
CS 213, Fall 2024
Pack Lab: Unpacking, Decompressing, and Decrypting Data

Contents

1 Introduction 2

2 Logistics 3

2.1 Handout Instructions . 3

2.2 Handin Instructions . 4

2.3 Evaluation . 4

3 Lab Breakdown 5

3.1 The Header . 5

3.1.1 The Minimal Header . 6

3.1.2 Example: Compression Enabled, Checksum Disabled 8

3.1.3 Example: Compression Disabled, Checksum Enabled 8

3.1.4 Example: Compression Enabled, Checksum Enabled 9

3.2 Multiple Streams . 10

3.3 Floating-Point Streams . 11

4 Step 1: Implement Header Parsing 12

5 Step 2: Implement Checksumming 13

6 Step 3: Implement Decryption 14

6.1 Linear Feedback Shift Registers . 14

6.2 A 4-bit LFSR Example . 14

6.3 pack’s LFSR . 15

6.4 Stream Encryption . 16

1

6.5 Decrypting Data . 16

6.6 Implementing decrypt_data() . 17

7 Step 4: Implement Decompression 18

7.1 Our Run-Length Compression . 19

7.2 Implementing decompress_data() . 19

8 Step 5: Understand Multiple Streams 20

9 Step 6: Implement Two-Stream Floating Point 21

10 Testing Your Code 23

10.1 Unit Testing . 23

10.2 Whole-File Testing . 23

10.3 Randomized Testing . 23

10.4 Useful Tools . 24

11 Extra Credit 24

11.1 Opportunity 1: Tri-stream Floating-Point . 24

11.2 Opportunity 2: Packing an Audio File . 25

11.3 Research: Compression of Scientific Data . 25

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and
floating point numbers, as well as to learn how to manipulate data at the level of bits, bytes, words, etc, the
fundamental units on which computing is based.

You will do this by writing tools to interpret (“unpack”) data files. Except for the most basic file types, a
file contains metadata (“headers”) that describe how the bytes of the file are to be interpreted. For example,
a music file contains information about how to reconstruct a playable audio signal from the data in the file.
A video file is similar. A movie file typically is a “container” that audio and video “streams” are packed
together within.

In this lab, you will be given a working utility called pack, which is capable of “packing” a file similar to
other utilities such as 7Zip, GZip, Zip, and others. pack supports four operations:

Checksumming (ensuring data integrity)

Encryption (ensuring data is password protected)

2

Compression (reducing file size in a lossless manner)

Floating Point (the ability to apply the previous operations on floating point data contained in 2–3 streams)

Your goal for this lab is to write the unpack utility, which takes a “packed” file, and reverses the operations
applied by the pack utility to recover the original file.

2 Logistics

You may work in groups of up to two people for this lab. All handins will be done electronically via
Gradescope (see Section 2.2 for details). Clarifications and revisions will be posted to Piazza, the course
discussion group.

2.1 Handout Instructions

For this lab, you will need to connect to any of the class servers (http://it.eecs.northwestern.
edu/info/2015/11/03/info-labs.html) via SSH or your tool of choice. Some of the servers
that you can use include:

• moore.wot.eecs.northwestern.edu

• The Wilkinson Lab

• The Batman machines

You will need the file packlab-handout.tar, which you will find in the ~cs213/HANDOUT directory
on the class servers.

Expect limited setup help from course staff if you choose to use tools outside of SSH (such as VSCode).

We highly recommend working on moore, as it is available worldwide and has all the tools you will need
already installed. You should test that your code works on moore prior to submitting.

Please note that you will hand in your work on Gradescope, which is also where it will be tested &
graded.

You will need a (protected) directory on a Linux machine in which to do your work. You can create a
protected1 directory like this:

unix> cd ~/
unix> mkdir mypacklab
unix> chmod 700 mypacklab
unix> cd mypacklab
unix> tar xvf ~cs213/HANDOUT/packlab-handout.tar

1The chmod command will set things so that only the owner of the directory can read, write, or cd into it.

3

http://it.eecs.northwestern.edu/info/2015/11/03/info-labs.html
http://it.eecs.northwestern.edu/info/2015/11/03/info-labs.html

This will cause a number of files to be unpacked in the directory. Your unpacked packlab-handout.tar
file will contain at least the following files:

pack We provide you with the same binary that we used to create the example packed files. Note that this
binary was compiled on Moore, so it will likely only work there.

unpack.c This is the driver code for the unpack tool. It opens the specified packed file, calls parse_header()
(perhaps multiple times), runs the unpack steps specified by the headers, and then writes the unpacked
output to the specified file.

unpack-utilities.h This is the header for the utility functions you will implement. You do not need
to edit anything within this file, but you should read it because it documents what you must do. You
should read the packlab_config_t struct and its fields.

unpack-utilities.c This is what you must edit! You will implement the functions in this file to
actually do the unpacking.

Please be sure to read the README file.

2.2 Handin Instructions

The Gradescope platform will be used to handle submitting and grading. You can submit as many times
as you like. To submit, run the following command on moore from the directory containing your lab files
(you may be prompted to input your Gradescope credentials the first time):

unix> ~cs213/HANDOUT/submit213 submit --hw packlab unpack-utilities.c

After submitting, the Gradescope website will show whether your solution compiled and whether it suc-
cessfully unpacked an example file. Gradescope will also run many more test cases which are hidden
until after the deadline, so make sure to thoroughly test before submitting.

You must also mark your partnership on Gradescope. This can be done by clicking the button labeled
“Group Members” and selecting your partner from the dropdown. Unfortunately, you will have to do this
for each submission.

2.3 Evaluation

You will be graded on having a correct implementation for the major functions in unpack-utilities.c.
The six major functions listed below are each worth 15% each of the lab’s overall grade.

1. parse_header()

2. calculate_checksum()

3. lfsr_step()

4

4. decrypt_data()

5. decompress_data()

6. join_float_array()

The next 5% will come from your implementation working to unpack every file in example_files/.
The last 5% will come from your implementation passing every test our randomized test generator can
generate.

Partial credit will be given for partially correct code.

Your implementation should successfully unpack any file that meets the specification, and should handle
errors gracefully.

You will not be graded on the tests you write. However, we still recommend you write small unit tests to
verify that your implementation is actually working correctly in pieces before trying to do everything at
once. You may also find our randomized tester, described later, to be useful.

3 Lab Breakdown

“Packed” files are files generated by running the pack utility on an input file. Packed files are comprised
of one or more “streams” of data, with each stream having a “header” section followed by a “file data”
section.2 The header describes the following file data section (e.g. size) as well as what options were
applied to the input file during packing (e.g. checksum, compression). The file data section contains the
(potentially modified) contents of the original input file.

You will have to implement multiple features to unpack every file we provide. All files will contain at least
one header (Section 3.1). Each header can have a mixture of checksums (Section 5), encryption (Section 6),
and lossless compression (Section 7). Additionally, multiple headers may be combined to provide floating-
point streams (Section 9). Each of these features will be discussed in-turn.

3.1 The Header

Each of our packed files consists of one or more (header, packed data) pairs, one for each stream. The
header describes the stream and how to interpret the packed data.

Things can get confusing, but, remember, files are just a collection of bytes!

The header in this assignment is a variable-length header, with a minimum length of 20 bytes and a max-
imum of 40 bytes; because some configurations only exist in the header if certain options were applied
during packing. The header identifies and configures the packed file, including:

2If you look carefully, you will also notice “padding” (blank space) between headers and data. Padding is used to align each
header and data chunk to a page boundary to facilitate memory mapping of the file. You’ll learn what these concepts mean later in
the class, and don’t need to understand them (or even observe them) to do this lab.

5

• “Magic bytes” and version number to identify packed files.

• Flags to determine which options were applied to the file when it was packed.

• Configuration for each of the particular options mentioned in the flags.
Encrypting the file does not add any fields to the header. The fields and their expected values are
discussed below.

• The length of the data following the header.

• The length of the original data.

A header always begins at an offset into the file that is an integer multiple of 4096 bytes. Similarly, the data
following a header also begins at an offset into the file that is an integer multiple of 4096 bytes. (Note that
0 is a valid integer multiple of 4096!)

3.1.1 The Minimal Header

The minimal header happens when both compression and checksumming are disabled for that data stream3.
Table 1 shows the header’s format.

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 Flags
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16

Table 1: Header with Minimal Flags

Magic Identifies this file as a packed file. This will always be 0x0213, in big-endian format.

Version Identifies which version of the pack protocol is used. This will always be 0x03.

Flags Determines which options were applied when packing the file. 0 means the option was disabled, 1
means the was enabled. Table 2 shows this.

Original Length How long the stream was originally (before packing) in bytes. This is an 8-byte unsigned
integer, in machine-endian format. (See explanation below.)

Length How long the stream following the header is in bytes. This is an 8-byte unsigned integer, in
machine-endian format.

3Remember, we allow multiple streams in a packed file, and those files will have multiple headers.

6

Machine-endian is a way to say this field will differ depending on which processor ran the
code as different processors can have different endiannesses from one another. x64 (which is
what Moore uses) uses little-endian and ARM defaults to little-endian. Any time you see
“machine-endian” in this writeup, it is safe to assume little-endian.

Just for some more background: Motorola 68000 and IBM’s z/Architecture mainframe CPUs
used/use big-endian. RISC-V, Power, ARM (defaults to little-endian), and SPARC can switch
between these on-the-fly while running. In this course, we expect all students to be running
on either x64 or ARM-based machines. If your computer is magically a big-endian machine,
please tell the instructors so we can gawk at your machine, then please use Moore for your
work.

As mentioned previously, headers and data are aligned to start at file offsets that are an integer multiple of
4096 bytes, and padding is added to meet those invariants. For example, the first header in packed file starts
at byte-offset 0x0, and the corresponding data starts at 0x1000 (decimal 4096). Streams are allowed to be
as long as they need to be (so long as their length fits into the Length field of the header). You do not need
to worry about this since it is handled for you in unpack.c.

The Flags Field

Bit 7 6 5 4 3 2 1 0
Value Compressed? Encrypted? Checksummed? Continuation? Floats? Float3? Unused: All 0

Table 2: Pack Flags

Table 2 describes the Flags field of the header at the bit level—that is, each element is 1 bit wide. The
combination of flags that are set (one) defines the format of the header and of the data, and is described next.
If all the flags are zero, then the data stored is simply the original data. The Continuation?, Floats?,
and Float3 flags relate to multiple streams per file. It’s easiest to start by considering a file with only one
stream, and consider particular combinations of flags.

For a stream, all combinations of Compressed?, Encrypted?, Checksummed? are allowed. Several
examples of this, and the affect it has on header layout, are demonstrated below.

7

3.1.2 Example: Compression Enabled, Checksum Disabled

If the Compressed? flag is set, then an additional “compression dictionary” will be included in the header.
The compression dictionary is a 16-byte array of the 16-most-used bytes from the original uncompressed
file. Table 3 shows the layout. This is only present in the header if that stream was compressed!

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 Flags
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16
20 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]
24 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]
28 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]
32 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

Table 3: Header: Compression Enabled and Checksum Disabled

3.1.3 Example: Compression Disabled, Checksum Enabled

If the Checksummed? flag is set, then an additional “checksum” value is included in the header. The
checksum is a 16-bit unsigned big-endian value. It was computed on the file’s data after compression and
encryption. It will only be present in the header if that stream has a checksum. Table 4 shows the layout.

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 Flags
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16
20 Checksum

Table 4: Header: Compression Disabled and Checksum Enabled

8

3.1.4 Example: Compression Enabled, Checksum Enabled

If both Compression? and Checksummed? are set, then the header will contain both a compression
dictionary and a checksum value. The header will be laid out like Table 5. The compression dictionary will
always come before the checksum value.

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 Flags
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16
20 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]
24 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]
28 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]
32 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]
36 Checksum

Table 5: Header: Compression Enabled and Checksum Enabled

9

3.2 Multiple Streams

If the Continuation? flag is set, then there are more headers after this one. The rest of the flags
(Compressed?, Encrypted?, Checksummed?, and Float?) apply to only this data stream. Each
header in the file will use the same format as described in this section. If the Continuation? bit is
cleared to 0 that is the last stream in the packed file. Tables 6 & 7 show example file layouts for some
simple cases with multiple streams.

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 xxx1x000
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16
0x1000 Data (Assuming data length ≤ 4096 bytes)

0x2000 + 0 Magic: 0x0213 Version: 0x03 xxx0x000
0x2000 + 4

Original length in bytes (8 bytes)
0x2000 + 8
0x2000 + 12

Length in bytes (8 bytes)
0x2000 + 16

0x3000 Data

Table 6: Header: Multiple Streams, Minimal Headers, Short Data Length

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 xxx1x000
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16
0x1000 Data (Assuming 4096 ≤ data length ≤ 8192 bytes)

0x3000 + 0 Magic: 0x0213 Version: 0x03 xxx0x000
0x3000 + 4

Original length in bytes (8 bytes)
0x3000 + 8
0x3000 + 12

Length in bytes (8 bytes)
0x3000 + 16

0x4000 Data

Table 7: Header: Multiple Streams, Minimal Headers, Long Data Length

10

3.3 Floating-Point Streams

In this lab, we use multiple streams to encode floating point numbers. The Floats? flag indicates that
the stream is part of a two stream group that, when combined, will result in the original floating point file
contents. The two streams consist of the sign & mantissa/fraction stream and the exponent stream, in that
order. Table 8 gives a simple example4 of a packed file containing floating-point data.

Floating-point streams can have encryption, compression, and checksumming applied to them, just like any
other stream. You must account for this.5

Byte Offset 0 1 2 3
0 Magic: 0x0213 Version: 0x03 11111000
4

Original length in bytes (8 bytes)
8

12
Length in bytes (8 bytes)

16
20 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]
24 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]
28 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]
32 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]
36 Checksum

0x1000 Sign & Mantissa Data (Assuming Length ≤ (1365 ∗ 3 = 4095))
0x2000 + 0 Magic: 0x0213 Version: 0x03 11101000
0x2000 + 4

Original length in bytes (8 bytes)
0x2000 + 8
0x2000 + 12

Length in bytes (8 bytes)
0x2000 + 16
0x2000 + 20 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]
0x2000 + 24 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]
0x2000 + 28 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]
0x2000 + 32 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]
0x2000 + 36 Checksum

0x3000 Exponent Data (Assuming Length ≤ 1365)

Table 8: Header: Floating-Point Streams

4The length of 1365 for the exponent data was chosen because it allows the sign & mantissa to fit into 4096 bytes.
5You may notice the Float3? flag. This is for extra credit, and is described at the end.

11

4 Step 1: Implement Header Parsing

You will need implement the function parse_header() to decode the header’s data. The inputs to
parse_header() are as follows:

input_data An array of bytes from the packed file

input_len The length of input_data

config A pointer to the struct to write header data to Check unpack_utilities.h for the definition
of the struct.

The general steps to implementing parse_header() are as follows:

1. Verify that the magic and version are correct.

2. Check which options are set in Flags, set the appropriate fields in the struct, and determine how
many more bytes need to be read from the header.

3. Pull out the compression dictionary for this stream if Compression? is enabled.

4. Pull out the checksum value for this stream if Checksummed? is enabled.

5. Determine if there is another stream after this one by checking if Continuation? is enabled.

6. Get the length of this stream and the length of the original data.

C does not have any built-in tools to access individual bits of a byte. You will need to use bitwise operations
to pull the single bits out that you need. These include: >> << | & ^

Check out the textbook (Sections 2.1.7–2.1.9) and/or ~cs213/HANDOUT/play (particularly the data
subdirectory) for a refresher on bitwise operations.6

A few notes/hints:

• Make sure to check input_len before accessing input_data to prevent any out-of-bound ac-
cesses

• Some fields of config may not be used depending on the flags in the header

• If for any reason the header is not valid, the is_valid field of config should be set to false
(and true otherwise). If the is_valid field is false, the values of the other fields do not matter.

Working with memory in C can be dangerous, which is why you must practice defensive programming.
The most basic step of defensive programming is sanity-checking the values of lengths for buffers. Be
careful to check that input_len is the right length to hold the expected header data!

6Strictly speaking, we are ignoring C bitfields and struct packing here, which are advanced topics. If you are interested, take a
look after you finish.

12

Defensive programming practices are the onus of the programmer, which means memory-safety
bugs can appear in seemingly valid programs. This is why memory-safe systems languages, like
Rust and Go have been created.

We use C and C++ in this class because most of the world’s software systems are still written
in these languages. See https://www.tiobe.com/tiobe-index/ if you are curious
about the relative popularity of programming languages in job descriptions.

5 Step 2: Implement Checksumming

When a file is downloaded, it is often accompanied by a checksum. A file’s checksum is a (usually crypto-
graphic) hash of the contents of the file, computed by the uploader/distributor. Checksums allow download-
ers to verify that the downloaded file matches the content the distributor uploaded.

To do so, users can recompute the checksum value of the downloaded file and compare it against the check-
sum provided by the uploader. If any bit in the file has changed, the computed and provided checksum
values will differ.

In this lab, each stream in a packed file can contain a checksum if Checksummed? is enabled. The
checksum is represented as an unsigned 16-bit big-endian integer in the stream’s header. Our checksum
implementation is just a simple big-endian unsigned 16-bit integer, initialized to zero (0). The checksum is
computed by adding the value of every byte in the file to this counter, and allowing for overflows.

Take a 3-byte stream for example containing the values [0x01, 0x03, 0x04]. The checksum would
be 0x01+ 0x03+ 0x04 = 0x08. If the stream is too long, the resulting summation will overflow, but that
is intended in a checksum implementation, and is not an error. If your calculated checksum does not match
what the pack tool calculated, the unpack tool must exit with an error. We have already provided this
double-checking and error-exiting code for you in unpack.c.

You must implement calculate_checksum(), which is the same function used by the pack utility
to calculate a stream’s checksum. unpack.c uses calculate_checksum() to recompute a stream’s
checksum and compares it against the checksum provided in the header in order to check that the stream’s
content has not changed. The inputs to calculate_checksum() are:

input_data An array of bytes to calculate the checksum over. This array does not contain header bytes,
and it must not be modified.

input_len The length of input_data.

The general steps to implementing calculate_checksum() are as follows:

1. Initialize the checksum to 0

2. Add each byte in input_data to the checksum, one-by-one

3. Return the checksum

13

https://www.tiobe.com/tiobe-index/

6 Step 3: Implement Decryption

Encryption is a process which takes some data and reversibly turns it into something that looks like random
garbage. This is a key feature underpinning everything you do online, including banking, chatting with
ChatGPT, looking at cat videos, and even figuring out what youtube.com actually means. You probably
even use encryption on the device you are reading this on! Most students using MacOS or Windows laptops
will likely have disk-encryption turned on, ensuring data stored on your computer is protected, even if
someone were to rip it out of your laptop.

6.1 Linear Feedback Shift Registers

One key step in encryption is to be able to generate a repeatable stream of seemingly random numbers. A
linear feedback shift register (LFSR) is a class of pseudorandom number generators built with bit manipu-
lations that are simple to implement in both hardware and software. These create pseudorandom sequences
of bits that do not repeat for a very long time. In our implementation, an LFSR takes in an input state
and creates a new output state by XOR-ing several bits together to create the new most-significant bit and
shifting all bits in the input state to the right. Figure 1 gives you an idea of the operation.

6.2 A 4-bit LFSR Example

This section goes over how an example 4-bit LFSR would work. However, pack uses the 16-bit LFSR
described in Section 6.3. This section is solely to aid your understanding of LFSRs7.

Figure 1 shows a 4-bit LFSR with an initial state of 0b0101. To generate the next state, perform the
following steps:

1. XOR bit[0] with bit[1] to get 1

2. Right shift the state by one bit (0b0101 becomes 0b0010)

3. Set the most significant bit to the result from step 1 (0b0010 becomes 0b1010)

The new state is shown in Figure 2.

Figure 1: 4-bit LFSR Example, Step 1

7Check out this YouTube video if this example isn’t clear: https://www.youtube.com/watch?v=1UCaZjdRC_c

14

https://www.youtube.com/watch?v=1UCaZjdRC_c

Figure 2: 4-bit LFSR Example, Step 2

To get the next state from here, repeat this process.

1. XOR bit[0] with bit[1] to get 1

2. Right shift the state by one bit (0b1010 becomes 0b0101)

3. Set the most significant bit to the result from step 1 (0b0101 becomes 0b1101)

The new state generated from this process is 0b1101.

As you can see, this process can be repeatedly applied to generate a sequence of numbers. If you continue
to work out this process, you should find that the next few states are 0b1110, 0b1111, and 0b0111 (give
it a shot with pencil and paper!). After repeating this process 15 total times, you should also see that the
states begin to repeat.

6.3 pack’s LFSR

In this lab, we use a 16-bit LFSR, where bits 0, 6, 9, and 13 are used to form the next state’s bit. Figure 3
shows these connections visually.

Figure 3: pack’s LFSR

You should find that the current state in Figure 3 is 0x1337 and the next state is 0x099b.

15

lfsr_step()

You must implement lfsr_step() takes in an LFSR state and returns the next LFSR state. You will use
this to implement decrypt_data() later.

To generate the next state, perform the following steps:

1. XOR bit[0], bit[6], bit[9], and bit[13]

2. Right shift the state by one bit

3. Set the right most bit to the result from step 1

Testing your LFSR

We have provided some code for you that can test your LFSR implementation, inside test-utilities.c.
This tests two things:

1. Your LFSR must iterate in the known pattern expected by the LFSR we described.

2. Your LFSR must iterate over all non-zero 16-bit integers.

We recommend ensuring that lfsr_step() passes these tests before attempting decrypt_data(),
otherwise the process can be very frustrating. If your lfsr_step() is not working, try working out the
bit patterns you expect as both inputs and outputs on paper and compare them against your code’s results.

Your implementation must not save any state internally. To iterate through multiple LFSR states, call
lfsr_state with the previous input multiple times:

new_state1 = lfsr_step(init_state)
new_state2 = lfsr_step(new_state1)
new_state3 = lfsr_step(new_state2)

6.4 Stream Encryption

Stream cipher encryption is a basic form of encryption where every individual chunk of data in a stream is
combined with random data to encrypt it. However, since encryption must be reversible, the “random” bytes
must actually be pseudorandom, meaning that they appear random but are actually deterministic based on
some initial state (such as a password or key).

6.5 Decrypting Data

The pack utility encrypts data by XOR-ing bytes of data with the 16-bit pseudorandom numbers generated
using lfsr_step(). To decrypt the data, we can simply XOR the encrypted data with the same 16-bit
pseudorandom numbers used for encryption. However, this requires initializing the LFSR with the same

16

initial state used during encryption. In this lab, the initial state is a 16-bit unsigned encryption key, which is
generated by running calculate_checksum() on a user supplied password.

For this lab, all encrypted files in example_files/ are encrypted using the password
cs213

While this implementation is simple and sufficient for this lab, a few notes about why this encryption method
is insecure:

• Computing encryption keys with calculate_checksum results in many passwords mapping to
the same key (e.g. calculate_checksum("ba") == calculate_checksum("ab"))

• Since the initial state is a 16-bit number, there are only 216 − 1 possible initial states, making it
possible to decrypt the file through brute force

6.6 Implementing decrypt_data()

For this lab, you will need to implement decrypt_data(), which takes some data encrypted by the
pack utility and reverses the encryption. The inputs to decrypt_data() are:

input_data An array of bytes to decrypt. It does not contain any header bytes and must not be modified

input_len The length of input_data

output_data The array to write the decrypted data to

output_len The maximum number of bytes which can be written to output_data

encryption_key The initial state for the LFSR generated from the user password

The general steps to implementing decrypt_data() are as follows:

1. Generate a new LFSR state based on the previous state using lfsr_step() (remember that the
initial state should be the encryption key discussed in Section 6.5).

2. Grab the next two bytes of data and XOR them with the LFSR state in little-endian order.

3. Write the results out.

4. Repeat for every two bytes of input data.

5. If there is one remaining byte (e.g. there were an odd number of bytes in the input data), then the
remaining byte should be XOR-ed with the least-significant byte of the LFSR state.

17

As an example, take a 4-byte input_data, with values [0x60, 0x5A, 0xFF, 0xB7] and an LFSR
that was initialized with 0x1337, as seen in Figure 3. As we saw in that example, the LFSR’s first output
is 0x099B and the second is 0x84CD. Using this, we can calculate:

0x9B ˆ 0x60 = 0xFB

0x09 ˆ 0x5A = 0x53

0xCD ˆ 0xFF = 0x32

0x84 ˆ 0xB7 = 0x33

This makes output_data have the values [0xFB, 0x53, 0x32, 0x33].

As another example, if input_data is [0x21], and LFSR output is 0x099B, then:

0x9B ˆ 0x21 = 0xBA

This gives output_data the value [0xBA]. The LFSR’s most-significant byte of output (0x09) is un-
used in this case.

7 Step 4: Implement Decompression

Compression is best exemplified by the following quote made by Kevin from The Office:

Why waste time say lot word when few word do trick?

Compression is a way to reduce the size of data. There are two kinds of compression, lossless and lossy.

Lossless compression is used everywhere in the world. .zip, .wav, and .png files are losslessly com-
pressed file formats. Lossless compression reversibly reduces a file’s size; if you know the algorithm that
was used to compress the file, you can use the algorithm’s inverse to decompress the file to get the original
contents.8

In contrast, .mp3, .jpeg, .mp4 are lossy file formats. Lossy compression is used everywhere, but you
often do not see it. Netflix, YouTube, and most other streaming platforms, serve videos in the MP4 format,
which uses lossy video compression to remove unneeded elements in a video to make it smaller. Lossy
formats achieve greater size reduction by “losing” some of the data during compression. As the name
suggests, lossy compression is a one-way street. Once you lossy-compress a file, you cannot perfectly
decompress the file to its original version.

In this lab, the pack utility utilizes lossless compression, since we want you to recover the files exactly as
they were created. Lossless compression works by finding commonly repeated (redundant) patterns, and
changing them to share a smaller and non-redundant pattern between all locations. pack uses a dictionary-
based run-length compression scheme. However, there are better lossless compression algorithms that exist,
such as Huffman encoding and LZW.

8You may find it interesting that the limit to how small lossless compression can possibly make a sequence is essentially
equivalent to the size of the smallest program that can print out that sequence.

18

https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

7.1 Our Run-Length Compression

We use a variation of run-length encoding where repeated bytes get replaced by a two-byte sequence. Unlike
traditional run-length encoding you may have already seen, we are using a dictionary to encodes runs of the
16 most-frequently occurring bytes in the file. These bytes are stored in the dictionary in the file’s header
(see Table 3).

When pack’s run-length compressor finds bytes that appear twice or more in a row, we replace up to (and
including) 15 repetitions with a two-byte sequence. The two-byte sequence is broken up into two one-byte
components:

1. A special byte (an “escape byte”) that denotes that a byte in the file is compressed. The escape byte
will always be 0x07, as it is unlikely to be used in text files.9

2. Information about which dictionary entry and how many repetitions should occur.

The second byte is broken down as follows:

Dictionary Index (bits 0-3) A 4-bit unsigned number which is the index in the compression dictionary of
the character repeated in the run.

Repeated Count (bits 4-7) A 4-bit unsigned number which is the length of the run.

Table 9 shows the format that these two bytes will have. An example is given at the end of this section.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Escape Byte: 0x07 Repeat Count Dictionary Index

Table 9: Compressed Bytes Normal Case

But what happens if the stream contains a 0x07 and we need to compress it? We use a literal escape byte,
which is an escape byte that has an invalid encoding. You are already familiar with this concept, because
many programming languages use it (e.g. "\\" is a literal escape byte for the \ character). Table 10 shows
how the literal character 0x07 is encoded.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Escape Byte: 0x07 Literal Escape Byte 0x00

Table 10: Compressed Bytes Escaped Case

7.2 Implementing decompress_data()

For this lab, you will need to implement the decompress_data() function, which takes some data
compressed by the pack utility and decompresses it. The inputs to decompress_data() are as follows:

90x07 in ASCII means “ring a bell”, which today just means your terminal beeps.

19

input_data An array of bytes to decompress. It does not contain any header bytes and should not be
modified

input_len The length of input_data

output_data The array to write the decompressed data to

output_len The maximum number of bytes which can be written to output_data

dictionary_data The compression dictionary used when compressing the data (taken from the header)

The general steps to implementing decompress_data() are as follows:

1. Iterate through input_data

2. If the byte is normal, write it to output

3. If the byte is an escape byte, read the second byte to determine what to do. Either:

(a) Write a repeated run of bytes to output

(b) Or, write a single literal escape byte

4. If the very last byte is an escape byte, treat it as a normal byte and write it to output

5. Return the number of bytes written to output

Some hints/notes:

• Be careful not to read past the end of input or write past the end of output.

• output_data will always be large enough to hold the decompressed input (assuming you parsed
all of the header fields correctly).

A Short Example

Take a file with the following bytes: [0x01, 0x07, 0x42] and a dictionary that contains [0x30,
0x31, 0x32, ..., 0x3F]. The decompressed output should be [0x01, 0x32, 0x32, 0x32,
0x32], because the second byte in the input is an escape byte, and the third byte says that Dictionary[2]
should be copied 4 times.

8 Step 5: Understand Multiple Streams

Up to this point, you have only seen packed files with a single “stream” of data. Packing this way will only
work on singular files. But what if we want to have multiple items in a single pack file? We could figure
out a way to make a single header work with multiple pieces of data, but an (arguably) simpler solution is to
allow multiple headers in a file, each of which describes their data stream in-turn. In fact, all of your video

20

files work this way! A video file that you can double-click and watch is actually a container that has a video
stream and an audio stream, where each is separated in the file, but is locatable by using the headers.

We do something similar in this lab, where a single pack file can have multiple data streams inside of it. The
header will precede each data stream. Please see Tables 6 & 7 for what you can expect.

There is nothing to implement to support this feature, you just need to be aware of it for the
next portion. Multiple streams will only be used for floating-point streams (both Floats? and
Float3?).

9 Step 6: Implement Two-Stream Floating Point

If the Floats? flag in the header is enabled, then the original file that was packed was a file of IEEE 754
single-precision floating point numbers (a vector, if you will). The pack utility splits these floats into two
streams:

1. signfrac: A stream containing the sign+mantissa (sign+fraction) bits

2. exp: A stream containing the exponent bits

This splitting process is shown in Figure 4. Note that a sign is 1 bit, a mantissa/fraction is 23 bits, and an
exponent is 8 bits. The two streams need to be joined so that signfrac[0] and exp[0] together will
form float[0].

For example, say we have packed just a single floating-point number, −3.0. This is 0xc0400000 in
big-endian hexadecimal and 0x000004c0 in little-endian. On Moore (which uses x64, and is little-
endian), signfrac[0]will be 0x0000c0, and exp[0]will be 0x80. You must reconstruct the original
floating-point value using these two values. Figure 4 shows this same operation visually.

If you want a refresher on the IEEE 754 single-precision floating-point format, please refer to the textbook.
You can also find interactive FP converters online, which can show how a number changes as you change
its bits.

21

Figure 4: Example Floating-Point Splitting

join_float_array()

This function takes in input_signfrac and input_exp streams of sign+fraction and exponent por-
tions of IEEE 754 floating-point numbers, and combines them to create the output_data stream. The
header is not present in either of the input streams.

The order of the streams is:

Sign & Fraction Stream The sign & fraction stream is composed of the 1-bit sign and 23-bit mantissa
to make 24 bits (3-bytes). The mantissa is in machine-endian format, and the sign bit is the most-
significant bit.

Exponent Stream The exponent stream is composed of 1-byte values, the 8-bit exponent.

The inputs to join_float_array() are:

input_signfrac An array of bytes that contains the sign bit and fractional (mantissa) portion of the
floating-point number

input_len_bytes_signfrac The number of bytes in the sign+fraction array.

input_exp An array of bytes that only contains data to decompress.

input_len_bytes_exp The number of bytes in the exponent array.

output_data Where you write the decompressed bytes.

output_len_bytes The maximum number of bytes you can write to output_data.

22

10 Testing Your Code

This lab is implementation heavy, so doing thorough testing is important for ensuring correctness and to
help with debugging. You will not receive any debugging help from course staff if you have not made a
good-faith effort to debug through testing.

The codebase is set up to compile into a Debug version, which supports source-level debugging with gdb
and also has several sanitizers enabled which will print warnings at runtime if your code does unfortunate
things.

10.1 Unit Testing

Unit tests should be written in test-utilities.c. Each of the functions you need to implement takes
in an array of data, so you can craft your own array of unsigned 8-bit data and give it to the function. This
is significantly easier than crafting entire files to unpack. We have already implemented a test for you as an
example, creatively named example_test().

10.2 Whole-File Testing

We provide you with a functioning pack program that you can use to pack up your own files. You can
then run your implementation of unpack and compare against the original file to see if it works. We have
provided some already-packed files as examples, along with their original versions in example_files/.

Using pack:

usage: ./pack [-cekfg] inputfilename outputfilename

-c Enable Compression
-e Enable Encryption
-k Enable Checksum
-f Enable packing of IEEE-754 Single-Precision

Floating-Point Numbers
-g Enable advanced packing of IEEE-754 Single-Precision

Floating-Point Numbers (extra credit)

Your implementation must allow unpack to determine which packing options were used and undoes them.
If the file was encrypted, a password must be entered. Your output file should be identical to the original file
before packing, though this will not work fully until all of your code is done.

10.3 Randomized Testing

Randomized testing involves generating random inputs (both data and flags/header options) for your pro-
gram (in this case, your unpack implementation). The randomized tester is the executable
test_rand_multiple.pl.

23

You can run it to find out the arguments, and we will give you some suggested arguments later. This tool
will randomly generate data, pack it with some combination of flags, get your unpack to unpack it, and
then compare your output with the original generated data. If your unpack crashes or your output is not
the same as the original, it will tell you. It will repeat this process as many times as you would like. Your
goal is to never crash, and always produce the identical output.

10.4 Useful Tools

Some useful tools for debugging are:

xxd Allows you to examine the individual bytes of a file

hexdump Another tool for examining the bytes of a file

diff Does a byte-by-byte comparison between two files

Use gdb to debug your code. Even understanding code is easier if you can single-step through its
execution. We cannot stress enough how important it is to become comfortable with a debugger like
gdb.

11 Extra Credit

There are two extra credit opportunities in this lab. You need to complete the first opportunity before you
can proceed to the second. Each opportunity is worth up to 10 extra points.

Since this is extra credit, expect limited implementation/debugging help from class staff.

We will also comment about a related research problem in this section, one which you might find interesting.

11.1 Opportunity 1: Tri-stream Floating-Point

The first extra credit opportunity is an extension of your 2-stream floating-point implementation. If Floats?
is set and Float3? is also set then this is the 3-stream floating-point packed format.

In the floating point component of the main lab, we made things a bit easier on you by having the elements
on the two streams be a multiple of bytes wide. Recall that the exponent stream was 1 byte wide, while the
the combined mantissa and sign stream was 3 bytes wide.

In this extra credit, you will use the “-g” option of pack. This will split a 32 bit floating point number into
three streams:

Mantissa Stream The mantissa stream is a stream of 23-bits for the fractional portion of the floating-point
number. The mantissa is in machine-endian format.

Exponent Stream The exponent stream is composed of 1-byte values, the 8-bit exponent.

24

Sign Stream The sign stream is a densely-packed stream of 1-bit sign values. This means that for every
byte (8-bits) of the sign stream, there are 8 sign bits present. You must match up the 8 bits in each
byte to their corresponding 23-bit mantissas and 8-bit exponents. The bit-ordering within the byte
of the sign stream is “backwards” from what you might expect. For example, 0b01100101
means sign[0] = 1, sign[1] = 0, and so on. This is because there is a convention that bit offsets
start at the low-order bit.

Your job in this extra credit is to write
join_float_array_three_stream().
Unlike your join_float_array() function, this one will need to operate bit-by-bit. We suggest that
you write functions that allow you to operate on arbitrary-length arrays of bits. Our own implementation
includes, for example, a read_bits(src,dest,bit_offset,num_bits) function, which reads
num_bits bits from the bit array src, starting at bit_offset and writes them to the bit array dest
starting at bit offset 0.

11.2 Opportunity 2: Packing an Audio File

The second extra credit opportunity is to implement a program from scratch to convert a file of packed floats
to a .wav file. This last one could be a challenge, as you will need to implement a program from scratch
yourself and write a valid standardized file format! If you do this properly, your output will be a .wav file
that you can play from your computer!

You can use some of the files we provided to aid in your implementation. Please contact one of the
teaching staff by email before embarking on this project, so we can provide additional guidance and
information.

We will provide a stream of packed floating-point values that correspond to values in a .wav file. You must
properly unpack and join the floats, then create a proper .wav file format. If you do this properly, your
output will be a .wav file you can listen to yourself!

The .wav file format is an audio format that directly encodes waveforms. This is a very old file format, and
it supports a lot of options, including 9-channel audio, studio-quality sampling rates, and other advanced
features. We have intentionally limited what features these .wav files will have. This limited feature subset
is:

• Mono-channel

• We are providing one file that has been sampled at 8 kHz and another one at 44.1 kHz. The more
important part of this information is that .wav file’s header matches how the data was exported.

• The encoding is IEEE 754 single-precision floating-point values.

11.3 Research: Compression of Scientific Data

Scientific data (and machine learning data) often can be represented as vast arrays of floating point numbers.
In this lab, you encountered rudimentary ways of losslessly compressing such data. It is believed that there

25

are significant limits on the lossless compression of real scientific data—a very high compression ratio
(beyond ∼4–5×, for example) may not be possible. One result has been the use of lossy compression for
such data, with https://szcompressor.org being a key innovator. Recall that lossy compression is
used for media (audio, video). Here, it is used in a rigorous manner for scientific information with the goal
of not perturbing the computations or the physical sciences involved. Can you invent a lossless compression
algorithm for such data that achieves very high compression ratios? You can try, using example data from
https://sdrbench.github.io/ to play.

26

https://szcompressor.org
https://sdrbench.github.io/

	Introduction
	Logistics
	Handout Instructions
	Handin Instructions
	Evaluation

	Lab Breakdown
	The Header
	The Minimal Header
	Example: Compression Enabled, Checksum Disabled
	Example: Compression Disabled, Checksum Enabled
	Example: Compression Enabled, Checksum Enabled

	Multiple Streams
	Floating-Point Streams

	Step 1: Implement Header Parsing
	Step 2: Implement Checksumming
	Step 3: Implement Decryption
	Linear Feedback Shift Registers
	A 4-bit LFSR Example
	pack's LFSR
	Stream Encryption
	Decrypting Data
	Implementing decrypt_data()

	Step 4: Implement Decompression
	Our Run-Length Compression
	Implementing decompress_data()

	Step 5: Understand Multiple Streams
	Step 6: Implement Two-Stream Floating Point
	Testing Your Code
	Unit Testing
	Whole-File Testing
	Randomized Testing
	Useful Tools

	Extra Credit
	Opportunity 1: Tri-stream Floating-Point
	Opportunity 2: Packing an Audio File
	Research: Compression of Scientific Data

