.1. Physical and Virtual Addressing Modes 19
31. AccessControl 0

ix

3. Caches e 1
3.3 Linux PageTables,

3. Page Allocation and Deallocation 3

3..1 PageAllocation.

3. . PageDeallocation

3. Memory Mapping e
3.6 Demand Paging o 6
3.7 The Linux PageCache 7
3.8 wapping ut and Discarding Pages 8
3.8.1 Reducing the ize of the Page and Buffer Caches 9
3.8. wapping ut ystem V hared Memory Pages. 30
3.8.3 wapping ut and Discarding Pages 30
39 The wap Cache 31

3.10 wapping PagesIn Lo oL 3

.1 Linux Processes e 36
Identi ers 38
3 cheduling. 39
3.1 cheduling in Multiprocessor ystems 1

les . o
Virtual Memory 3

.6 Creatinga Process
.7 Times and Timers 6
.8 Executing Programs o0, 7
8.1 EL L 8
8. cript iles 0
1 dgnals L 1
Pipes. e 3

3 ockets ...

3.1 ystem V IPC Mechanisms

3. Message ueues e
3.3 emaphoreso 6
.3. hared Memory L o 8
6.1 PCI Address paces ittty 61

6. PCI Con guration Headers 6

6.3 PCII and PCI Memory Addresses. 6

6.6

7.1

7.3

8.1

8.3

8.6

9.1

PCI-I ABridges . . . - o o o v v v it e 6
PCI-PCIBridges 6
6. .1 PCI-PCI Bridges PCII and PCI Memory Windows 6
6. . PCI-PCI Bridges PCI Con guration Cycles and PCI Bus

umberingo 6
Linux PCI Initialization 66
6.6.1 The Linux Kernel PCI Data tructures 67
6.6. The PCI Device Driver 68
6.6.3 PCIBI unctionso 70
6.6. PCI ixup e 7
Programmable Interrupt Controllers 77
Initializing the Interrupt Handling Data tructures i
Interrupt Handling 78
Polling and Interrupts 8
Direct Memory Access (DMA) 8
Memory o o i e 8
Interfacing Device Drivers with the Kernel 8
8. .1 Character Devices 86
8 . BlockDevices 87
Hard Disks e 88
8. .1 IDEDisks e 90
8. . Initializing the IDE ubsystem 91
8 .3 CIDisks 91
etwork Devices L 9
8.6.1 Initializing etwork Devices 96
The econd Extended ilesystem (E T). 101
911 TheE T Inode, 10
91. TheE T wperblock 103
9.1.3 The E T Group Descriptor 10
91. E T Directories. 10
9.1. inding a ileinanE T ile ystem 10
9.1.6 Changing the izeofa ileinanE T ile ystem 106
The Virtual ile ystem (V) 107
9..1 TheV uperblocko o 109

9.. The V. Inode @ ... e, 109

9.3

10.1
10.
10.3
10.

10.

10.6
10.7

111
11.
11.3
11.
11.
11.6

9. .3 Registering the ile ystems 110
9. . DMountinga ile ystem 110
9.. inding a ile in the Virtual ile ystem 11
9. .6 Creating a ile in the Virtual ile ystem 11
9. .7 Unmounting a ile ystem 11
9. .8 TheV InodeCache 113
9. .9 The Directory Cache 113
The Buffer Cache 11
9.3.1 The Kernel Daemon 116
9.3. Theupdate Process. 116
The proc ile ystem 116
Device pecial iles o 117
An verview of TCP IP etworking 119
The Linux TCP IP etworking Layers 1
The B D ocket Interface, 1
Thel ET ocketLayer 1
10. .1 CreatingaB D ocket 17
10. . Binding an AddresstoanI ET B D ocket 17
10. .3 Making a Connection onanI ET B D ocket 18
10. . ListeningonanI ET B D ocket 19
10. . Accepting Connection Re uests 130
The IP Layer o e 130
10. .1 ocket Buffers 0. 130
10. . ReceivingIP Packets, 131
10. .3 ending IP Packets 13
10. . Data ragmentation 133
The Address Resolution Protocol (ARP) 133
IP Routing e 13
10.7.1 The Route Cache, 13
10.7. The orwarding Information Database 136
Bottom Half Handling 139
Task wueues L 10
Timers e e e 11
Wait uweueso 1
Buzz Locks 13
emaphores 13

1.1
1.

13.1
13.
13.3

C.1

C.3

C.6
C.7

D.1

D.3

Loading a Module 16
Unloading a Module 138
86 . 11
ARM e e 11
Alpha A P Processor i i e 1
VEIVIEW . . v v v et e e e e e e e e e e e e e e e e e e 179
Getting Involvedo 180
Current Projects Lo 180
TP sites for LDP works, 180
Documentation Conventions 180
Copyright and License 181
Publishing LDP Manuals 181
Preamble 183
Terms and Conditions, 18
How to Apply These Terms 188

1.1

3.1

3.3

3.6

6.1

6.3

6.6
6.7
6.8
6.9
6.10

8.1

A typical PC motherboard.

Abstract model of Virtual to Physical address mapping 16
Alpha A PPage Table Entry 0
Three Level Page Tables 3
The - data structure oo

Areas of Virtual Memory o o 6
The Linux Page Cache, 7
A Processs dles

A Process s Virtual Memory oo

Registered Binary ormats 7
EL Executable ile ormat, 8
Pipes. e
ystem V IPC Message ueueso .. 6
ystem VIPC emaphores 7
ystem VIPC hared Memory 9
Example PCI Based ystem 6
The PCI Con guration Header 63
Type 0 PCI Con guration Cycle 6
Type 1 PCI Con guration Cycle 6
Linux Kernel PCI Data tructures 67
Con guring a PCI ystem Part1 69
Con guring a PCI ystem Part 70
Con guring a PCI ystem Part3 71
Con guring a PCI ystem Part 71
PCI Con guration Header Base Address Registers 7
A Logical Diagram of Interrupt Routing 76
Linux Interrupt Handling Data tructures 79
Character Devices 86

XV

8. Buffer Cache Block Device Re uests 87

8.3 Linked list of disks Lo 89
8. C I Data tructures 93
9.1 Physical Layout of the E T ilesystem 101
9. E T Inode. i 10
9.3 E T Directory e 10
9. A Logical Diagram of the Virtual ile ystem 107
9. Registered ile ystems 110
9.6 A Mounted ile ystem 11
9.7 TheBuffer Cache 11
10.1 TCP IP Protocol Layers 11
10. Linux etworking Layers 13
10.3 Linux B D ocket Data tructures 16
10. The ocket Buffer (skbuff) o 0oL 131
10. The orwarding Information Database 136
11.1 Bottom Half Handling Data tructures. 139
11. ATask wueue. e 10
11.3 ystem Timers 1
11. Wait uweue e 13

ar are a C

When the “Popular Electronics” magazine for anuary 197 was printed with an
illustration of the Altair 8080 on its front cover, a revolution started. The Altair
8080, named after the destination of an early tar Trek episode, could be assembled
by home electronics enthusiasts for a mere 397. With its Intel 8080 processor and

6 bytes of memory but no screen or keyboard it was puny by today s standards.
Its inventor, Ed Roberts, coined the term “personal computer” to describe his new
invention, but the term PC is now used to refer to almost any computer that you
can pick up without needing help. By this de nition, even some of the very powerful
Alpha A P systems are PCs.

Enthusiastic hackers saw the Altair s potential and started to write software and
build hardware for it. To these early pioneers it represented freedom; the freedom
from huge batch processing mainframe systems run and guarded by an elite priest-
hood. vernight fortunes were made by college dropouts fascinated by this new
phenomenon, a computer that you could have at home on your kitchen table. A lot
of hardware appeared, all different to some degree and software hackers were happy
to write software for these new machines. Paradoxically it was IBM who rmly cast
the mould of the modern PC by announcing the IBM PC in 1981 and shipping it to
customers early in 198 . With its Intel 8088 processor, 6 K of memory (expandable
to 6K), two floppy disks and an 80 character by lines Colour Graphics Adapter
(CGA) it was not very powerful by today s standards but it sold well. It was fol-
lowed, in 1983, by the IBM PC- T which had the luxury of a 10Mbyte hard drive.
It was not long before IBM PC clones were being produced by a host of companies
such as Compa and the architecture of the PC became a de-facto standard. This

| parallel port |

CPU

[com1 || com2 |

Memory SSMM Sots

PCl Sots

| | ISA Sots

igure 1.1 A typical PC motherboard.

de-facto standard helped a multitude of hardware companies to compete together in
a growing market which, happily for consumers, kept prices low. Many of the system
architectural features of these early PCs have carried over into the modern PC. or
example, even the most powerful Intel Pentium Pro based system starts running in
the Intel 8086 s addressing mode. When Linus Torvalds started writing what was
to become Linux, he picked the most plentiful and reasonably priced hardware, an
Intel 80386 PC.

Looking at a PC from the outside, the most obvious components are a system box,
a keyboard, a mouse and a video monitor. n the front of the system box are some
buttons, a little display showing some numbers and a floppy drive. Most systems
these days have a CD R M and if you feel that you have to protect your data, then
there will also be a tape drive for backups. These devices are collectively known as
the peripherals.

Although the CPU is in overall control of the system, it is not the only intelligent
device. All of the peripheral controllers, for example the IDE controller, have some
level of intelligence. Inside the PC (igure 1.1) you will see a motherboard containing
the CPU or microprocessor, the memory and a number of slots for the I A or PCI
peripheral controllers. ome of the controllers, for example the IDE disk controller
may be built directly onto the system board.

e

The CPU, or rather microprocessor, is the heart of any computer system. The micro-
processor calculates, performs logical operations and manages data flows by reading
instructions from memory and then executing them. In the early days of comput-

ing the functional components of the microprocessor were separate (and physically
large) units. This is when the term entral 710 essin nit was coined. The modern
microprocessor combines these components onto an integrated circuit etched onto
a very small piece of silicon. The terms , 1 ropro essor and pro essor are all
used interchangeably in this book.

Microprocessors operate on binary data; that is data composed of ones and zeros.
These ones and zeros correspond to electrical switches being either on or off. ust
as is a decimal number meaning “ 10s and units”, a binary number is a series
of binary digits each one representing a power of . In this context, a power means
the number of times that a number is multiplied by itself. 10 to the power 1 (10)
is 10, 10 to the power (10) is 10x10, 10 is 10x10x10 and so on. Binary 0001 is
decimal 1, binary 0010 is decimal , binary 0011 is 3, binary 0100 is and so on. o,

decimal is 101010 binaryor (8 3 or). Rather than using binary
to represent numbers in computer programs, another base, hexadecimal is usually
used. In this base, each digital represents a power of 16. As decimal numbers only
go from 0 to 9 the numbers 10 to 1 are represented as a single digit by the letters
A, B,C,D,Eand . orexample, hexadecimal E is decimal 1 and hexadecimal A
is decimal (two 16s) 10). Using the C programming language notation (as I do
throughout this book) hexadecimal numbers are prefaced by “ ”; hexadecimal A
is written as

Microprocessors can perform arithmetic operations such as add, multiply and divide

“is greater than Y?7”.

and logical operations such as

The processor s execution is governed by an external clock. This clock, the system
clock, generates regular clock pulses to the processor and, at each clock pulse, the
processor does some work. or example, a processor could execute an instruction
every clock pulse. A processor s speed is described in terms of the rate of the system
clock ticks. A 100Mhz processor will receive 100,000,000 clock ticks every second. It
is misleading to describe the power of a CPU by its clock rate as different processors
perform different amounts of work per clock tick. However, all things being e ual, a
faster clock speed means a more powerful processor. The instructions executed by the
processor are very simple; for example “read the contents of memory at location
into register Y”. Registers are the microprocessor s internal storage, used for storing
data and performing operations on it. The operations performed may cause the
processor to stop what it is doing and jump to another instruction somewhere else in
memory. These tiny building blocks give the modern microprocessor almost limitless
power as it can execute millions or even billions of instructions a second.

The instructions have to be fetched from memory as they are executed. Instructions
may themselves reference data within memory and that data must be fetched from
memory and saved there when appropriate.

The size, number and type of register within a microprocessor is entirely dependent
on its type. An Intel 086 processor has a different register set to an Alpha A P
processor; for a start, the Intel s are 3 bits wide and the Alpha A P s are 6 bits
wide. In general, though, any given processor will have a number of general purpose
registers and a smaller number of dedicated registers. Most processors have the
following special purpose, dedicated, registers

This register contains the address of the next instruction
to be executed. The contents of the PC are automatically incremented each
time an instruction is fetched,

Processors have to have access to large amounts of external
read write random access memory (RAM) which facilitates temporary storage
of data. The stack is a way of easily saving and restoring temporary values in
external memory. Usually, processors have special instructions which allow you
to push values onto the stack and to pop them off again later. The stack works
on a last in rst out (LI) basis. In other words, if you push two values, x
and y, onto a stack and then pop a value off of the stack then you will get back
the value of y.

ome processor s stacks grow upwards towards the top of memory whilst others
grow downwards towards the bottom, or base, of memory. ome processor s
support both types, for example ARM.

Instructions may yield results; for example “is the content
of register greater than the content of register Y?” will yield true or false as
a result. The P register holds this and other information about the current
state of the processor. or example, most processors have at least two modes
of operation, kernel (or supervisor) and user. The P register would hold
information identifying the current mode.

e O

All systems have a memory hierarchy with memory at different speeds and sizes at
different points in the hierarchy. The fastest memory is known as cache memory and
is what it sounds like - memory that is used to temporarily hold, or cache, contents
of the main memory. This sort of memory is very fast but expensive, therefore most
processors have a small amount of on-chip cache memory and more system based (on-
board) cache memory. ome processors have one cache to contain both instructions
and data, but others have two, one for instructions and the other for data. The
Alpha A P processor has two internal memory caches; one for data (the D-Cache)
and one for instructions (the I-Cache). The external cache (or B-Cache) mixes the
two together. inally there is the main memory which relative to the external cache
memory is very slow. Relative to the on-CPU cache, main memory is positively
crawling.

The cache and main memories must be kept in step (coherent). In other words, if
a word of main memory is held in one or more locations in cache, then the system
must make sure that the contents of cache and memory are the same. The job of
cache coherency is done partially by the hardware and partially by the operating
system. This is also true for a number of major system tasks where the hardware
and software must cooperate closely to achieve their aims.

e

The individual components of the system board are interconnected by multiple con-
nection systems known as buses. The system bus is divided into three logical func-
tions; the address bus, the data bus and the control bus. The address bus speci es
the memory locations (addresses) for the data transfers. The data bus holds the data
transfered. The data bus is bidirectional; it allows data to be read into the CPU and
written from the CPU. The control bus contains various lines used to route timing

and control signals throughout the system. Many flavours of bus exist, for example
I A and PCI buses are popular ways of connecting peripherals to the system.

otolle a el e al

Peripherals are real devices, such as graphics cards or disks controlled by controller
chips on the system board or on cards plugged into it. The IDE disks are controlled
by the IDE controller chip and the C I disks by the C I disk controller chips and
so on. These controllers are connected to the CPU and to each other by a variety
of buses. Most systems built now use PCI and I A buses to connect together the
main system components. The controllers are processors like the CPU itself, they
can be viewed as intelligent helpers to the CPU. The CPU is in overall control of the
system.

All controllers are different, but they usually have registers which control them.

oftware running on the CPU must be able to read and write those controlling
registers. ne register might contain status describing an error. Another might be
used for control purposes; changing the mode of the controller. Each controller on
a bus can be individually addressed by the CPU, this is so that the software device
driver can write to its registers and thus control it. The IDE ribbon is a good example,
as it gives you the ability to access each drive on the bus separately. Another good
example is the PCI bus which allows each device (for example a graphics card) to be
accessed independently.

e ace

The system bus connects the CPU with the main memory and is separate from the
buses connecting the CPU with the system s hardware peripherals. Collectively the
memory space that the hardware peripherals exist in is known as I ~ space. I
space may itself be further subdivided, but we will not worry too much about that
for the moment. The CPU can access both the system space memory and the I
space memory, whereas the controllers themselves can only access system memory
indirectly and then only with the help of the CPU. rom the point of view of the
device, say the floppy disk controller, it will see only the address space that its
control registers are in (I A), and not the system memory. Typically a CPU will
have separate instructions for accessing the memory and I space. or example,
there might be an instruction that means “read a byte from I ~ address into
register 7. This is exactly how the CPU controls the system s hardware peripherals,
by reading and writing to their registers in I =~ space. Where in I ~ space the
common peripherals (IDE controller, serial port, floppy disk controller and so on)
have their registers has been set by convention over the years as the PC architecture
has developed. The I space address just happens to be the address of one
of the serial port s (C M1) control registers.

There are times when controllers need to read or write large amounts of data directly
to or from system memory. or example when user data is being written to the
hard disk. In this case, Direct Memory Access (DMA) controllers are used to allow
hardware peripherals to directly access system memory but this access is under strict
control and supervision of the CPU.

i e

All operating systems need to know the time and so the modern PC includes a special
peripheral called the Real Time Clock (RTC). This provides two things a reliable
time of day and an accurate timing interval. The RTC has its own battery so that
it continues to run even when the PC is not powered on, this is how your PC always
“knows” the correct date and time. The interval timer allows the operating system
to accurately schedule essential work.

f are a c

o te La g age

The instructions that a CPU fetches from memory and executes are not at all un-
derstandable to human beings. They are machine codes which tell the computer
precisely what to do. The hexadecimal number E is an Intel 80 86 instruction
which copies the contents of the E P register to the EBP register. ne of the rst
software tools invented for the earliest computers was an assembler, a program which
takes a human readable source le and assembles it into machine code. Assembly
languages explicitly handle registers and operations on data and they are speci c to
a particular microprocessor. The assembly language for an Intel 86 microprocessor
is very different to the assembly language for an Alpha A P microprocessor. The
following Alpha A P assembly code shows the sort of operations that a program can
perform

The rst statement (on line 1) loads register 16 from the address held in register
1 . The next instruction loads register 17 from the next location in memory. Line 3
compares the contents of register 16 with that of register 17 and, if they are e ual,
branches to label . If the registers do not contain the same value then the program
continues to line where the contents of r17 are saved into memory. If the registers
do contain the same value then no data needs to be saved. Assembly level programs
are tedious and tricky to write and prone to errors. Very little of the Linux kernel is
written in assembly language and those parts that are are written only for e ciency
and they are speci c to particular microprocessors.

Writing large programs in assembly language is a di cult and time consuming task.
It is prone to error and the resulting program is not portable, being tied to one
particular processor family. It is far better to use a machine independent language
like C 7, The C Programming Language . C allows you to describe programs in terms
of their logical algorithms and the data that they operate on. pecial programs called
compilers read the C program and translate it into assembly language, generating
machine speci ¢ code from it. A good compiler can generate assembly instructions
that are very nearly as e cient as those written by a good assembly programmer.
Most of the Linux kernel is written in the C language. The following C fragment

performs exactly the same operations as the previous example assembly code. If the
contents of the variable are not the same as the contents of variable then the
contents of will be copied to . C code is organized into routines, each of which
perform a task. Routines may return any value or data type supported by C. Large
programs like the Linux kernel comprise many separate C source modules each with
its own routines and data structures. These C source code modules group together
logical functions such as lesystem handling code.

C supports many types of variables, a variable is a location in memory which can be
referenced by a symbolic name. In the above C fragment and refer to locations
in memory. The programmer does not care where in memory the variables are put,
it is the linker (see below) that has to worry about that. ome variables contain
different sorts of data, integer and floating point and others are pointers.

Pointers are variables that contain the address, the location in memory of other

data. Consider a variable called , it might live in memory at address .

You could have a pointer, called p , which points at . p might live at address
. The value of p would be the address of the variable

C allows you to bundle together related variables into data structures. or example,

is a data structure called _ which contains two elements, an integer (3 bits
of data storage) called and a character (8 bits of data) called

Linkers are programs that link together several object modules and libraries to form
a single, coherent, program. bject modules are the machine code output from an
assembler or compiler and contain executable machine code and data together with
information that allows the linker to combine the modules together to form a pro-
gram. or example one module might contain all of a program s database functions
and another module its command line argument handling functions. Linkers x up
references between these object modules, where a routine or data structure refer-
enced in one module actually exists in another module. The Linux kernel is a single,
large program linked together from its many constituent object modules.

ati a e ati g te

Without software a computer is just a pile of electronics that gives off heat. If the
hardware is the heart of a computer then the software is its soul. An operating system
is a collection of system programs which allow the user to run application software.
The operating system abstracts the real hardware of the system and presents the
system s users and its applications with a virtual machine. In a very real sense
the software provides the character of the system. Most PCs can run one or more
operating systems and each one can have a very different look and feel. Linux is
made up of a number of functionally separate pieces that, together, comprise the
operating system. ne obvious part of Linux is the kernel itself; but even that would
be useless without libraries or shells.

In order to start understanding what an operating system is, consider what happens
when you type an apparently simple command

The is a prompt put out by a login shell (in this case). This means that it
is waiting for you, the user, to type some command. Typing Is causes the keyboard
driver to recognize that characters have been typed. The keyboard driver passes
them to the shell which processes that command by looking for an executable image
of the same name. It nds that image, in . Kernel services are called to pull
the Is executable image into virtual memory and start executing it. The Is image
makes calls to the le subsystem of the kernel to nd out what les are available.
The lesystem might make use of cached lesystem information or use the disk
device driver to read this information from the disk. It might even cause a network
driver to exchange information with a remote machine to nd out details of remote

les that this system has access to (lesystems can be remotely mounted via the

etworked ile ystem or). Whichever way the information is located, Is writes
that information out and the video driver displays it on the screen.

All of the above seems rather complicated but it shows that even most simple com-
mands reveal that an operating system is in fact a co-operating set of functions that
together give you, the user, a coherent view of the system.

With in nite resources, for example memory, many of the things that an operating
system has to do would be redundant. ne of the basic tricks of any operating
system is the ability to make a small amount of physical memory behave like rather
more memory. This apparently large memory is known as virtual memory. The idea
is that the software running in the system is fooled into believing that it is running
in a lot of memory. The system divides the memory into easily handled pages and
swaps these pages onto a hard disk as the system runs. The software does not notice
because of another trick, multi-processing.

A process could be thought of as a program in action, each process is a separate
entity that is running a particular program. If you look at the processes on your
Linux system, you will see that there are rather a lot. or example, typing ps shows
the following processes on my system

If my system had many CPUs then each process could (theoretically at least) run
on a different CPU. Unfortunately, there is only one so again the operating system
resorts to trickery by running each process in turn for a short period. This period of
time is known as a time-slice. This trick is known as multi-processing or scheduling
and it fools each process into thinking that it is the only process. Processes are
protected from one another so that if one process crashes or malfunctions then it will
not affect any others. The operating system achieves this by giving each process a
separate address space which only they have access to.

Device drivers make up the major part of the Linux kernel. Like other parts of the
operating system, they operate in a highly privileged environment and can cause
disaster if they get things wrong. Device drivers control the interaction between the
operating system and the hardware device that they are controlling. or example,
the lesystem makes use of a general block device interface when writing blocks to
an IDE disk. The driver takes care of the details and makes device speci ¢ things
happen. Device drivers are speci c to the controller chip that they are driving which
is why, for example, you need the CR810 C Idriver if your system has an CR810
C I controller.

In Linux, as it is for Unix™ , the separate lesystems that the system may use
are not accessed by device identi ers (such as a drive number or a drive name) but
instead they are combined into a single hierarchical tree structure that represents the

lesystem as a single entity. Linux adds each new lesystem into this single lesystem
tree as they are mounted onto a mount directory, for example . neof
the most important features of Linux is its support for many different lesystems.
This makes it very flexible and well able to coexist with other operating systems. The
most popular lesystem for Linux is the lesystem and this is the lesystem
supported by most of the Linux distributions.

A lesystem gives the user a sensible view of les and directories held on the hard
disks of the system regardless of the lesystem type or the characteristics of the
underlying physical device. Linux transparently supports many different lesystems
(for example and) and presents all of the mounted les and lesystems
as one integrated virtual lesystem. o, in general, users and processes do not need
to know what sort of lesystem that any le is part of, they just use them.

The block device drivers hide the differences between the physical block device types

(for example, and) and, so far as each lesystem is concerned, the physical

devices are just linear collections of blocks of data. The block sizes may vary between

devices, for example 1 bytes is common for floppy devices whereas 10 bytes is

common for IDE devices and, again, this is hidden from the users of the system. An
lesystem looks the same no matter what device holds it.

e el ata t ct e

The operating system must keep a lot of information about the current state of the
system. As things happen within the system these data structures must be changed
to reflect the current reality. or example, a new process might be created when
a user logs onto the system. The kernel must create a data structure representing
the new process and link it with the data structures representing all of the other
processes in the system.

Mostly these data structures exist in physical memory and are accessible only by
the kernel and its subsystems. Data structures contain data and pointers; addresses
of other data structures or the addresses of routines. Taken all together, the data
structures used by the Linux kernel can look very confusing. Every data structure

has a purpose and although some are used by several kernel subsystems, they are
more simple than they appear at rst sight.

Understanding the Linux kernel hinges on understanding its data structures and the
use that the various functions within the Linux kernel makes of them. This book
bases its description of the Linux kernel on its data structures. It talks about each
kernel subsystem in terms of its algorithms, its methods of getting things done, and
their usage of the kernel s data structures.

Linux uses a number of software engineering techni ues to link together its data
structures. n a lot of occasions it uses lin ed or hained data structures. If each
data structure describes a single instance or occurance of something, for example a
process or a network device, the kernel must be able to nd all of the instances. In a
linked list a root pointer contains the address of the rst data structure, or ele ent,
in the list and each data structure contains a pointer to the next element in the list.
The last element s next pointer would be 0 or ULL to show that it is the end of the
list. Ina do 1 lin edlist each element contains both a pointer to the next element
in the list but also a pointer to the previous element in the list. Using doubly linked
lists makes it easier to add or remove elements from the middle of list although you
do need more memory accesses. This is a typical operating system trade off memory
accesses versus CPU cycles.

Linked lists are handy ways of tying data structures together but navigating linked
lists can be ine cient. If you were searching for a particular element, you might
easily have to look at the whole list before you nd the one that you need. Linux
uses another techni ue, hashin to get around this restriction. A hash ta le is an
arra or e tor of pointers. An array, or vector, is simply a set of things coming one
after another in memory. A bookshelf could be said to be an array of books. Arrays
are accessed by an inde , the index is an offset into the array. Taking the bookshelf
analogy a little further, you could describe each book by its position on the shelf;
you might ask for the th book.

A hash table is an array of pointers to data structures and its index is derived
from information in those data structures. If you had data structures describing
the population of a village then you could use a person s age as an index. To nd
a particular person s data you could use their age as an index into the population
hash table and then follow the pointer to the data structure containing the person s
details. Unfortunately many people in the village are likely to have the same age
and so the hash table pointer becomes a pointer to a chain or list of data structures
each describing people of the same age. However, searching these shorter chains is
still faster than searching all of the data structures.

As a hash table speeds up access to commonly used data structures, Linux often
uses hash tables to implement a hes. Caches are handy information that needs to
be accessed uickly and are usually a subset of the full set of information available.
Data structures are put into a cache and kept there because the kernel often accesses
them. There is a drawback to caches in that they are more complex to use and

maintain than simple linked lists or hash tables. If the data structure can be found
in the cache (this is known as a a he hit, then all well and good. If it cannot then
all of the relevant data structures must be searched and, if the data structure exists
at all, it must be added into the cache. In adding new data structures into the cache
an old cache entry may need discarding. Linux must decide which one to discard,
the danger being that the discarded data structure may be the next one that Linux
needs.

The Linux kernel often abstracts its interfaces. An interface is a collection of routines
and data structures which operate in a particular way. or example all network
device drivers have to provide certain routines in which particular data structures
are operated on. This way there can be generic layers of code using the services
(interfaces) of lower layers of speci ¢ code. The network layer is generic and it is
supported by device speci ¢ code that conforms to a standard interface.

ften these lower layers re ister themselves with the upper layer at boot time. This
registration usually involves adding a data structure to a linked list. or example
each lesystem built into the kernel registers itself with the kernel at boot time
or, if you are using modules, when the lesystem is rst used. You can see which

lesystems have registered themselves by looking at the le .
The registration data structure often includes pointers to functions. These are the
addresses of software functions that perform particular tasks. Again, using lesystem
registration as an example, the data structure that each lesystem passes to the Linux
kernel as it registers includes the address of a lesystem spec ¢ routine which must
be called whenever that lesystem is mounted.

Me r Ma ae e

Virtual memory does more than just make your computer s memory go further. The
memory management subsystem provides

The operating system makes the system appear as if it has
a larger amount of memory than it actually has. The virtual memory can be
many times larger than the physical memory in the system,

Each process in the system has its own virtual address space. These
virtual address spaces are completely separate from each other and so a process
running one application cannot affect another. Also, the hardware virtual
memory mechanisms allow areas of memory to be protected against writing.
This protects code and data from being overwritten by rogue applications.

Memory mapping is used to map image and data les into a
processes address space. In memory mapping, the contents of a le are linked
directly into the virtual address space of a process.

The memory management subsystem allows
each running process in the system a fair share of the physical memory of the
system,

Although virtual memory allows processes to have sep-
arate (virtual) address spaces, there are times when you need processes to share
memory. or example there could be several processes in the system running

Process X Process Y

VPFN 7 — VPFN 7
VPFN 6 Process X Process Y VPFN 6
Page Tables Page Tables
foy — e
VPFN 5 = VPFN 5
<
-t
» 1
>
VPFN 4 PFN 4 VPFN 4
VPFN 3 —J' PFN 3 VPFN 3
VPFN 2 PAN 2 VPFN 2
PFN 1
VPFN 1 L L VPFN 1
VPFN O —_ PFN O VPFN O
—
VIRTUAL MEMORY PHYSICAL MEMORY VIRTUAL MEMORY

igure 3.1 Abstract model of Virtual to Physical address mapping

the bash command shell. Rather than have several copies of bash, one in each
processes virtual address space, it is better to have only one copy in physical
memory and all of the processes running bash share it. Dynamic libraries are
another common example of executing code shared between several processes.

hared memory can also be used as an Inter Process Communication (IPC)
mechanism, with two or more processes exchanging information via memory
common to all of them. Linux supports the Unix™ ystem V shared memory
IPC.

tact o elo ital e o

Before considering the methods that Linux uses to support virtual memory it is
useful to consider an abstract model that is not cluttered by too much detail.

As the processor executes a program it reads an instruction from memory and decodes
it. In decoding the instruction it may need to fetch or store the contents of a location
in memory. The processor then executes the instruction and moves onto the next
instruction in the program. In this way the processor is always accessing memory
either to fetch instructions or to fetch and store data.

In a virtual memory system all of these addresses are virtual addresses and not
physical addresses. These virtual addresses are converted into physical addresses by
the processor based on information held in a set of tables maintained by the operating
system.

To make this translation easier, virtual and physical memory are divided into handy
sized chunks called pa es. These pages are all the same size, they need not be but if
they were not, the system would be very hard to administer. Linux on Alpha A P
systems uses 8 Kbyte pages and on Intel x86 systems it uses Kbyte pages. Each
of these pages is given a uni ue number; the page frame number (P). In this
paged model, a virtual address is composed of two parts; an offset and a virtual page
frame number. If the page size is Kbytes, bits 11 0 of the virtual address contain

the offset and bits 1 and above are the virtual page frame number. Each time the
processor encounters a virtual address it must extract the offset and the virtual page
frame number. The processor must translate the virtual page frame number into
a physical one and then access the location at the correct offset into that physical
page. To do this the processor uses pa e ta les.

igure 3.1 shows the virtual address spaces of two processes, process and process

, each with their own page tables. These page tables map each processes virtual

pages into physical pages in memory. This shows that process s virtual page frame

number 0 is mapped into memory in physical page frame number 1 and that process

s virtual page frame number 1 is mapped into physical page frame number . Each
entry in the theoretical page table contains the following information

Valid flag. This indicates if this page table entry is valid,
The physical page frame number that this entry is describing,

Access control information. This describes how the page may be used. Can it
be written to? Does it contain executable code?

The page table is accessed using the virtual page frame number as an offset. Virtual
page frame would be the 6th element of the table (0 is the rst element).

To translate a virtual address into a physical one, the processor must rst work out
the virtual addresses page frame number and the offset within that virtual page. By
making the page size a power of this can be easily done by masking and shifting.
Looking again at igures 3.1 and assuming a page size of bytes (which is
decimal 819) and an address of in process s virtual address space then
the processor would translate that address into offset into virtual page frame
number 1.

The processor uses the virtual page frame number as an index into the processes
page table to retrieve its page table entry. If the page table entry at that offset is
valid, the processor takes the physical page frame number from this entry. If the
entry is invalid, the process has accessed a non-existent area of its virtual memory.
In this case, the processor cannot resolve the address and must pass control to the
operating system so that it can x things up.

ust how the processor noti es the operating system that the correct process has
attempted to access a virtual address for which there is no valid translation is speci ¢
to the processor. However the processor delivers it, this is known as a pa e o It and
the operating system is noti ed of the faulting virtual address and the reason for the
page fault.

Assuming that this is a valid page table entry, the processor takes that physical page
frame number and multiplies it by the page size to get the address of the base of the
page in physical memory. inally, the processor adds in the offset to the instruction
or data that it needs.

Using the above example again, process s virtual page frame number 1 is mapped

to physical page frame number which starts at (x). Adding in the
byte offset gives us a nal physical address of

By mapping virtual to physical addresses this way, the virtual memory can be

mapped into the system s physical pages in any order. or example, in igure 3.1
process s virtual page frame number 0 is mapped to physical page frame number

1 whereas virtual page frame number 7 is mapped to physical page frame number
0 even though it is higher in virtual memory than virtual page frame number 0.
This demonstrates an interesting byproduct of virtual memory; the pages of virtual
memory do not have to be present in physical memory in any particular order.

As there is much less physical memory than virtual memory the operating system
must be careful that it does not use the physical memory ine ciently. ne way to
save physical memory is to only load virtual pages that are currently being used by
the executing program. or example, a database program may be run to uery a
database. In this case not all of the database needs to be loaded into memory, just
those data records that are being examined. If the database uery is a search uery
then it does not make sense to load the code from the database program that deals
with adding new records. This techni ue of only loading virtual pages into memory
as they are accessed is known as demand paging.

When a process attempts to access a virtual address that is not currently in memory
the processor cannot nd a page table entry for the virtual page referenced. or
example, in igure 3.1 there is no entry in process s page table for virtual page
frame number and so if process attempts to read from an address within virtual
page frame number the processor cannot translate the address into a physical
one. At this point the processor noti es the operating system that a page fault has
occurred.

If the faulting virtual address is invalid this means that the process has attempted
to access a virtual address that it should not have. Maybe the application has gone
wrong in some way, for example writing to random addresses in memory. In this case
the operating system will terminate it, protecting the other processes in the system
from this rogue process.

If the faulting virtual address was valid but the page that it refers to is not currently
in memory, the operating system must bring the appropriate page into memory from
the image on disk. Disk access takes a long time, relatively speaking, and so the
process must wait uite a while until the page has been fetched. If there are other
processes that could run then the operating system will select one of them to run.
The fetched page is written into a free physical page frame and an entry for the
virtual page frame number is added to the processes page table. The process is then
restarted at the machine instruction where the memory fault occurred. This time
the virtual memory access is made, the processor can make the virtual to physical
address translation and so the process continues to run.

Linux uses demand paging to load executable images into a processes virtual memory.
Whenever a command is executed, the le containing it is opened and its contents
are mapped into the processes virtual memory. This is done by modifying the data
structures describing this processes memory map and is known as e or appin .
However, only the rst part of the image is actually brought into physical memory.
The rest of the image is left on disk. As the image executes, it generates page faults
and Linux uses the processes memory map in order to determine which parts of the
image to bring into memory for execution.

If a process needs to bring a virtual page into physical memory and there are no
free physical pages available, the operating system must make room for this page by
discarding another page from physical memory.

If the page to be discarded from physical memory came from an image or data le
and has not been written to then the page does not need to be saved. Instead it can
be discarded and if the process needs that page again it can be brought back into
memory from the image or data le.

However, if the page has been modi ed, the operating system must preserve the
contents of that page so that it can be accessed at a later time. This type of page is
known as a dirt page and when it is removed from memory it is saved in a special
sort of le called the swap le. Accesses to the swap le are very long relative to the
speed of the processor and physical memory and the operating system must juggle
the need to write pages to disk with the need to retain them in memory to be used
again.

If the algorithm used to decide which pages to discard or swap (the s ap al orith
is not e cient then a condition known as thrashin occurs. In this case, pages are
constantly being written to disk and then being read back and the operating system
is too busy to allow much real work to be performed. If, for example, physical
page frame number 1 in igure 3.1 is being regularly accessed then it is not a good
candidate for swapping to hard disk. The set of pages that a process is currently
using is called the or in set. An e cient swap scheme would make sure that all
processes have their working set in physical memory.

Linux uses a Least Recently Used (LRU) page aging techni ue to fairly choose pages
which might be removed from the system. This scheme involves every page in the
system having an age which changes as the page is accessed. The more that a page
is accessed, the younger it is; the less that it is accessed the older and more stale it
becomes. 1d pages are good candidates for swapping.

Virtual memory makes it easy for several processes to share memory. All memory
access are made via page tables and each process has its own separate page table.

or two processes sharing a physical page of memory, its physical page frame number
must appear in a page table entry in both of their page tables.

igure 3.1 shows two processes that each share physical page frame number . or
process this is virtual page frame number whereas for process this is virtual
page frame number 6. This illustrates an interesting point about sharing pages the
shared physical page does not have to exist at the same place in virtual memory for
any or all of the processes sharing it.

It does not make much sense for the operating system itself to run in virtual memory.
This would be a nightmare situation where the operating system must maintain page
tables for itself. Most multi-purpose processors support the notion of a physical
address mode as well as a virtual address mode. Physical addressing mode re uires no

31 1514 131211109 8 7 65 4 3 210

UK U|K G |A|F|F|F |V
w|w R[R H |s|o|ol|o
E|E E|E M|E |W|R
A
S __PAGE_DIRTY
__PAGE_ACCESSED
63 32
PFN

igure 3. Alpha A P Page Table Entry

page tables and the processor does not attempt to perform any address translations
in this mode. The Linux kernel is linked to run in physical address space.

The Alpha A P processor does not have a special physical addressing mode. Instead,
it divides up the memory space into several areas and designates two of them as
physically mapped addresses. This kernel address space is known as K EG address
space and it encompasses all addresses upwards from . In order to
execute from code linked in K EG (by de nition, kernel code) or access data there,
the code must be executing in kernel mode. The Linux kernel on Alpha is linked to
execute from address

The page table entries also contain access control information. As the processor is
already using the page table entry to map a processes virtual address to a physical
one, it can easily use the access control information to check that the process is not
accessing memory in a way that it should not.

There are many reasons why you would want to restrict access to areas of memory.

ome memory, such as that containing executable code, is naturally read only mem-
ory; the operating system should not allow a process to write data over its executable
code. By contrast, pages containing data can be written to but attempts to execute
that memory as instructions should fail. Most processors have at least two modes
of execution ernel and ser. You would not want kernel code executing by a user
or kernel data structures to be accessible except when the processor is running in
kernel mode.

The access control information is held in the PTE and is processor speci c¢; gure 3.
shows the PTE for Alpha A P. The bit elds have the following meanings

Valid, if set this PTE is valid,

“ ault on Execute”, Whenever an attempt to execute instructions in this page
occurs, the processor reports a page fault and passes control to the operating
system,

43

ault on Write”, as above but page fault on an attempt to write to this
page,

“ ault on Read”, as above but page fault on an attempt to read from this

pbage,

Address pace Match. This is used when the operating system wishes to clear
only some of the entries from the Translation Buffer,

Code running in kernel mode can read this page,
Code running in user mode can read this page,

Granularity hint used when mapping an entire block with a single Translation
Buffer entry rather than many,

Code running in kernel mode can write to this page,
Code running in user mode can write to this page,

or PTEs with the bit set, this eld contains the physical
Page rame umber (page frame number) for this PTE. or invalid PTEs, if
this eld is not zero, it contains information about where the page is in the
swap le.

The following two bits are de ned and used by Linux

_ _ if set, the page needs to be written out to the swap le,

- - Used by Linux to mark a page as having been accessed.

ac e

If you were to implement a system using the above theoretical model then it would
work, but not particularly e ciently. Both operating system and processor designers
try hard to extract more performance from the system. Apart from making the
processors, memory and so on faster the best approach is to maintain caches of
useful information and data that make some operations faster. Linux uses a number
of memory management related caches

The buffer cache contains data buffers that are used by the block
device drivers. These buffers are of xed sizes (for example 1 bytes) and
contain blocks of information that have either been read from a block device
or are being written to it. A block device is one that can only be accessed by
reading and writing xed sized blocks of data. All hard disks are block devices.

The buffer cache is indexed via the device identi er and the desired block
number and is used to uickly nd a block of data. Block devices are only ever
accessed via the buffer cache. If data can be found in the buffer cache then it
does not need to be read from the physical block device, for example a hard
disk, and access to it is much faster.

This is used to speed up access to images and data on disk. It is used

to cache the logical contents of a le a page at a time and is accessed via the

le and offset within the le. As pages are read into memory from disk, they
are cached in the page cache.

nly modi ed (or dirt) pages are saved in the swap le. o long
as these pages are not modi ed after they have been written to the swap le
then the next time the page is swapped out there is no need to write it to the
swap le as the page is already in the swap le. Instead the page can simply
be discarded. In a heavily swapping system this saves many unnecessary and
costly disk operations.

ne commonly implemented hardware cache is in the processor;
a cache of Page Table Entries. In this case, the processor does not always read
the page table directly but instead caches translations for pages as it needs
them. These are the Translation Look-aside Buffers and contain cached copies
of the page table entries from one or more processes in the system.

When the reference to the virtual address is made, the processor will attempt to

nd a matching TLB entry. If it nds one, it can directly translate the virtual
address into a physical one and perform the correct operation on the data. If
the processor cannot nd a matching TLB entry then it must get the operating
system to help. It does this by signalling the operating system that a TLB miss
has occurred. A system speci ¢ mechanism is used to deliver that exception
to the operating system code that can x things up. The operating system
generates a new TLB entry for the address mapping. When the exception has
been cleared, the processor will make another attempt to translate the virtual
address. This time it will work because there is now a valid entry in the TLB
for that address.

The drawback of using caches, hardware or otherwise, is that in order to save effort
Linux must use more time and space maintaining these caches and, if the caches
become corrupted, the system will crash.

Li age a le

Linux assumes that there are three levels of page tables. Fach Page Table accessed
contains the page frame number of the next level of Page Table. igure 3.3 shows
how a virtual address can be broken into a number of elds; each eld providing an
offset into a particular Page Table. To translate a virtual address into a physical
one, the processor must take the contents of each level eld, convert it into an offset
into the physical page containing the Page Table and read the page frame number
of the next level of Page Table. This is repeated three times until the page frame
number of the physical page containing the virtual address is found. ow the nal

eld in the virtual address, the byte offset, is used to nd the data inside the page.

Each platform that Linux runs on must provide translation macros that allow the
kernel to traverse the page tables for a particular process. This way, the kernel does
not need to know the format of the page table entries or how they are arranged. This
is so successful that Linux uses the same page table manipulation code for the Alpha
processor, which has three levels of page tables, and for Intel x86 processors, which
have two levels of page tables.

VIRTUAL ADDRESS

Level 1 Level 2 Level 3 Byte within page
Level 1 Level 2 Level 3
Page Table Page Table Page Table Physical Page
PFN - PFN - PFN -

I D B B A
igure 3.3 Three Level Page Tables

age llocatio a eallocatio

There are many demands on the physical pages in the system. or example, when
an image is loaded into memory the operating system needs to allocate pages. These
will be freed when the image has nished executing and is unloaded. Another use
for physical pages is to hold kernel speci ¢ data structures such as the page tables
themselves. The mechanisms and data structures used for page allocation and deal-
location are perhaps the most critical in maintaining the e ciency of the virtual
memory subsystem.

All of the physical pages in the system are described by the _ data structure
which is a list of - structures which is initialized at boot time. Each

_ _ describes a single physical page in the system. Important elds (so far as
memory management is concerned) are

This is a count of the number of users of this page. The count is greater than
one when the page is shared between many processes,

This eld describes the age of the page and is used to decide if the page is a
good candidate for discarding or swapping,

This is the physical page frame number that this _ _ describes.

The - vector is used by the page allocation code to nd and free pages.
The whole buffer management scheme is supported by this mechanism and so far as
the code is concerned, the size of the page and physical paging mechanisms used by
the processor are irrelevant.

Each element of - contains information about blocks of pages. The rst
element in the array describes single pages, the next blocks of pages, the next
blocks of pages and so on upwards in powers of two. The element is used as a

ueue head and has pointers to the data structures in the - array. ree

blocks of pages are ueued here. is a pointer to a bitmap which keeps track of
allocated groups of pages of this size. Bit of the bitmap is set if the th block of
pages is free.

igure 3. shows the - structure. Element 0 has one free page (page frame
number 0) and element has free blocks of pages, the rst starting at page frame
number and the second at page frame number 6.

Linux uses the Buddy algorithm to effectively allocate and deallocate blocks of
pages. The page allocation code attempts to allocate a block of one or more physical
pages. Pages are allocated in blocks which are powers of in size. That means that
it can allocate a block 1 page, pages, pagesand soon. o long as there are enough

free pages in the system to grant this re uest (_ . . -) the
allocation code will search the - for a block of pages of the size re uested.
Each element of the _ has a map of the allocated and free blocks of pages

for that sized block. or example, element of the array has a memory map that
describes free and allocated blocks each of pages long.

The allocation algorithm rst searches for blocks of pages of the size re uested. It
follows the chain of free pages that is ueued on the list element of the -
data structure. If no blocks of pages of the re uested size are free, blocks of the next
size (which is twice that of the size re uested) are looked for. This process continues
until all of the - has been searched or until a block of pages has been found.
If the block of pages found is larger than that re uested it must be broken down until
there is a block of the right size. Because the blocks are each a power of pages big
then this breaking down process is easy as you simply break the blocks in half. The
free blocks are ueued on the appropriate ueue and the allocated block of pages is
returned to the caller.

or example, in igure 3. if a block of pages was re uested, the rst block of
pages (starting at page frame number) would be broken into two page blocks.
The rst, starting at page frame number would be returned to the caller as the
allocated pages and the second block, starting at page frame number 6 would be
ueued as a free block of pages onto element 1 of the _ array.

Allocating blocks of pages tends to fragment memory with larger blocks of free pages
being broken down into smaller ones. The page deallocation code recombines pages
into larger blocks of free pages whenever it can. In fact the page block size is
important as it allows for easy combination of blocks into larger blocks.

Whenever a block of pages is freed, the adjacent or buddy block of the same size is
checked to see if it is free. If it is, then it is combined with the newly freed block
of pages to form a new free block of pages for the next size block of pages. Each
time two blocks of pages are recombined into a bigger block of free pages the page
deallocation code attempts to recombine that block into a yet larger one. In this way
the blocks of free pages are as large as memory usage will allow.

56

Y

PHYSICAL MEMORY

i

v

i

v

v

vm_area_struct

vm_end

Processes Virtual Memory

vm_start

Y

Virtual Area

vm_flags

vm_inode

vm_ops

vm_next

Virtual Memory

I~ ™ Operations

open()

cl ose()
unmap()
protect ()
sync()
advi se()
nopage()
wppage()
swapout ()
swapi n()

y

page_hash_table

mem_map_t

inode

offset

next_hash

prev_hash

12
0x8000

mem_map_t

inode

offset

next_hash

prev_hash

12
0x2000

task_struct

fs struct

fs

files

Y

count

umask

*root

0x022

inode

Y

*p\Nd

files_struct

Y

count

close_on_exec

open_fs

fd[0]

fd[1]

inode

Y

file

inode

Y

fd[255]

f_mode

f_pos

f_flags

f_count

f_owner

f_inode

f_op

L - file operation
routines

f_version

task_struct

mm

mm_struct

Y

count

vm_area struct

Processes Virtua Memory

pgd

mmap

mmap_avl

mmap_sem

o
L

vm_end

|

vm_start

vm_flags

vm_inode

vm_ops

Y

Data

vm_next

Y

vm_area_struct

-
Ll

vm_end

vm_start

Y

vm_flags

vm_inode

vm_ops

vm_next

Code

0x8059BB8

0x8048000

0x0000000

formats

linux_binfmt

next

use_count

*|oad_binary()

*load_shlib()

*core_dump()

\i

linux_binfmt linux_binfmt
next > next

use_count use_count
*|oad_binary() *|oad_binary()
*load_shlib() *load_shlib()
*core_dump() *core_dump()

Physical Header

Physical Header

ELF Executable Image

e ident

e entry
e_phoff

e _phentsize
e phnum

p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags

p_type
p_offset

p_vaddr
p_filesz
p_memsz
p_flags

Code

Dat a

'"E 'L R
0x8048090
52

32

2

PT_LOAD
0

0x8048000
68532

68532
PF R PF_X

PT _LOAD
68536
0x8059BB8
2200

4248

PE R PF W

Process 1

file

f_mode

f_pos

f_flags

f_count

f_owner

f_inode

f_op

f_version

inode

A

\J
Pi pe
Wite

Process 2

file

f_mode

f_pos

f_flags

f_count

f_owner

f_inode

f_op

f_version

Data Page

Y

Qper ations

|
Pi pe
Read
Qper ati ons

msqid_ds

*msg_last

*msg_first

times

*wwait

*rwait

msg_gnum

msg msg
*msg_next *msg_next
msg_type msg_type
*msg_spot *msg_spot
msg_stime msg_stime
msg_ts msg_ts
message msg_ts | Message

~<——— msg_gnum —_—

Y

array of
semaphores

sem_queue

next

Y

sem_undo

proc_next

id_next

semid

semadj

Y

Y

prev

Sleeper

undo

pid

status

sops

nsops

Y

shmid_ds

ipc
shm_segsz
times
pte
pte
shm_npages
shm_peges pte vm_area_struct vm_area_struct
attaches >

vm_next_shared vm_next_shared

CPU

| PCI Bus 0
PCI-ISA PCI-PCI * Upstream
Bridge Bridge
Video ‘ Downstream
ISA Bus PCI Bus1
Super 1/0 Controller SCsl Ethernet

31

16 15

Deviceld

Vendor Id

Status

Command

Class Code

Base Address Registers

| Line | Pin

00h
04h

08h
10h

24h

3Ch

31 1110 87 210
Device Select | Func | Register |O| 0|

31 24 23 16 15 1110 87 210
Reserved | Bus | Device | Func | Register |O| 1|

i_bus
pci_root e
—_—

parent
children
next
self
devices [
bus=0

pci_dev pci_dev pci_dev
-

bus ™| bus _L bus

sibling sibling sibling

next next next

PCI-ISA Bridge Video PCI-PCI Bridge

pci_bus

parent
children
next
self
devices
bus=1

pci_dev pci_dev
bus bus
sibling sibling
next next

Ses Ethernet

CPU

DI D2
Bus 0
Bridge Primary Bus= 0
DI D2 Secondary Bus= 1
1 Subordinate= OxFF
| | Bus1
Bridge Bridge
DI g g
3 2
| | Bus ? | Bus ?
Bridge
g DI D2
4

Bus?

CPU
DI D2
BusO
Bridge Primary Bus= 0
DI D2 Secondary Bus= 1
1 Subordinate= 0xFF
| | Bus1
Bridge Bridge | Primary Bus= 1
DI Secondary Bus= 2
3 2 Subordinate=2
| | Bus ? | Bus 2
Bridge
9 DI D2
4

Bus?

CPU

DI D2
BusO
Bridge Primary Bus= 0
DI D2 Secondary Bus = 2
1 Subordinate= 0xFF
| | Bus1
Bridge Primary Bus= 1 Bridge Primary Bus= 1
DI Secondary Bus = 3 Secondary Bus = 2
3 Subordinate=0xFF 2 Subordinate=2
| | Bus 3 | Bus 2
Bridge
d DI D2
4
| | | Bus?
CPU
DI D2
Bus0
Bridge Primary Bus= 0
DI D2 Secondary Bus= 1
1 Subordinate=4
| | Bus1
Bridge Primary Bus= 1 Bridge Primary Bus= 1
DI Secondary Bus= 3 Secondary Bus= 2
3 | subordinate=4 2 | subordinate=2
| | Bus3 | Bus 2
Bridge Primary Bus= 3
4 Secondary Bus = 4 DI D2

Subordinate=4

Bus4

31 43210

Base Address 0
L1

prefetchableJ Type
Base Addressfor PClI Memory Space

31 210

Base Address 1

Reserved

Base Addressfor PCI /O Space

Real Time Clock
- 0
1l — Keyboard
CPU N L
P
I ————— Serial
c sound
1

+— floppy

N o o b

NO T T

6 =w-————— ide0
7 a—— idel

irq_action

irgaction

> de —— Inter_rupt
flags handl i ng

routine

name for this
next devi ce
irgaction irgaction

[endler = handler
flags flags
name name
next next

chrdevs

name
fops — file operations

| seek

read

wite
readdi r

sel ect
ioclt

nmap

open

rel ease
fsyn
fasync
check_medi a_change
reval i date

blk_dev_struct

blk_dev

request_fn()
current_recuest

request

Y

rq_status

request

rq_dev

rq_status

med

rq_dev

mcd

bh

tail

bh

buffer_head

tail

b_dev

next

b_blocknr

b_state

b_count

b _size

next

b;:rev

b_data

0x0301
39

1024

gendisk_head

gendisk

y

major

major_name

minor_shift

max_p

max_nr

it

part

sizes

nr_real

real_devices

next

g

Y

gendisk
major 3
major_name "ide0"
minor_shift
max_p
max_nr
init() hd_struct[]
part »l Sart_sect
Sizes nr_sects
nr_real —
real_devices
next
start_sect
nr_sects

max_p

scsi_hosts

Scsi_Host_Template

scsi_hostlist

| next

name

Devi ce
Driver
Rout i nes

" Busl ogi ¢"

Scsi_Host

next

scsi_devices

Scsi_Device

A

this id

max_id

hostt

next

Scsi_Device

type

host

Y

next

type

host

Block Block Block

Group 0 Group N-1 Group N
Super | Group Block Inode Inode Data
Block | Descriptors | Bitmap Bitmap Table Blocks

ext2_inode

Mode

Owner info

Size

Timestamps

Direct Blocks

Data

hi

ata

Indirect blocks

Double Indirect

———

Triple Indirect

Y

/

Data

Data

Data

L Data

Data

0

15

55

|i1|15|5 |fi|e

i2| 40 | 14 | very_long_name

A

inode table

\j

VFS -t

Inode

| Cache

Buffer
Cache

A
Y

Disk
Drivers

Directory
Cache

. file_system_type file_system type file_system_type
file_systems _system_typ _system_typ . file_system_typ
—— @ *read_super() *read_super() *read_super()
name "ext2" name “proc” name "is09660"
requires_dev requires_dev requires_dev

next next next

vismntlist

vfsmount

—_—

mnt_dev

mnt_devname

mnt_dirname

mnt_flags

mnt_sb

next

0x0301
/dev/hdal
/

VFS
super_block

s dev

s blocksize

s type

0x0301
1024

s flags

s covered

s_mounted

Y

file_system_type
*read_super()
name "ext2"
requires_dev
next

VFS

inode
i_dev 0x0301

i_ino 42

hash_table

J— .

buffer_head buffer_head
b_dev 0x0301 " [bdev
b_blocknr 42 b_blocknr
b_state b_state
b_count b_count
b _size 1024 b _size
b_next b_next
b_prev b_prev
b_data b_data
buffer_head

b_dev 0x0301

b_blocknr 39

b_state

b_count

b _size 1024

b_next

b_prev

b_data

0x0801
17

2048

ETHERNET FRAME

Destination Source
ethernet ethernet Protocol Data Checksum
address address
IP PACKET
Source Destination
Length Protocol | Checksum IP address IP address Data
TCP PACKET
Source TCP | Destination
address TCPaddress | £Q |ACK Data

Network

Applications
A
User
Kernel
Y
BSD
Sockets
A
Socket
Interface Y
INET
Sockets
A
TCP UDP
Protocol
Layers A A
Y Y Y
1P \
A A A / ARP
A Y Y
Network PPP SLIP Ethernet

Devices

files_struct

count

close_on_exec

open_fs

fd[0]

fd[1]

file

f_mode

f_pos

fd[255]

f_flags

f_count

f_owner

f_op

f_inode

f_version

BSD Socket
» File Qperations
| seek
read
wite
. sel ect
_ inode i octl
g cl ose
- fasync
socket
type SOCK_STREAM
ops - Address Family
data socket operations
sock
> type _ STREAM
protocol

socket

truesize

len

sk_buff

next

prev

dev

head

data

tail

end

A

Packet
tobe
transmitted

A

A

fib_zones

Y

fib_zone

fz_next

fz_hash_teble

Y

Tz list

fz_nent

fz_logmask

fz_mask

Y

Y

fib_node

fib_next

I:E S:te fib_info

fib_info fib_next

fib_metric fib_prev

fib_tos fib_gateway
fib_dev
fib_refent
fib_window
fib_flags
fib_mtu
fib_irtt

fib_node

fib_next

;:E S:e fib_info

fib_info fib_next

fib_metric fib_prev

fib_tos fib_gateway
fib_dev
fib_refcnt
fib_window
fib_flags
fib_mtu

fib_irtt

31 bh_active 0 bh_base

| Bottom half handler
(timers)

bh_mask
31 - 0

31

task queue tq_struct tq_struct

R — - 3
next next
sync sync
*routine() *routine()
*data *data

timer_list

Y

next

prev

expires

timer_table timer_struct
0 — ™ | expires
*fn()
timer_struct
— =
expires
*fn()
timer_active
31 - 0
31
timer_head timer_list
next I next
prev - prev -
expires expires
data data
*function() *function()

data

*function()

module

Yy

module_list module
R
next
ref
symtab
name “fat"
size
addr
State
*cleanup()
symbol_table
> size
n_symbols
n_refs
symbols

references

next

ref

symtab

name “vfat"

size

addr

state

*cleanup()
symbol_table

> Size

n_symbols
n_refs
symbols
references

