
Advanced Micro Devices

AMD64 Technology

128-Bit SSE5 Instruction Set

Publication No. Revision Date

43479 3.01 August 2007

Trademarks
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
MMX is a trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2007 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties
with respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Except as set forth in AMD’s Standard Terms
and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to,
the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in which
the failure of AMD’s product could create a situation where personal injury, death,
or severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Contents iii

43479—Rev. 3.01—August 2007 AMD64 Technology

Contents

Revision History . xi

Preface. xiii

1 New 128-Bit Instructions. .1
1.1 New 128-Bit Media Instruction Format . 1
1.2 Four-Operand 128-Bit Media Instructions . 3
1.3 Three-Operand 128-Bit Media Instructions. 5
1.4 Other 128-Bit Media Instructions . 6
1.5 16-Bit Floating-Point Data Type . 7
1.6 Floating Point Multiply and Add/Subtract . 9
1.7 Integer Multiply (Add) and Accumulate Instructions . 10
1.8 Packed Integer Horizontal Add and Subtract . 12
1.9 Vector Conditional Moves. 13
1.10 Packed Integer Rotates and Shifts . 14
1.11 Floating Point Comparison and Predicate Generation. 14
1.12 Test Instruction . 15
1.13 Precision Control and Rounding . 16
1.14 Convert . 16

2 SSE5 128-Bit Media Instructions .17
2.1 Notation . 17
2.2 Instruction Reference. 18

COMPD . 18
COMPS . 21
COMSD . 24
COMSS . 28
CVTPH2PS . 31
CVTPS2PH . 33
FMADDPD . 36
FMADDPS . 39
FMADDSD . 42
FMADDSS . 45
FMSUBPD. 48
FMSUBPS . 51
FMSUBSD. 54
FMSUBSS . 57
FNMADDPD. 60
FNMADDPS . 63
FNMADDSD. 66
FNMADDSS . 69
FNMSUBPD . 72
FNMSUBPS . 75
FNMSUBSD . 78
FNMSUBSS . 81

iv Contents

AMD64 Technology 43479—Rev. 3.01—August 2007

FRCZPD . 84
FRCZPS. 86
FRCZSD . 88
FRCZSS. 90
PCMOV . 92
PCOMB . 95
PCOMD . 98
PCOMQ . 101
PCOMUB . 104
PCOMUD . 107
PCOMUQ . 110
PCOMUW . 113
PCOMW . 116
PERMPD . 119
PERMPS . 123
PHADDBD . 127
PHADDBQ . 129
PHADDBW . 131
PHADDDQ . 133
PHADDUBD . 135
PHADDUBQ . 137
PHADDUBW . 139
PHADDUDQ. 141
PHADDUWD . 143
PHADDUWQ . 145
PHADDWD . 147
PHADDWQ . 149
PHSUBBW . 151
PHSUBDQ. 153
PHSUBWD . 155
PMACSDD . 157
PMACSDQH . 160
PMACSDQL . 163
PMACSSDD . 166
PMACSSDQH . 169
PMACSSDQL . 172
PMACSSWD . 175
PMACSSWW . 178
PMACSWD . 181
PMACSWW . 184
PMADCSSWD . 187
PMADCSWD . 190
PPERM . 193
PROTB. 197
PROTD. 200
PROTQ. 203
PROTW . 206

Contents v

43479—Rev. 3.01—August 2007 AMD64 Technology

PSHAB . 209
PSHAD . 211
PSHAQ . 213
PSHAW . 215
PSHLB. 217
PSHLD. 219
PSHLQ. 222
PSHLW . 224
PTEST . 226
ROUNDPD . 228
ROUNDPS. 231
ROUNDSD . 234
ROUNDSS. 237

vi Contents

AMD64 Technology 43479—Rev. 3.01—August 2007

Figures vii

43479—Rev. 3.01—August 2007 AMD64 Technology

Figures

Figure 1-1. Instruction Byte-Order . 2

Figure 1-2. Opcode3 Byte Format . 2

Figure 1-3. DREX Byte Format. 3

Figure 1-4. 16-Bit Floating-Point Data Type. 8

Figure 1-5. Operation of Multiplication with Addition/Subtraction Instructions . 9

Figure 1-6. Operation of Multiply and Accumulate Instructions . 11

Figure 1-7. Operation of Multiply, Add and Accumulate Instructions . 12

viii Figures

AMD64 Technology 43479—Rev. 3.01—August 2007

Tables ix

43479—Rev. 3.01—August 2007 AMD64 Technology

Tables

Table 1-1. Opcode3 Byte Fields. 2

Table 1-2. Operation Size – OPS . 2

Table 1-3. DREX Byte Fields . 3

Table 1-4. Operand Configurations for Four-Operand Instructions. 4

Table 1-5. Four Operand Instruction Opcode Map . 4

Table 1-6. NaN Results for SRC1 * SRC2 + SRC3. 5

Table 1-7. Operand Configurations for Three Operand Instructions . 6

Table 1-8. Three Operand Instruction Opcode Map . 6

Table 1-9. One/Two Operand Instruction Opcode Map. 7

Table 1-10. Supported 16-Bit Floating-Point Encodings . 8

Table 2-1. PERMPD Control Byte. 120

Table 2-2. PERMPS Control Byte . 124

Table 2-3. PPERM Control Byte . 194

Table 2-4. Rounding Modes and Encoding of Rounding Control (RC) Field . 228

Table 2-5. Rounding Modes and Encoding of Rounding Control (RC) Field . 231

Table 2-6. Rounding Modes and Encoding of Rounding Control (RC) Field . 234

Table 2-7. Rounding Modes and Encoding of Rounding Control (RC) Field . 237

x Tables

AMD64 Technology 43479—Rev. 3.01—August 2007

Revision History xi

43479—Rev. 3.01—August 2007 AMD64 Technology

Revision History

Date Revision Description

August 2007 3.01 Corrected the functional diagram for the CVTPS2PH instruction. Corrected
typo on PTEST page.

August 2007 3.00 Initial public release.

xii Revision History

AMD64 Technology 43479—Rev. 3.01—August 2007

Preface xiii

43479—Rev. 3.01—August 2007 AMD64 Technology

Preface

About This Book

This book consists of documentation changes and additions to the multivolume AMD64 Architecture
Programmer’s Manual. The following table lists each volume and its order number.

Audience

This document is intended for all programmers writing application or system software for a processor
that implements the AMD64 architecture.

Title Order No.
Volume 1, Application Programming 24592

Volume 2, System Programming 24593

Volume 3, General-Purpose and System Instructions 24594

Volume 4, 128-Bit Media Instructions 26568

Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

xiv Preface

AMD64 Technology 43479—Rev. 3.01—August 2007

New 128-Bit Instructions 1

43479—Rev. 3.01—August 2007 AMD64 Technology

1 New 128-Bit Instructions

This release of the AMD64 architecture introduces many new 128-bit instructions. The AMD64 128-
bit media instructions are discussed in detail in the AMD64 Architecture Programmer’s Manual
Volume 4: 128-Bit Media Instructions, order# 26568. This document describes new instructions,
including new three-operand instructions. Included are 23 base instructions, expanding to more than
100 total instructions, are designed to:

• Improve performance by increasing the work per instruction and

• Remove loads by reducing saving or reloading of register operands

New instructions include:

• Fused multiply accumulate (FMACxx) instructions

• Integer multiply accumulate (IMAC, IMADC) instructions

• Permutation and conditional move instructions

• Vector compare and test instructions

• Precision control, rounding, and conversion instructions

Support for these instructions is provided by a new instruction encoding, which adds a third opcode
byte (Opcode3). For the three- and four-operand instructions, a new DREX byte defines the destination
register and provides the register extension information normally contained in a REX prefix. The REX
prefix is not allowed with those instructions.

Support for the new instructions is indicated by ECX bit 11 (SSE5) as returned by CPUID function
8000_0001h. Attempting to execute these instructions causes a #UD exception if they are not present
in the hardware.

1.1 New 128-Bit Media Instruction Format

This release introduces a new 128-bit media instruction format, which adds a third opcode byte,
Opcode3. These instructions use opcodes 0F 24 00–FFh and 0F 25 00–FFh. Another new byte, the
DREX byte, specifies the destination register and the REX extensions on the source operands.
Instruction group 0F 25h is assigned to instructions that require a one-byte immediate operand, 0F 24h
is assigned to instructions that do not. Prefixes 66h, F2h, and F3h can be used with opcode groups
0F 24h and 0F 25h to create new instruction maps. An invalid opcode exception results if a REX prefix
is used with these opcodes.

Figure 1-1 on page 2 shows the byte order of the instruction format. The Opcode3 byte appears
immediately after the two-byte Opcode, and the DREX byte appears immediately after the SIB byte
(or ModRM byte, if there is no SIB byte).

2 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

Figure 1-1. Instruction Byte-Order

1.1.1 Opcode3 Byte

The format of the Opcode3 byte is shown in Figure 1-2. A description of the fields is provided in
Table 1-1.

Figure 1-2. Opcode3 Byte Format

Table 1-1. Opcode3 Byte Fields

Field
Bit

Position
Definition

Opcode 7-3 Provides additional opcode bits for the instructions

OC1 2

Operand Configuration Bit 1—Together with OC0, defines the order of the operands in
the three and four operand instruction formats. For the four operand instruction format,
see Table 1-4, “Operand Configurations for Four-Operand Instructions”‚ on page 4 for
details. For the three operand instruction format, see Table 1-7, “Operand
Configurations for Three Operand Instructions”‚ on page 6.

OPS 1-0
Operation Size - provides the size of the operation for both integer and floating-point.
See Table 1-2 for details.

Table 1-2. Operation Size – OPS

Opcode3.OPS Integer Operation
Floating-Point

Operation

00 Byte PS

01 Word PD

10 Doubleword SS

11 Quadword SD

 Opcode
(2 byte)

Opcode3 ModRM SIB
DREX

0F24h
0F25h

Displacement
1, 2, or 4 Bytes

Immediate
1 Byte

Opcode OC1 OPS

01237

New 128-Bit Instructions 3

43479—Rev. 3.01—August 2007 AMD64 Technology

1.1.2 DREX Byte

The format of the DREX byte is shown in Figure 1-3. A description of the fields is provided in
Table 1-3 below.

Figure 1-3. DREX Byte Format

Table 1-3. DREX Byte Fields

Bits 7 and 2:0 are ignored in modes other than 64-bit.

1.2 Four-Operand 128-Bit Media Instructions

Some 128-bit media instructions have been derived from four-operand operations that require three
input operands and one destination register. This is accomplished by mapping one of the three source
operands to the destination operand by means of the DREX.dest field.

FMADDPS is an example of a four operand instruction:

FMADDPS dest, src1, src2, src3; dest = src1 * src2 + src3

The first operand is the destination operand and is an XMM register addressed by the 4-bit DREX.dest
field. The second, third and fourth operands are source operands. One source operand is an XMM
register addressed by the ModRM.reg field, another source operand is an XMM register or a memory
operand addressed by the ModRM.r/m field, and another source operand is the same register as the
destination register.

The OC1 and OC0 bits combine to determine which source operand is specified by which operand
field in the opcode, as shown in Table 1-4 on page 4.

Mnemonic
Bit

Position Definition

DREX.dest 7-4 XMM destination register

DREX.OC0 3
Operand Configuration Bit 0 - Together with OC1, defines the order of the operands
in the four operand instruction format. See Table 1-4, “Operand Configurations for
Four-Operand Instructions”‚ on page 4 for details.

DREX.R 2 1-bit (high) extension of the ModRM reg field, thus permitting access to 16 XMM
registers.

DREX.X 1 1-bit (high) extension of the SIB index field, thus permitting access to 16 registers.

DREX.B 0 1-bit (high) extension of the ModRM r/m field, SIB base field, or opcode reg field,
thus permitting access to 16 registers.

 01237 4

dest OC0 R X B

4 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

Instructions beginning with opcode bytes 0F 24h or 0F 25h take a DREX byte and do not use a REX
prefix. The DREX.B, DREX.R and DREX.X bits are used to allow access to the REX registers.

The four operand instructions have opcodes in the 0F 24h and 0F 25h opcode pages. See Table 1-5.

Table 1-4. Operand Configurations for Four-Operand Instructions

OC[1:0] dest src1 src2 src3

00b DREX.dest DREX.dest modrm.reg modrm.r/m

01b DREX.dest DREX.dest modrm.r/m modrm.reg

10b DREX.dest modrm.reg modrm.r/m DREX.dest

11b DREX.dest modrm.r/m modrm.reg DREX.dest

Table 1-5. Four Operand Instruction Opcode Map

Operation Opcode
Opcode3

[7:3]

Opcode3
[2]

OC1

Opcode3
[1:0]
OPS

DREX
[3]

OC0

COMa 0F 25 2C-2Fh 00101b 1b OPS 0b

FMADDa 0F 24 00-07h 00000b OC1 OPS OC0

FMSUBa 0F 24 08-0Fh 00001b OC1 OPS OC0

FNMADDa 0F 24 10-17h 00010b OC1 OPS OC0

FNMSUBa 0F 24 18-1Fh 00011b OC1 OPS OC0

PCOMa 0F 25 4C-4Fh 01001b 1b OPS 0b

PCOMUa 0F 25 6C-6Fh 01101b 1b OPS 0b

PERMPS 0F 24 20,24h 00100b OC1 00b OC0

PERMPD 0F 24 21,25h 00100b OC1 01b OC0

PCMOV 0F 24 22,26h 00100b OC1 10b OC0

PPERM 0F 24 23,27h 00100b OC1 11b OC0

PMACSSWW 0F 24 85h 10000b 1b 01b 0b

PMACSWW 0F 24 95h 10010b 1b 01b 0b

PMACSSWD 0F 24 86h 10000b 1b 10b 0b

PMACSWD 0F 24 96h 10010b 1b 10b 0b

PMACSSDD 0F 24 8Eh 10001b 1b 10b 0b

PMACSDD 0F 24 9Eh 10011b 1b 10b 0b

PMACSSDQL 0F 24 87h 10000b 1b 11b 0b

PMACSDQL 0F 24 97h 10010b 1b 11b 0b

PMACSSDQH 0F 24 8Fh 10001b 1b 11b 0b

PMACSDQH 0F 24 9Fh 10011b 1b 11b 0b

New 128-Bit Instructions 5

43479—Rev. 3.01—August 2007 AMD64 Technology

1.2.1 NaN Results on FMAC Instructions

When a three source operand floating-point operation such as FMADDPS produces a QNaN result, its
value is determined by the rules in Table 1-6.

QNaN—quiet NaN
SNaN—signaling NaN
!SNaN—a number that does not represent a signaling NaN.
!NaN—either normal, denormal (including zero) or infinity
IE—Invalid-operation exception

1.3 Three-Operand 128-Bit Media Instructions

Some instructions have two source operands and a destination operand.

PROTB is an example of a three operand instruction:

PMADCSSWD 0F 24 A6h 10100b 1b 10b 0b

PMADCSWD 0F 24 B6h 10110b 1b 10b 0b

a. Indicates four instruction variants (_PS, _PD, _SS and _SD) specified by the OPS field.

Table 1-6. NaN Results for SRC1 * SRC2 + SRC3

SRC1 SRC2 SRC3 Result

SNaN1 any any QNaN1, IE

QNaN1 SNaN2 any QNaN1, IE

QNaN1 any SNaN3 QNaN1, IE

!NaN SNaN2 any QNaN2, IE

!NaN QNaN2 SNaN3 QNaN2, IE

!NaN !NaN SNaN3 QNaN3, IE

QNaN1 !SNaN2 !SNaN3 QNaN1

!NaN QNaN2 !SNaN3 QNaN2

!NaN !NaN QNaN3 QNaN3

zero infinity !NaN QNaN(indefinite), IE

infinity zero !NaN QNaN(indefinite), IE

 product=+infinitya

a. The +infinity or -infinity product requires one source operand to be infinity
and the other source operand to be a valid non-zero value.

-infinity QNaN(indefinite), IE

 product=-infinitya +infinity QNaN(indefinite), IE

Table 1-5. Four Operand Instruction Opcode Map (continued)

Operation Opcode
Opcode3

[7:3]

Opcode3
[2]

OC1

Opcode3
[1:0]
OPS

DREX
[3]

OC0

6 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

PROTB dest, src, count dest = src <</>> count

The first operand is the destination operand, and is an XMM register addressed by the 4-bit DREX.dest
field. The second and third operands are source operands. One source operand is an XMM register
addressed by the ModRM.reg field, the other source operand is an XMM register or memory operand
addressed by the ModRM.r/m field.

In the three-operand format the OC1 bit is used as an extension to the opcode. The OC0 bit determines
which source operand is specified by which operand field, as shown in Table 1-7.

The instructions with a DREX byte do not use the REX prefix. The DREX.R, DREX.B and DREX.X
bits are used to allow access to the REX registers.

Table 1-7. Operand Configurations for Three Operand Instructions

The three operand instructions have opcodes in the 0F 24h page. See Table 1-8.

Table 1-8. Three Operand Instruction Opcode Map

Note that there is only one operand configuration for the COM, PCOM and PCOMU instructions. The
OC0 bit is zero.

1.4 Other 128-Bit Media Instructions

Other instructions use the normal two byte operand assignment. The first instruction operand (xmm1)
is the destination, addressed by the ModRM.reg field. The second operand (xmm2/mem128) is either
an XMM register or memory operand, as determined by the ModRM and SIB.

CVTPH2PS is an example of a two operand instruction.

CVTPH2PS xmm1, xmm2/mem64

The new instructions with one or two operands are assigned to two-byte opcodes 0F 3Ah (ROUND),
0F 7Ah, 0F 7Bh (PROTx) and 0F 38h (PTEST). See Table 1-9 on page 7.

OC0 dest src count

0b drex.dest modrm.reg modrm.r/m

1b drex.dest modrm.r/m modrm.reg

Operation Opcode Opcode3[7:3]
Opcode3[2]

OC1
Opcode3[1:0]

OPS
DREX[3]

OC0

PROTa

a. Indicates four instruction variants (_B, _W, _D and _Q) specified by the OPS field.

0F 24 40-43h 01000b 0b OPS OC0

PSHLa 0F 24 44-47h 01000b 1b OPS OC0

PSHAa 0F 24 48-4Bh 01001b 0b OPS OC0

New 128-Bit Instructions 7

43479—Rev. 3.01—August 2007 AMD64 Technology

1.5 16-Bit Floating-Point Data Type

SSE5 introduces a new 16-bit floating-point data type and two instructions (CVTPS2PH and
CVTPH2PS) to convert 16-bit floating-point values to and from single-precision format.

The 16-bit floating-point data type, shown in Figure 1-4 on page 8, includes a 1-bit sign, a 5-bit
exponent with a bias of 15 and a 10-bit significand. The integer bit is implied, making a total of 11 bits
in the significand. The value of the integer bit can be inferred from the number encoding. Table 1-10
on page 8 shows the floating-point encodings of supported numbers and non-numbers.

Table 1-9. One/Two Operand Instruction Opcode Map

Operation Opcode Opcode3[7:3]
Opcode3[2]

OC1
Opcode3[1:0]

OPS

FRCZb 0F 7A 10-13h 00010b 0b OPS

CVTPH2PS 0F 7A 30h 00110b 0b 00b

CVTPS2PH 0F 7A 31h 00110b 0b 01b

PHADDBW 0F 7A 41h 01000b 0b 01b

PHADDBD 0F 7A 42h 01000b 0b 10b

PHADDBQ 0F 7A 43h 01000b 0b 11b

PHADDWD 0F 7A 46h 01000b 1b 10b

PHADDWQ 0F 7A 47h 01000b 1b 11b

PHADDDQ 0F 7A 4Bh 01001b 0b 11b

PHADDUBW 0F 7A 51h 01010b 0b 01b

PHADDUBD 0F 7A 52h 01010b 0b 10b

PHADDUBQ 0F 7A 53h 01010b 0b 11b

PHADDUWD 0F 7A 56h 01010b 1b 10b

PHADDUWQ 0F 7A 57h 01010b 1b 11b

PHADDUDQ 0F 7A 5Bh 01011b 0b 11b

PHSUBBW 0F 7A 61h 01100b 0b 01b

PHSUBWD 0F 7A 62h 01100b 0b 10b

PHSUBDQ 0F 7A 63h 01100b 0b 11b

PROTa

a. Indicates four instruction variants (_B, _W, _D and _Q) specified by the OPS field.
b. Indicates four instruction variants (_PS, _PD, _SS and _SD) specified by the OPS field.

0F 7B 40-43h 01000b 0b OPS

PTEST 66 0F 38 17 00010b 1b 11b

ROUNDb 66 0F 3A 08-0B 00001b 0b OPS

8 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

Figure 1-4. 16-Bit Floating-Point Data Type

Table 1-10. Supported 16-Bit Floating-Point Encodings

Sign
Bias

Exponent Significanda

a. The “1.” and “0.” prefixes represent the implicit integer bit.

Classification

0 1 1111
1.01 1111 1111

to
1.00 0000 0001

Positive Non-Number

SNaN

0 1 1111
1.11 1111 1111

to
1.10 0000 0001

QNaN

0 1 1111 1.00 0000 0000

Positive Floating-Point
Numbers

Positive Infinity

0
1 1110

to
0 0001

1.11 1111 1111
to

1.00 0000 0000
Positive Normal

0 0 0000
0.11 1111 1111

to
0.00 0000 0001

Positive Denormal

0 0 0000 0.00 0000 0000 Positive Zero

1 0 0000 0.00 0000 0000

Positive Floating-Point
Numbers

Negative Zero

1 0 0000
0.00 0000 0001

to
0.11 1111 1111

Negative Denormal

1
0 0001

to
1 1110

1.00 0000 0000
to

1.11 1111 1111
Negative Normal

1 1 1111 1.00 0000 0000 Negative Infinity

1 1 1111
1.00 0000 0001

to
1.01 1111 1111

Negative Non-Number

SNaN

1 1 1111
1.10 0000 0001

to
1.11 1111 1111

QNaN

 S Biased Exponent Significand

09101415

New 128-Bit Instructions 9

43479—Rev. 3.01—August 2007 AMD64 Technology

1.6 Floating Point Multiply and Add/Subtract

The combined operation of the floating-point (negative) multiplication and addition/subtraction
operations is shown in Figure 1-5. The negative multiply instructions apply the negation to the results
of the multiplication before applying the addition or subtraction operation.

Figure 1-5. Operation of Multiplication with Addition/Subtraction Instructions

The SSE5 instructions set includes the following combined multiply with add/subtract instructions.
Note that scalar instructions only operate on the lowest element of the specified size in the source and
destination registers; the contents of the upper elements of the source and destination registers are
unaffected by the operation.

• FMADDPS—Multiply and Add Packed Single-Precision Floating Point

• FMADDPD—Multiply and Add Packed Double-Precision Floating Point

• FMADDSS—Multiply and Add Scalar Single-Precision Floating Point

• FMADDSD—Multiply and Accumulate Scalar Double-Precision Floating Point

• FMSUBPS—Multiply and Subtract Packed Single-Precision Floating-Point

• FMSUBPD—Multiply and Subtract Packed Double-Precision Floating-Point

• FMSUBSS—Multiply and Subtract Scalar Single-Precision Floating-Point

• FMSUBSD—Multiply and Subtract Scalar Double-Precision Floating-Point

• FNMADDPS—Negative Multiply and Add Packed Single-Precision Floating-Point

• FNMADDPD—Negative Multiply and Add Packed Double-Precision Floating-Point

multiply

SRC1n SRC2n

add/subtract

round round

multiply

SRC2

SRC3SRC3n

SRC1…

…

…

…

…

…

…
DEST1DESTn

(Negative) Multiply with Add/Subtract Instructions

add/subtract
…

…

(negate)(negate) …

10 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

• FNMADDSS—Negative Multiply and Add Scalar Single-Precision Floating-Point

• FNMADDSD—Negative Multiply and Add Scalar Double-Precision Floating-Point

• FNMSUBPS—Negative Multiply and Subtract Packed Single-Precision Floating-Point

• FNMSUBPD—Negative Multiply and Subtract Packed Double-Precision Floating-Point

• FNMSUBSS—Negative Multiply and Subtract Scalar Single-Precision Floating-Point

• FNMSUBSD—Negative Multiply and Subtract Scalar Double-Precision Floating-Point

1.7 Integer Multiply (Add) and Accumulate Instructions

The multiply and accumulate and multiply, add and accumulate instructions operate on and produce
packed signed integer values. These instructions allow the accumulation of results from (possibly)
many iterations of similar operations without a separate intermediate addition operation to update the
accumulator register. The accumulator is both a source (src3) and a destination register (dest)—it is an
XMM register addressed by the DREX.dest field.

1.7.1 Saturation

Some instructions limit the result of an operation to the maximum or minimum value representable by
the data type of the destination—an operation known as saturation. Many of the integer multiply and
accumulate instructions saturate the cumulative results of the multiplication and addition
(accumulation) operations before writing the final results to the destination (accumulator) register.

Note, however, that not all multiply and accumulate instructions saturate results. (For further
discussion of saturation, see the AMD64 Architecture Programmer’s Manual Volume 1: Application
Programming, order# 24592.)

1.7.2 Multiply and Accumulate Instructions

The operation of a typical SSE5 integer multiply and accumulate instruction is shown in Figure 1-6 on
page 11.

The multiply and accumulate instructions operate on and produce packed signed integer values. These
instructions first multiply the value in the first source operand by the corresponding value in the second
source operand. Each signed integer product is then added to the corresponding value in the third
source operand, which is the accumulator and is identical to the destination operand. The results may
or may not be saturated prior to being written to the destination register, depending on the instruction.

New 128-Bit Instructions 11

43479—Rev. 3.01—August 2007 AMD64 Technology

Figure 1-6. Operation of Multiply and Accumulate Instructions

The SSE5 instruction set provides the following integer multiply and accumulate instructions.

• PMACSSWW—Packed Multiply Accumulate Signed Word to Signed Word with Saturation

• PMACSWW—Packed Multiply Accumulate Signed Word to Signed Word

• PMACSSWD—Packed Multiply Accumulate Signed Word to Signed Doubleword with Saturation

• PMACSWD—Packed Multiply Accumulate Signed Word to Signed Doubleword

• PMACSSDD—Packed Multiply Accumulate Signed Doubleword to Signed Doubleword with
Saturation

• PMACSDD—Packed Multiply Accumulate Signed Doubleword to Signed Doubleword

• PMACSSDQL—Packed Multiply Accumulate Signed Low Doubleword to Signed Quadword
with Saturation

• PMACSSDQH—Packed Multiply Accumulate Signed High Doubleword to Signed Quadword
with Saturation

• PMACSDQL—Packed Multiply Accumulate Signed Low Doubleword to Signed Quadword

• PMACSDQH—Packed Multiply Accumulate Signed High Doubleword to Signed Quadword

 src1

127 96 95 64 63 32 31 0

 src2

src3 = dest (accumulator)
127 96 95 64 63 32 31 0

(saturate)

 dest = src3 (accumulator)
127 96 95 64 63 32 31 0

multiply

add

 multiply

add

(saturate)

multiply
multiply

 add

add(accumulate)
(accumulate)

(accumulate)
(accumulate)

(saturate) (saturate)

127 96 95 64 63 32 31 0

12 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

1.7.3 SSE5 Integer Multiply, Add and Accumulate Instructions

The operation of the multiply, add and accumulate instructions is illustrated in Figure 1-7.

The multiply, add and accumulate instructions first multiply each packed signed integer value in the
first source operand by the corresponding packed signed integer value in the second source operand.
The odd and even adjacent resulting products are then added. Each resulting sum is then added to the
corresponding packed signed integer value in the third source operand, which is the accumulator and is
identical to the destination XMM register addressed by the DREX.dest field.

Figure 1-7. Operation of Multiply, Add and Accumulate Instructions

The SSE5 instruction set provides the following integer multiply, add and accumulate instructions.

• PMADCSSWD—Packed Multiply Add and Accumulate Signed Word to Signed Doubleword with
Saturation

• PMADCSWD—Packed Multiply Add and Accumulate Signed Word to Signed Doubleword

1.8 Packed Integer Horizontal Add and Subtract

The packed horizontal add and subtract signed byte instructions successively add adjacent pairs of
signed integer values from the second source XMM register or 128-bit memory operand and pack the
(sign-extended) integer result of each addition in the destination (first source).

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src3 = dest

127 96 95 64 63 32 31 0

multiply
multiply

multiply
multiply

multiply
 multiply

multiply
multiply

 add

 add

dest = src3 (accumulator)
127 96 95 64 63 32 31 0

(saturate)

 add
 add

add

(saturate)

add

(saturate)

add

(saturate)

add

[accumulate]
[accumulate]

[accumulate]
[accumulate]

New 128-Bit Instructions 13

43479—Rev. 3.01—August 2007 AMD64 Technology

• PHADDBW—Packed Horizontal Add Signed Byte to Signed Word

• PHADDBD—Packed Horizontal Add Signed Byte to Signed Doubleword

• PHADDBQ—Packed Horizontal Add Signed Byte to Signed Quadword

• PHADDDQ—Packed Horizontal Add Signed Doubleword to Signed Quadword

• PHADDUBW—Packed Horizontal Add Unsigned Byte to Word

• PHADDUBD—Packed Horizontal Add Unsigned Byte to Doubleword

• PHADDUBQ—Packed Horizontal Add Unsigned Byte to Quadword

• PHADDUWD—Packed Horizontal Add Unsigned Word to Doubleword

• PHADDUWQ—Packed Horizontal Add Unsigned Word to Quadword

• PHADDUDQ—Packed Horizontal Add Unsigned Doubleword to Quadword

• PHADDWD—Packed Horizontal Add Signed Word to Signed Doubleword

• PHADDWQ—Packed Horizontal Add Signed Word to Signed Quadword

• PHSUBBW—Packed Horizontal Subtract Signed Byte to Signed Word

• PHSUBWD—Packed Horizontal Subtract Signed Word to Signed Doubleword

• PHSUBDQ—Packed Horizontal Subtract Signed Doubleword to Signed Quadword

1.9 Vector Conditional Moves

SSE5 instructions include four vector conditional moves instructions:

• PCMOV—Vector Conditional Moves

• PPERM—Packed Permute Bytes

• PERMPS—Permute and Modify Single-Precision Floating Point

• PERMPD—Permute Double-Precision Floating Point

The PCMOV instruction implements the C/C++ language ternary ‘?’ operator. This instruction
operates on individual bits and requires a bitwise predicate in one XMM register and the two source
operands in two more XMM registers.

The PPERM instruction performs vector permutation on a packed array of 32 bytes. The PPERM
instruction replaces some or all of its destination bytes with 0x00, 0xFF, or one of the 32 bytes of the
packed array. A byte selected from the array may have an additional operation such as NOT or bit
reversal applied to it, before it is written to the destination. The action for each destination byte is
determined by a corresponding control byte.

PERMPx instructions provides a superset of the SHUFPS instruction. This instruction performs a
permutation operation on an array of eight single-precision or four double-precision floating-point
values, optionally followed by an additional operation (ABS, NEG, NEGABS, set-to-constant (0.0,
-1.0, 1.0, PI)).

14 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

1.10 Packed Integer Rotates and Shifts

These instructions rotate/shift the elements of the vector in the first source XMM or 128-bit memory
operand by the amount specified by a control byte. The rotates and shifts differ in the way they handle
the control byte.

1.10.1 Packed Integer Shifts

The packed integer shift instructions shift each element of the vector in the first source XMM or 128-
bit memory operand by the amount specified by a control byte contained in the least significant byte of
the corresponding element of the second source operand. The result of each shift operation is returned
in the destination XMM register. This allows load-and-rotate from memory operations. The SSE5
instruction set provides the following packed integer shift instructions:

• PSHLB—Packed Shift Logical Bytes

• PSHLW—Packed Shift Logical Words

• PSHLD—Packed Shift Logical Doublewords

• PSHLQ—Packed Shift Logical Quadwords

• PSHAB—Packed Shift Arithmetic Bytes

• PSHAW—Packed Shift Arithmetic Words

• PSHAD—Packed Shift Arithmetic Doublewords

• PSHAQ—Packed Shift Arithmetic Quadwords

1.10.2 Packed Integer Rotate

There are two variants of the packed integer rotate instructions. The first is identical to that described
above (see “Packed Integer Shifts”). In the second variant, the control byte is supplied by an immediate
operand that determines the identical amount to rotate for every element in the first source operand.
The SSE5 instruction set provides the following packed integer rotate instructions:

• PROTB—Packed Rotate Bytes

• PROTW—Packed Rotate Words

• PROTD—Packed Rotate Doublewords

• PROTQ—Packed Rotate Quadwords

1.11 Floating Point Comparison and Predicate Generation

The SSE5 comparison instructions compare floating-point or integer values in the first source XMM
register with corresponding floating point or integer values in the second source XMM register or 128-
bit memory. The type of comparison is specified by the immediate-byte operand. The resulting
predicate is placed in the destination XMM register. If the condition is true, all bits in the
corresponding field in the destination register are set to 1s; otherwise all bits in the field are set to 0s.

New 128-Bit Instructions 15

43479—Rev. 3.01—August 2007 AMD64 Technology

1.11.1 Floating-Point Comparison Operations

The type of comparison of the floating-point comparison operation is specified by the four low-order
bits of the immediate-byte operand. If the condition is true, all corresponding field in the destination
will be set to all 1s; otherwise it will be set to all 0s.

Comparisons can be ordered or unordered. Ordered comparisons return TRUE only if both operands
are valid numbers and the numbers have the relation specified by the type of comparison; they are
FALSE otherwise.

Unordered comparisons return TRUE if one of the operands is a NaN or the numbers have the relation
specified by the type of comparison; otherwise, they are FALSE.

• COMPS—Compare Vector Single-Precision Floating Point

• COMPD—Compare Vector Double-Precision Floating Point

• COMSS—Compare Scalar Single-Precision Floating Point

• COMSD—Compare Scalar Double-Precision Floating Point

1.11.2 Integer Comparison and Predicate Generation

The integer comparison and predicate generation instructions compare corresponding packed
unsigned bytes in the first and second source operands and write the result of each comparison in the
corresponding byte of the destination. The result of each comparison is a value of all 1s (TRUE) or all
0s (FALSE). The type of comparison is specified by the three low-order bits of the immediate-byte
operand. The SSE5 instruction set provides the following integer comparison instructions.

• PCOMUB—Compare Vector Unsigned Bytes

• PCOMUW—Compare Vector Unsigned Words

• PCOMUD—Compare Vector Unsigned Doublewords

• PCOMUQ—Compare Vector Unsigned Quadwords

• PCOMB—Compare Vector Signed Bytes

• PCOMW—Compare Vector Signed Words

• PCOMD—Compare Vector Signed Doublewords

• PCOMQ—Compare Vector Signed Quadwords

1.12 Test Instruction

The PTEST instruction performs a bitwise logical AND between the source XMM register or 128-bit
memory location and destination XMM register. The ZF flag is set to 1 if all bit positions that are set to
1 in the mask operand are set to 0 in the source operand; otherwise, ZF is cleared. The CF flag is set to
1 if all bit positions specified in the mask operand are set to 1 in the source operand; otherwise, CF is
cleared.

• PTEST—Predicate Test Register

16 New 128-Bit Instructions

AMD64 Technology 43479—Rev. 3.01—August 2007

1.13 Precision Control and Rounding

The precision control and rounding instructions can move (from memory) and round data with a single
instruction. The result of _PD and _PS instructions is a vector of floating-point numbers. The result of
_SD and _SS instructions is always a scalar floating-point number. SSE5 provides the following
precision control and rounding instructions:

• FRCZPD—Extract Fraction Packed Double-Precision Floating-Point

• FRCZPS—Extract Fraction Packed Single-Precision Floating-Point

• FRCZSD— Extract Fraction Scalar Double-Precision Floating-Point

• FRCZSS— Extract Fraction Scalar Single-Precision Floating Point

• ROUNDPD—Round Packed Double-Precision Floating-Point

• ROUNDPS—Round Packed Single-Precision Floating-Point

• ROUNDSD— Round Scalar Double-Precision Floating-Point

• ROUNDSS—Round Scalar Single-Precision Floating-Point Convert

The FRCZPD and FRCZPS instructions extract the fractional portions of a vector of double-/single-
precision floating-point values in an XMM register or a 128-bit memory location and write the results
in the corresponding field in the destination register.

The FRCZSS and FRCZSD instructions extract the fractional portion of the single-/double-precision
scalar floating-point value in and XMM register or 128-bit memory location and writes the results in
the corresponding field in the destination register. The upper fields of the destination register are
unaffected by the operation.

The ROUNDPD and ROUNDPD instructions round the double-/single-precision floating-point values
in an XMM register or a 128-bit memory location to the nearest integer, as determined by the rounding
mode specified by the 8-bit immediate control byte and write the floating-point results in the
corresponding fields in a destination XMM register.

The ROUNDSD and ROUNDSS instructions round the double-/single-precision scalar floating-point
value in the low position of an XMM register or a 64-bit memory location to the nearest integer, as
determined by the rounding mode specified by the 8-bit immediate control byte and writes the results
as a double-precision floating-point value in the low 64 bits of the destination XMM register. The
upper fields of the destination register are unaffected by the operation.

1.14 Convert

Two SSE5 instructions are provided to move data from/to memory and convert a single-precision
floating point to 16-Bit floating-point or vice versa in one instruction. (See Section 1.5, “16-Bit
Floating-Point Data Type,” on page 7.)

• CVTPH2PS—Convert 16-Bit Floating-Point to Single-Precision Floating Point

• CVTPS2PH—Convert Single-Precision Floating-Point to 16-Bit Floating Point

Instruction Reference 17

43479—Rev. 3.01—August 2007 AMD64 Technology

2 SSE5 128-Bit Media Instructions

The following section describes the complete set of SSE5 128-media instructions. Instructions are
listed alphabetically by mnemonic.

2.1 Notation

The notation used to denote the size and type of source and destination operands in both mnemonics
and opcodes is discussed in detail in Section 2.5, “Notation,” on page 37 in the AMD64 Architecture
Programmer’s Manual Volume 3: General Purpose and System Instructions. Mnemonic conventions
that are idiosyncratic to the SSE5 instruction set have been included in Chapter 1, “New 128-Bit
Instructions”, in this document.

2.1.1 Opcode Syntax

In addition to the opcode notational conventions specified in Section 2.5.2, “Opcode Syntax,” on
page 39 in the AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and System
Instructions, the SSE5 instruction set requires the following notation to indicates the value of the
DREX.OC0 bit:

/drex0—Indicates a DREX byte, with the OC0 bit cleared to zero.

/drex1—Indicates a DREX byte, with the OC0 bit set to one.

18 COMPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

2.2 Instruction Reference

Compares each of the two double-precision floating-point values in the first source operand with the
corresponding two double-precision floating-point values in the second source operand and writes the
result of each comparison in the corresponding 64 bits of the destination. The result of each
comparison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the four low-order bits of the immediate-byte operand, as
shown in the following table.

COM Immediate Operand

There are two types of comparisons, ordered and unordered. Ordered comparison operations return
TRUE only if both operands are valid numbers and the numbers have the relation specified by the type
of comparison and FALSE otherwise. Unordered comparison operations return TRUE if one of the
operands is a NaN, or the numbers have the relation specified by the type of comparison; and FALSE

COMPD Compare Vector Double-Precision Floating-Point

Immediate Operand Byte

Bits Descriptions

7:4 0000b

3:0 cond – Defines the comparison operation performed on the selected operand.

cond Comparison Operation
Result if NaN
Operand

QNaN Operand
Causes Invalid
Operation Exception

0000 Ordered and Equal FALSE No

0001 Ordered and Less Than FALSE Yes

0010 Ordered and Not Greater Than FALSE Yes

0011 Unordered TRUE No

0100 Unordered or Not Equal TRUE No

0101 Unordered or Not Less Than TRUE Yes

0110 Unordered or Greater Than TRUE Yes

0111 Ordered FALSE No

1000 Unordered or Equal TRUE No

1001 Unordered or Less Than TRUE No

1010 Unordered or Not Greater Than TRUE No

1011 False FALSE No

1100 Ordered and Not Equal FALSE No

1101 Ordered and Not Less Than FALSE No

1110 Ordered and Greater Than FALSE No

1111 True TRUE No

Instruction Reference COMPD 19

43479—Rev. 3.01—August 2007 AMD64 Technology

otherwise. The “True” and “False” operations return all 1s and all 0s, respectively, regardless of
whether any of the source operands is a NaN.

QNaN operands generate an Invalid Operation Exception only if the comparison type is “Less than (or
Equal)” and “Greater than (or Equal)”. SNaN operands generate an Invalid Operation (IE) exception
for all operations, including “True” and “ False”.

The COMPD instruction requires four operands:

COMPD dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The COMPD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

COMPS, COMSS, COMSD, CMPPD, CMPPS, CMPSS, CMPSD, COMISD, COMISS, UCOMISD,
UCOMISS

rFLAGS Affected

None

Mnemonic Opcode Description

COMPD xmm1, xmm2, xmm3/mem128, imm8 0F 25 2D /r /drex0 ib

Compares two packed double-
precision floating-point values in
XMM2 register by XMM3 register
or 128-bit memory location and
writes 64 bits of all 1s (TRUE) or
all 0s (FALSE) in the destination
(XMM1 register).

06364127 06364127

06364127

src1 src2

dest

cond
3 0

all 1s or 0s
 all 1s or 0s

compare compare

20 COMPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value and the
comparison does not allow QNaN values (refer to
Table on page 18).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Instruction Reference COMPS 21

43479—Rev. 3.01—August 2007 AMD64 Technology

Compares each of the four single-precision floating-point values in the first source operand with the
corresponding four single-precision floating-point values in the second source operand and writes the
result of each comparison in the corresponding 32 bits of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the four low-order bits of the immediate-byte operand, as
shown in the following table.

COM Immediate Operand

Ordered comparison operations return TRUE only if both operands are valid numbers and the numbers
have the relation specified by the type of comparison and FALSE otherwise. Unordered comparison
operations return TRUE if one of the operands is a NaN, or the numbers have the relation specified by
the type of comparison; and FALSE otherwise. The “True” and “False” operations return all 1s and all
0s, respectively, regardless of whether any of the source operands is a NaN.

COMPS Compare Vector Single-Precision Floating-Point

Immediate Operand Byte

Bits Descriptions

7:4 0000b

3:0 cond – Defines the comparison operation performed on the selected operand.

cond Comparison Operation
Result if NaN
Operand

QNaN Operand
Causes Invalid
Operation Exception

0000 Ordered and Equal FALSE No

0001 Ordered and Less Than FALSE Yes

0010 Ordered and Not Greater Than FALSE Yes

0011 Unordered TRUE No

0100 Unordered or Not Equal TRUE No

0101 Unordered or Not Less Than TRUE Yes

0110 Unordered or Greater Than TRUE Yes

0111 Ordered FALSE No

1000 Unordered or Equal TRUE No

1001 Unordered or Less Than TRUE No

1010 Unordered or Not Greater Than TRUE No

1011 False FALSE No

1100 Ordered and Not Equal FALSE No

1101 Ordered and Not Less Than FALSE No

1110 Ordered and Greater Than FALSE No

1111 True TRUE No

22 COMPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

QNaN operands generate an Invalid Operation Exception only if the comparison type is “(Not) Less
than (or Equal)”. SNaN operands generate an Invalid Operation (IE) exception for all operations,
including “True” and “ False”.

The COMPS instruction requires four operands:

COMPS dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The COMPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

COMPD, COMSS, COMSD, CMPPD, CMPPS, CMPSS, CMPSD, COMISD, COMISS, UCOMISD,
UCOMISS

rFLAGS Affected

None

Mnemonic Opcode Description

COMPS xmm1, xmm2, xmm3/mem128, imm8 0F 25 2C /r /drex0 ib

Compares four packed single-
precision floating-point values in
XMM2 register by XMM3
register or 128-bit memory
location and writes 32 bits of all
1s (TRUE) or all 0s (FALSE) in
the destination (XMM1 register).

03132636495127 96 03132636495127 96

03132636495127 96

src1 src2

dest

cond
3 0

all 1s or 0s
all 1s or 0s

all 1s or 0s
all 1s or 0s

compare compare compare compare

Instruction Reference COMPS 23

43479—Rev. 3.01—August 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value and the
comparison does not allow QNaN values (refer to
Table on page 18).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

24 COMSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Compares the double-precision floating-point value in the low-order 64 bits of the first source operand
with the double-precision floating-point value in the low-order 64 bits of the second source operand
and writes the result of the comparison in the low-order 64 bits of the destination. The high-order
quadword of the destination is cleared to 0s. The result of the comparison is a 64-bit value of all 1s
(TRUE) or all 0s (FALSE).

The type of comparison is specified by the four low-order bits of the immediate-byte operand, as
shown in the following table.

COM Immediate Operand

There are two types of comparisons, ordered and unordered. Ordered comparison operations return
TRUE only if both operands are valid numbers and the numbers have the relation specified by the type
of comparison and FALSE otherwise. Unordered comparison operations return TRUE if one of the
operands is a NaN, or the numbers have the relation specified by the type of comparison; and FALSE
otherwise. The “True” and “False” operations return all 1s and all 0s, respectively, regardless of
whether any of the source operands is a NaN.

COMSD Compare Scalar Double-Precision Floating-Point

Immediate Operand Byte

Bits Descriptions

7:4 0000b

3:0 cond – Defines the comparison operation performed on the selected operand.

cond Comparison Operation
Result if NaN
Operand

QNaN Operand
Causes Invalid
Operation Exception

0000 Ordered and Equal FALSE No

0001 Ordered and Less Than FALSE Yes

0010 Ordered and Not Greater Than FALSE Yes

0011 Unordered TRUE No

0100 Unordered or Not Equal TRUE No

0101 Unordered or Not Less Than TRUE Yes

0110 Unordered or Greater Than TRUE Yes

0111 Ordered FALSE No

1000 Unordered or Equal TRUE No

1001 Unordered or Less Than TRUE No

1010 Unordered or Not Greater Than TRUE No

1011 False FALSE No

1100 Ordered and Not Equal FALSE No

1101 Ordered and Not Less Than FALSE No

1110 Ordered and Greater Than FALSE No

1111 True TRUE No

Instruction Reference COMSD 25

43479—Rev. 3.01—August 2007 AMD64 Technology

QNaN operands generate an Invalid Operation Exception only if the comparison type is “Less than (or
Equal)” and “Greater than (or Equal)”. SNaN operands generate an Invalid Operation (IE) exception
for all operations, including “True” and “ False”.

The COMSD instruction requires four operands:

COMSD dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The COMSD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

COMPS, COMPD, COMSS, CMPPD, CMPPS, CMPSS, CMPSD, COMISD, COMISS, UCOMISD,
UCOMISS

Mnemonic Opcode Description

COMSD xmm1, xmm2, xmm3/mem64, imm8 0F 25 2F /r /drex0 ib

Compares the low-order double-
precision floating-point value in
XMM2 register by the low-order
double-precision floating-point
value in XMM3 register or 64-bit
memory location and writes 64
bits of all 1s (TRUE) or all 0s
(FALSE) in the low-order
quadword in the destination
(XMM1 register).

06364127 06364127

06364127

src1 src2

dest

 all 1s or 0s

cond
3 0compare

0

26 COMSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference COMSD 27

43479—Rev. 3.01—August 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value and the
comparison does not allow QNaN values (refer to
Table on page 18).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

28 COMSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Compares the single-precision floating-point value in the low-order 32 bits of the first source operand
with the single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result of the comparison in the low-order 32 bits of the destination. The three high-order
doublewords of the destination are cleared to 0s. The result of the comparison is a 32-bit value of all 1s
(TRUE) or all 0s (FALSE).

The type of comparison is specified by the four low-order bits of the immediate-byte operand, as
shown in the following table.

COM Immediate Operand

There are two types of comparisons, ordered and unordered. Ordered comparison operations return
TRUE only if both operands are valid numbers and the numbers have the relation specified by the type
of comparison and FALSE otherwise. Unordered comparison operations return TRUE if one of the
operands is a NaN, or the numbers have the relation specified by the type of comparison; and FALSE
otherwise. The “True” and “False” operations return all 1s and all 0s, respectively, regardless of
whether any of the source operands is a NaN.

COMSS Compare Scalar Single-Precision Floating-Point

Immediate Operand Byte

Bits Descriptions

7:4 0000b

3:0 cond – Defines the comparison operation performed on the selected operand.

cond Comparison Operation
Result if NaN
Operand

QNaN Operand
Causes Invalid
Operation Exception

0000 Ordered and Equal FALSE No

0001 Ordered and Less Than FALSE Yes

0010 Ordered and Not Greater Than FALSE Yes

0011 Unordered TRUE No

0100 Unordered or Not Equal TRUE No

0101 Unordered or Not Less Than TRUE Yes

0110 Unordered or Greater Than TRUE Yes

0111 Ordered FALSE No

1000 Unordered or Equal TRUE No

1001 Unordered or Less Than TRUE No

1010 Unordered or Not Greater Than TRUE No

1011 False FALSE No

1100 Ordered and Not Equal FALSE No

1101 Ordered and Not Less Than FALSE No

1110 Ordered and Greater Than FALSE No

1111 True TRUE No

Instruction Reference COMSS 29

43479—Rev. 3.01—August 2007 AMD64 Technology

QNaN operands generate an Invalid Operation Exception only if the comparison type is “Less than (or
Equal)” and “Greater than (or Equal)”. SNaN operands generate an Invalid Operation (IE) exception
for all operations, including “True” and “ False”.

The COMSS instruction requires four operands:

COMSS dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The COMSS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

COMPS, COMPD, COMSD, CMPPD, CMPPS, CMPSS, CMPSD, COMISD, COMISS, UCOMISD,
UCOMISS

rFLAGS Affected

None

Mnemonic Opcode Description

COMSS xmm1, xmm2, xmm3/mem32, imm8 0F 25 2E /r /drex0 ib

Compares the low-order single-
precision floating-point value in
XMM2 register by the low-order
single-precision floating-point
value in XMM3 register or 32-bit
memory location and writes 32 bits
of all 1s (TRUE) or all 0s (FALSE)
in the low-order doubleword in the
destination (XMM1 register).

03132636495127 96 03132636495127 96

03132636495127 96

compare

src1 src2

dest

 all 1s or 0s

cond
3 0

000

30 COMSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value and the
comparison does not allow QNaN values (refer to
Table on page 18).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Instruction Reference CVTPH2PS 31

43479—Rev. 3.01—August 2007 AMD64 Technology

Converts four packed 16-bit floating-point values in the low-order 64 bits of an XMM register or 64-bit
memory location to four packed single-precision floating-point values and writes the converted values
in another XMM register. The format of a 16-bit floating-point value is described in Section 1.5, “16-
Bit Floating-Point Data Type,” on page 7.

If a source value is a denormal, the result is signed zero.

The CVTPH2PS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

CVTPS2PH

rFLAGS Affected

None

MXCSR Flags Affected

None

CVTPH2PS Convert 16-Bit Floating-Point to Single-Precision
Floating-Point

Mnemonic Opcode Description

CVTPH2PS xmm1, xmm2/mem64 0F 7A 30 /r

Converts four packed 16-bit floating-point values in
the low 64 bits of XMM2 or 64-bit memory location to
four single-precision floating-point values and writes
the results in the destination (XMM1 register).

 xmm1

 127 96 95 64 63 48 47 32 31 16 15 0

xmm2/mem64

convert convert convert convert

127 96 95 64 63 32 31 0

32 CVTPH2PS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference CVTPS2PH 33

43479—Rev. 3.01—August 2007 AMD64 Technology

Converts four packed single-precision floating-point values in an XMM register to four packed 16-bit
floating-point values and writes the converted values in the low-order 64 bits of another XMM register
or to a 64-bit memory location. The high-order 64 bits in the destination register are cleared to 0s. The
format of a 16-bit floating-point value is described in Section 1.5, “16-Bit Floating-Point Data Type,”
on page 7.

Table 1-10 on page 8 shows the floating-point encodings of supported numbers and non-numbers.

If a source value is smaller than the smallest normalized 16-bit floating-point value, the result is signed
zero. If a source value cannot be represented exactly in 16-bit floating-point format, the value is
rounded using "truncate" rounding mode.

The CVTPS2PH instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

CVTPS2PH Convert Single-Precision Floating-Point to 16-Bit
Floating-Point

Mnemonic Opcode Description

CVTPS2PH xmm1/mem64, xmm2 0F 7A 31 /r

Converts four packed single-precision floating-point
values in XMM2 to four 16-bit floating-point values
and writes the results in the destination (XMM1
register or memory location).

34 CVTPS2PH Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

CVTPH2PS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

 xmm1

 127 64 63 48 47 32 31 16 15 0

convert convert convert convert

127 96 95 64 63 32 31 0

xmm2

 mem64

 63 48 47 32 31 16 15 0

convert convert convert convert

127 96 95 64 63 32 31 0

xmm2

0

Instruction Reference CVTPS2PH 35

43479—Rev. 3.01—August 2007 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

36 FMADDPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each of the two packed double-precision floating-point values in first source operand by the
corresponding packed double-precision floating-point values in the second source operand, then adds
each product to the two corresponding packed double-precision floating-point values in the third
source operand. The two results are written to the destination register.

The intermediate products are not rounded; the two infinitely precise products are used in the addition.
The results of the addition are rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMADDPD instruction requires four operands:

FMADDPD dest, src1, src2, src3 dest = src1* src2 + src3

The FMADDPD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMADDPD Multiply and Add Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

FMADDPD xmm1, xmm1, xmm2, xmm3/mem128 0F 24 01 /r /drex0 Multiplies two packed double-
precision floating-point values in
the second and third operands,
then adds the products to the
fourth operand and writes the
results in the destination (first
operand).

FMADDPD xmm1, xmm1, xmm3/mem128, xmm2 0F 24 01 /r /drex1

FMADDPD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 05 /r /drex0

FMADDPD xmm1, xmm3/mem128, xmm2, xmm1 0F 24 05 /r /drex1

06364127 06364127

06364127

06364127

 multiply

src1

 add
 add

 round round

src2

src3

dest = src1

multiply

Instruction Reference FMADDPD 37

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

38 FMADDPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FMADDPS 39

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each of the four single-precision floating-point values in first source operand by the
corresponding four single-precision floating-point values in the second source operand, then adds the
products to the corresponding four single-precision floating-point values in the third source operand.
The four results are written to the destination register.

The intermediate products are not rounded; the four infinitely precise products are used in the addition.
The results of the addition are rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMADDPS instruction requires four operands:

FMADDPS dest, src1, src2, src3 dest = src1* src2 + src3

The FMADDPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMADDPS Multiply and Add Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

FMADDPS xmm1, xmm1, xmm2, xmm3/mem128 0F 24 00 /r /drex0 Multiplies four packed single-
precision floating-point values in
the second and third operands,
then adds the products to the
fourth operand and writes the
results in the destination (XMM1
register).

FMADDPS xmm1, xmm1, xmm3/mem128, xmm2 0F 24 00 /r /drex1

FMADDPS xmm1, xmm2, xmm3/mem128, xmm1 0F 24 04 /r /drex0

FMADDPS xmm1, xmm3/mem128, xmm2, xmm1 0F 24 04 /r /drex1

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply
multiply

multiply
multiply

src1

 add add
add

add

round round round round

src2

src3

dest = src1

40 FMADDPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference FMADDPS 41

43479—Rev. 3.01—August 2007 AMD64 Technology

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

42 FMADDSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand, then adds the product to the double-precision floating-point value in the low-order quadword
of the third source operand. The low-order quadword result is written to the destination. The high-
order quadword of the destination is not modified.

The intermediate product is not rounded; the infinitely precise product is used in the addition. The
result of the addition is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMADDSD instruction requires four operands:

FMADDSD dest, src1, src2, src3 dest = src1* src2 + src3

The FMADDSD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMADDSD Multiply and Accumulate Scalar Double-Precision
Floating-Point

Mnemonic Opcode Description

FMADDSD xmm1, xmm1, xmm2, xmm3/mem64 0F 24 03 /r /drex0 Multiplies double-precision
floating-point value in the low-
order quadword of the second and
third operands, then adds the
product to the double-precision
floating-point value in the low-
order quadword of the fourth
operand and writes the result in
the low order quadword of the
destination (XMM1 register).

FMADDSD xmm1, xmm1, xmm3/mem64, xmm2 0F 24 03 /r /drex1

FMADDSD xmm1, xmm2, xmm3/mem64, xmm1 0F 24 07 /r /drex0

FMADDSD xmm1, xmm3/mem64, xmm2, xmm1 0F 24 07 /r /drex1

Instruction Reference FMADDSD 43

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127 06364127

06364127

06364127

src1

round

src2

src3

dest = src1

multiply

add

44 FMADDSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Instruction Reference FMADDSS 45

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the low-order single-precision floating-point value in the second source operand, then adds
the product to the low-order single-precision floating-point value in the third source operand. The low-
order doubleword result is written to the destination. The three high-order doublewords of the
destination are not modified.

The intermediate product is not rounded; the infinitely precise product is used in the addition. The
result of the addition is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMADDSS instruction requires four operands:

FMADDSS dest, src1, src2, src3 dest = src1* src2 + src3

The FMADDSS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMADDSS Multiply and Add Scalar Single-Precision
Floating-Point

Mnemonic Opcode Description

FMADDSS xmm1, xmm1, xmm2, xmm3/mem32 0F 24 02 /r /drex0 Multiplies packed single-precision
floating-point values in low-order
doubleword of the second and
third operands, then adds the
product to low-order doubleword
of the fourth operand and writes
the result in the low-order
doubleword of the destination
(XMM1 register).

FMADDSS xmm1, xmm1, xmm3/mem32, xmm2 0F 24 02 /r /drex1

FMADDSS xmm1, xmm2, xmm3/mem32, xmm1 0F 24 06 /r /drex0

FMADDSS xmm1, xmm3/mem32, xmm2, xmm1 0F 24 06 /r /drex1

46 FMADDSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply

src1

add

 round

src2

src3

dest = src1

Instruction Reference FMADDSS 47

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

48 FMSUBPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each of the two packed double-precision floating-point values in the first source operand by
the corresponding packed double-precision floating-point value in the second source operand, then
subtracts the corresponding two packed double-precision floating-point values in the third source
operand from the products. The two results are written to the destination register.

The intermediate products are not rounded; the two infinitely precise products are used in the
subtraction. The results of the subtraction are rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMSUBPD instruction requires four operands:

FMSUBPD dest, src1, src2, src3 dest = src1* src2 - src3

The FMSUBPD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMSUBPD Multiply and Subtract Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

FMSUBPD xmm1, xmm1, xmm2, xmm3/mem128 0F 24 09 /r /drex0 Multiplies two packed double-
precision floating-point values in
the second and third operands,
then subtracts the corresponding
two packed double-precision
floating-point values in the fourth
operand from the products and
writes the quadword results in
the destination (XMM1 register).

FMSUBPD xmm1, xmm1, xmm3/mem128, xmm2 0F 24 09 /r /drex1

FMSUBPD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 0D /r /drex0

FMSUBPD xmm1, xmm3/mem128, xmm2, xmm1 0F 24 0D /r /drex1

06364127 06364127

06364127

06364127

 multiply

src1

 round round

src2

src3

dest = src1

multiply

subtract

subtract

Instruction Reference FMSUBPD 49

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

50 FMSUBPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FMSUBPS 51

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each of the four packed single-precision floating-point values in the first source operand by
the corresponding four packed single-precision floating-point values in the second source operand,
then subtracts the corresponding four packed single-precision floating-point values in the third source
operand from the products. The four results are written to the destination register.

The intermediate products are not rounded; the four infinitely precise products are used in the
subtraction. The results of the subtraction are rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMSUBPS instruction requires four operands:

FMSUBPS dest, src1, src2, src3 dest = src1* src2 - src3

The FMSUBPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMSUBPS Multiply and Subtract Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

FMSUBPS xmm1, xmm1, xmm2, xmm3/mem128 0F 24 08 /r /drex0 Multiplies four packed single-
precision floating-point values in
the first and second source
operands, then subtracts the
corresponding four packed
single-precision floating-point
values in the third operand from
the products and writes the
doubleword results in the
destination (XMM1 register).

FMSUBPS xmm1, xmm1, xmm3/mem128, xmm2 0F 24 08 /r /drex1

FMSUBPS xmm1, xmm2, xmm3/mem128, xmm1 0F 24 0C /r /drex0

FMSUBPS xmm1, xmm3/mem128, xmm2, xmm1 0F 24 0C /r /drex1

52 FMSUBPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply
multiply

multiply
multiply

src1

round round round round

src2

src3

dest = src1

subtract
subtract

subtract
subtract

Instruction Reference FMSUBPS 53

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

54 FMSUBSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand, then subtracts the double-precision floating-point value in the low-order quadword of the
third source operand from the product. The low-order quadword result is written to the destination.
The high-order quadword of the destination is not modified.

The intermediate product is not rounded; the infinitely precise product is used in the subtraction. The
result of the subtraction is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FMSUBSD instruction requires four operands:

FMSUBSD dest, src1, src2, src3 dest = src1* src2 - src3

The FMSUBSD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMSUBSD Multiply and Subtract Scalar Double-Precision
Floating-Point

Mnemonic Opcode Description

FMSUBSD xmm1, xmm1, xmm2, xmm3/mem64 0F 24 0B /r /drex0 Multiplies double-precision
floating-point value in the low-
order quadword of the second
and third operands, then
subtracts the double-precision
floating-point values in the fourth
operand from the product and
writes the result in the low order
quadword of the destination
(XMM1 register).

FMSUBSD xmm1, xmm1, xmm3/mem64, xmm2 0F 24 0B /r /drex1

FMSUBSD xmm1, xmm2, xmm3/mem64, xmm1 0F 24 0F /r /drex0

FMSUBSD xmm1, xmm3/mem64, xmm2, xmm1 0F 24 0F /r /drex1

Instruction Reference FMSUBSD 55

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127 06364127

06364127

06364127

src1

 round

src2

src3

dest = src1

 multiply

 subtract

56 FMSUBSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Instruction Reference FMSUBSS 57

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand, then subtracts the single-precision floating-point value in the low-order doubleword of the
third source operand from the product. The low-order doubleword result is written to the destination.
The three high-order doublewords of the destination are not modified.

The intermediate product is not rounded; the infinitely precise product is used in the subtraction. The
result of the subtraction is rounded, as specified by the rounding mode in MXCSR.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The FMSUBSS instruction requires four operands:

FMSUBSS dest, src1, src2, src3 dest = src1* src2 - src3

The FMSUBSS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

FMSUBSS Multiply and Subtract Scalar Single-Precision
Floating-Point

Mnemonic Opcode Description

FMSUBSS xmm1, xmm1, xmm2, xmm3/mem32 0F 24 0A /r /drex0 Multiplies single-precision
floating-point value in the low-
order doubleword of the second
and third operands, then subtracts
the single-precision floating-point
values in the low-order
doubleword of the fourth operand
from the product and writes the
result in the low-order doubleword
of the destination (XMM1
register).

FMSUBSS xmm1, xmm1, xmm3/mem32, xmm2 0F 24 0A /r /drex1

FMSUBSS xmm1, xmm2, xmm3/mem32, xmm1 0F 24 0E /r /drex0

FMSUBSS xmm1, xmm3/mem32, xmm2, xmm1 0F 24 0E /r /drex1

58 FMSUBSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDSD, FMADDSS, FNMADDSS, FNMSUBSS

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply

src1

 round

src2

src3

dest = src1

subtract

Instruction Reference FMSUBSS 59

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

60 FNMADDPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each of the two packed double-precision floating-point values in the first source operand by
the corresponding packed double-precision floating-point value in the second source operand, then
negates the products and adds them to the corresponding two packed double-precision floating-point
values in the third source operand. The two results are written to the destination register.

The intermediate products are not rounded; the two infinitely precise products are negated and then
used in the addition. The results of the addition are rounded, as specified by the rounding mode in
MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMADDPD instruction requires four operands:

FNMADDPD dest, src1, src2, src3 dest = - (src1* src2) + src3

The FNMADDPD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMADDPD Negative Multiply and Add Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

FNMADDPD xmm1, xmm1, xmm2, xmm3/mem128 0F 24 11 /r /drex0 Multiplies two packed double-
precision floating-point values
in the second and third
operands, then negates the
products and adds them to the
fourth operand and writes the
results in the destination
(XMM1 register).

FNMADDPD xmm1, xmm1, xmm3/mem128, xmm2 0F 24 11 /r /drex1

FNMADDPD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 15 /r /drex0

FNMADDPD xmm1, xmm3/mem128, xmm2, xmm1 0F 24 15 /r /drex1

06364127 06364127

06364127

06364127

multiply

src1

 add
 add

 round round

src2

src3

dest = src1

multiply

 negate negate

Instruction Reference FNMADDPD 61

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDPD, FMSUBPD, FNMSUBPD

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

62 FNMADDPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FNMADDPS 63

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each of the four packed single-precision floating-point values in first source operand by the
corresponding packed single-precision floating-point value in the second source operand, then negates
the products and adds them to the corresponding four packed single-precision floating-point values in
the third source operand. The four results are written to the destination register.

The intermediate products are not rounded; the four infinitely precise products are negated and then
used in the addition. The results of the addition are rounded, as specified by the rounding mode in
MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMADDPS instruction requires four operands:

FNMADDPS dest, src1, src2, src3 dest = -(src1* src2) + src3

The FNMADDPS instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMADDPS Negative Multiply and Add Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

FNMADDPS xmm1, xmm1, xmm2, xmm3/mem128 0F 24 10 /r /drex0 Multiplies four packed single-
precision floating-point values
in the second and third
operands, then negates the
products and adds them to
the fourth operand and writes
the results in the destination
(XMM1 register).

FNMADDPS xmm1, xmm1, xmm3/mem128, xmm2 0F 24 10 /r /drex1

FNMADDPS xmm1, xmm2, xmm3/mem128, xmm1 0F 24 14 /r /drex0

FNMADDPS xmm1, xmm3/mem128, xmm2, xmm1 0F 24 14 /r /drex1

64 FNMADDPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDPS, FMSUBPS, FNMSUBPS

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply
multiply

multiply
multiply

src1

 add add
add

add

round round round round

src2

src3

dest = src1

negate negate negate negate

Instruction Reference FNMADDPS 65

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

66 FNMADDSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand, then negates the product and adds it to the double-precision floating-point value in the low-
order quadword of the third source operand. The low-order quadword result is written to the
destination. The high-order quadword of the destination is not modified.

The intermediate product is not rounded; the infinitely precise product is negated and then used in the
addition. The result of the addition is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMADDSD instruction requires four operands:

FNMADDSD dest, src1, src2, src3 dest = - (src1* src2) + src)

The FNMADDSD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMADDSD Negate Multiply and Add Scalar
Double-Precision Floating-Point

Mnemonic Opcode Description

FNMADDSD xmm1, xmm1, xmm2, xmm3/mem64 0F 24 13 /r /drex0 Multiplies double-precision
floating-point value in the low-
order quadword of the second
and third operands, then
negates the product and adds
it to the double-precision
floating-point value in the low-
order quadword of the fourth
operand and writes the result
in the low order quadword of
the destination (XMM1
register).

FNMADDSD xmm1, xmm1, xmm3/mem64, xmm2 0F 24 13 /r /drex1

FNMADDSD xmm1, xmm2, xmm3/mem64, xmm1 0F 24 17 /r /drex0

FNMADDSD xmm1, xmm3/mem64, xmm2, xmm1 0F 24 17 /r /drex1

Instruction Reference FNMADDSD 67

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDSD, FMSUBSD, FNMSUBSD

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127 06364127

06364127

06364127

src1

src2

src3

dest = src1

 add

 multiply

 negate

 round

68 FNMADDSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Instruction Reference FNMADDSS 69

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand, then negates the product and adds it to the single-precision floating-point value in the low-
order doubleword of the third source operand. The low-order doubleword result is written to the
destination. The three high-order doublewords of the destination are not modified.

The intermediate product is not rounded; the infinitely precise product is negated and then used in the
addition. The result of the addition is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMADDSS instruction requires four operands:

FNMADDSS dest, src1, src2, src3 dest = - (src1* src2) + src3

The FNMADDSS instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMADDSS Negative Multiply and Add Scalar
Single-Precision Floating-Point

Mnemonic Opcode Description

FNMADDSS xmm1, xmm1, xmm2, xmm3/mem32 0F 24 12 /r /drex0 Multiplies single-precision
floating-point values in low-
order doubleword of the
second and third operands,
then negates the product and
adds it to low-order
doubleword of fourth operand
and writes the result in the low-
order doubleword of the
destination (XMM1 register).

FNMADDSS xmm1, xmm1, xmm3/mem32, xmm2 0F 24 12 /r /drex1

FNMADDSS xmm1, xmm2, xmm3/mem32, xmm1 0F 24 16 /r /drex0

FNMADDSS xmm1, xmm3/mem32, xmm2, xmm1 0F 24 16 /r /drex1

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

src1

add

src2

src3

dest = src1

multiply

 negate

 round

70 FNMADDSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDSS, FMSUBSS, FNMSUBSS

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference FNMADDSS 71

43479—Rev. 3.01—August 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

72 FNMSUBPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each of the two packed double-precision floating-point values in the first source operand by
the corresponding packed double-precision floating-point value in the second source operand, then
subtracts the corresponding two packed double-precision floating-point values in the third source
operand from the negated products.The two results are written to the destination register.

The intermediate products are not rounded; the two infinitely precise products are used in the
subtraction. The results of the subtraction are rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMSUBPD instruction requires four operands:

FNMSUBPD dest, src1, src2, src3 dest = - (src1* src2) - src3

The FNMSUBPD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMSUBPD Negative Multiply and Subtract Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

FNMSUBPD xmm1, xmm1, xmm2, xmm3/mem128 0F 24 19 /r /drex0 Multiplies two packed double-
precision floating-point values
in the second and third
operands, then subtracts the
corresponding two packed
double-precision floating-
point values in the fourth
operand from the negated
products and writes the
quadword results in the
destination (XMM1 register).

FNMSUBPD xmm1, xmm1, xmm3/mem128, xmm2 0F 24 19 /r /drex1

FNMSUBPD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 1D /r /drex0

FNMSUBPD xmm1, xmm3/mem128, xmm2, xmm1 0F 24 1D /r /drex1

Instruction Reference FNMSUBPD 73

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDPD, FMSUBPD,FNMADDPD

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127 06364127

06364127

06364127

 multiply

src1

 round round

src2

src3

dest = src1

multiply

 subtract

subtract

negate negate

74 FNMSUBPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Instruction Reference FNMSUBPS 75

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each of the four packed single-precision floating-point values in the first source operand by
the corresponding packed single-precision floating-point value in the second source operand, then
subtracts the corresponding four packed single-precision floating-point values in the third source
operand from the negated products. The four results are written to the destination register.

The intermediate products are not rounded; the four infinitely precise products are negated and then
used in the subtraction. The results of the subtraction are rounded, as specified by the rounding mode
in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMSUBPS instruction requires four operands:

 FNMSUBPS dest, src1, src2, src3 dest = - (src1* src2) - src3

The FNMSUBPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMSUBPS Negative Multiply and Subtract Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

FNMSUBPS xmm1, xmm1, xmm2, xmm3/mem128 0F 24 18 /r /drex0 Multiplies four packed single-
precision floating-point values
in the second and third
operands, then subtracts the
corresponding four packed
single-precision floating-point
values in the fourth operand
from the negated products
and writes the doubleword
results in the destination
(XMM1 register).

FNMSUBPS xmm1, xmm1, xmm3/mem128, xmm2 0F 24 18 /r /drex1

FNMSUBPS xmm1, xmm2, xmm3/mem128, xmm1 0F 24 1C /r /drex0

FNMSUBPS xmm1, xmm3/mem128, xmm2, xmm1 0F 24 1C /r /drex1

76 FNMSUBPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDPS, FMSUBPS, FNMADDPS

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply
multiply

multiply
multiply

src1

round round round round

src2

src3

dest = src1

subtract
subtract

subtract
subtract

 negate negate negate negate

Instruction Reference FNMSUBPS 77

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

78 FNMSUBSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand, then subtracts the double-precision floating-point value in the low-order quadword of the
third source operand from the negated product.The low-order quadword result is written to the
destination. The high-order quadword of the destination is not modified.

The intermediate product is not rounded; the infinitely precise product is negated and then used in the
subtraction. The result of the subtraction is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMSUBSD instruction requires four operands:

FNMSUBSD dest, src1, src2, src3 dest = - (src1* src2) - src3

The FNMSUBSD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMSUBSD Negative Multiply and Subtract Scalar
Double-Precision Floating-Point

Mnemonic Opcode Description

FNMSUBSD xmm1, xmm1, xmm2, xmm3/mem64 0F 24 1B /r /drex0 Multiplies double-precision
floating-point value in the low-
order quadword of the second
and third operands, then
subtracts the double-precision
floating-point values in the fourth
operand from the negated
product and writes the result in
the low order quadword of the
destination (XMM1 register).

FNMSUBSD xmm1, xmm1, xmm3/mem64, xmm2 0F 24 1B /r /drex1

FNMSUBSD xmm1, xmm2, xmm3/mem64, xmm1 0F 24 1F /r /drex0

FNMSUBSD xmm1, xmm3/mem64, xmm2, xmm1 0F 24 1F /r /drex1

06364127 06364127

06364127

06364127

src1

 round

src2

src3

dest = src1

 multiply

 subtract

negate

Instruction Reference FNMSUBSD 79

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDSD, FMSUBSD, FNMADDSD

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

80 FNMSUBSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FNMSUBSS 81

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand, then subtracts the single-precision floating-point value in the low-order doubleword of the
third source operand from the negated product. The low-order doubleword result is written to the
destination. The three high-order doublewords of the destination are not modified.

The intermediate product is not rounded; the infinitely precise product is negated and then used in the
subtraction. The result of the subtraction is rounded, as specified by the rounding mode in MXCSR.

The destination register is an XMM register addressed by the DREX.dest field.

The FNMSUBSS instruction requires four operands:

FNMSUBSS dest, src1, src2, src3 dest = - (src1* src2) - src3

The FNMSUBSS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

FNMSUBSS Negative Multiply and Subtract Scalar
Single-Precision Floating-Point

Mnemonic Opcode Description

FNMSUBSS xmm1, xmm1, xmm2, xmm3/mem32 0F 24 1A /r /drex0 Multiplies single-precision
floating-point value in the low-
order doubleword of the second
and third operands, then
subtracts the single-precision
floating-point values in the low-
order doubleword of the fourth
operand from the negated
product and writes the result in
the low-order doubleword of the
destination (XMM1 register).

FNMSUBSS xmm1, xmm1, xmm3/mem32, xmm2 0F 24 1A /r /drex1

FNMSUBSS xmm1, xmm2, xmm3/mem32, xmm1 0F 24 1E /r /drex0

FNMSUBSS xmm1, xmm3/mem32, xmm2, xmm1 0F 24 1E /r /drex1

82 FNMSUBSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSDD, PMACSDQH, PMACSDQL, PMACSSDD, PMACSSDQH, PMACSSDQL,
PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, FMSUBPD, FNMADDPD, FNMSUBPD
FMADDSD, FNMADDSD, FNMSUBSD, FMADDSS, FMSUBSS, FNMADDSS

rFLAGS Affected

None

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96 03132636495127 96

03132636495127 96

03132636495127 96

multiply

src1

 round

src2

src3

dest = src1

subtract

negate

Instruction Reference FNMSUBSS 83

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +/-zero was multiplied by +/- infinity

X X X +infinity was added to -infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

84 FRCZPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Extracts the fractional portion of each of the two double-precision floating-point values in an XMM
register or a 128-bit memory location and writes the result in the corresponding quadword in the
destination register. The instruction results are exact.

The rounding mode defined in the MXCSR is ignored.

If the source value is QNaN, it is written to the destination with no exception generated. If the source
value is infinity, the instruction returns an indefinite value when the invalid-operation exception (IE) is
masked.

The FRCZPD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, FRCZPS, FRCZSS, FRCZSD

rFLAGS Affected

None

MXCSR Flags Affected

FRCZPD Extract Fraction Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

FRCZPD xmm1, xmm2/mem128 0F 7A 11 /r

Extracts the fractional portion of each of two packed
double-precision floating-point values in XMM2 register
or 128-bit memory location and writes quadword results
in the destination (XMM1 register).

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127

06364127

xmm2/mem128

xmm1

 extract extract

Instruction Reference FRCZPD 85

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X The source operand was not an integral value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

86 FRCZPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Extracts the fractional portion of each of the four single-precision floating-point values in an XMM
register or a 128-bit memory location and writes the result in the corresponding doubleword in the
destination register. The instruction results are exact.

The rounding mode indicated in the MXCSR is ignored.

If the source value is QNaN, it is written to the destination with no exception generated. If the source
value is infinity, the instruction returns an indefinite value when the invalid-operation exception (IE) is
masked.

The FRCZPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, FRCZPD, FRCZSS, FRCZSD

rFLAGS Affected

None

MXCSR Flags Affected

FRCZPS Extract Fraction Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

FRCZPS xmm1, xmm2/mem128 0F 7A 10 /r

Extracts the fractional portion of each of four packed
single-precision floating-point values in XMM2 register
or 128-bit memory location and writes corresponding
doubleword results in the destination (XMM1 register).

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

03132636495127 96

03132636495127 96

xmm2/mem128

xmm1

 extract extract extract extract

Instruction Reference FRCZPS 87

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X The source operand was not an integral value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

88 FRCZSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Extracts the fractional portion of the double-precision floating-point value in the low-order quadword
of XMM register or 64-bit memory location and writes the result in the low-order quadword in the
destination register. The instruction results are exact. The upper double-precision floating-point value
in the destination register is not affected.

The rounding mode defined in the MXCSR is ignored.

If the source value is QNaN, it is written to the destination with no exception generated. If the source
value is infinity, the instruction returns an indefinite value when the invalid-operation exception (IE) is
masked.

The FRCZSD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, FRCZPS, FRCZPD, FRCZSS

rFLAGS Affected

None

FRCZSD Extract Fraction Scalar Double-Precision
Floating-Point

Mnemonic Opcode Description

FRCZSD xmm1, xmm2/mem64 0F 7A 13 /r

Extracts the fractional portion of the double-precision
floating-point value in the low-order quadword of the
XMM2 register or 64-bit memory location and writes the
result in the low-order quadword of the destination
(XMM1 register).

06364127

06364127

xmm2/mem128

xmm1

 extract

Instruction Reference FRCZSD 89

43479—Rev. 3.01—August 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X The source operand was not an integral value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

90 FRCZSS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Extracts the fractional portion of the single-precision floating-point value in the low-order doubleword
of XMM register or 32-bit memory location and writes the result in the low-order doubleword in the
destination register. The instruction results are exact. The upper three single-precision floating-point
values in the destination register are not affected.

The rounding mode indicated in the MXCSR is ignored.

If the source value is QNaN, it is written to the destination with no exception generated. If the source
value is infinity, the instruction returns an indefinite value when the invalid-operation exception (IE) is
masked.

The FRCZSS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, FRCZPS, FRCZPD, FRCZSD

rFLAGS Affected

None

FRCZSS Extract Fraction Scalar Single-Precision
Floating Point

Mnemonic Opcode Description

FRCZSS xmm1, xmm2/mem32 0F 7A 12 /r

Extracts the fractional portion of the single-precision
floating-point value in the low-order doubleword of the
XMM2 register or 32-bit memory location and writes the
result in the low-order doubleword of the destination
(XMM1 register).

03132636495127 96

03132636495127 96

xmm2/mem128

xmm1

 extract

Instruction Reference FRCZSS 91

43479—Rev. 3.01—August 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or infinity

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X The source operand was not an integral value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

92 PCMOV Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Moves bits of either the first source operand or the second source operand into the destination, based
on the value of the corresponding bit in a bitwise predicate of the selector operand. If the selector bit is
set to 1, the corresponding bit in the first source operand is moved to the destination; otherwise, the
corresponding bit from the second source operand is moved to the destination. All moves are 128 bits
in length.

This instruction directly implements the C-language ternary “?” operation on each of the 128 bits.

The destination register is an XMM register addressed by the DREX.dest field.

The PCMOV instruction requires four operands:

PCMOV dest, src1, src2, selector

The PCMOV instruction may use instructions to compute the predicate in the selector operand.
PCMPEQB (PCMPGTB), PCMPEQW (PCMPGTW) and PCMPEQD (PCMPGTD) compare byte,
word and doubleword integer operands, respectively and set the predicate in the destination register to
masks of 1s and 0s accordingly. CMPPS (CMPSS) and CMPPD (CMPSD) compare word and
doubleword floating-point operands, respectively and provide the predicate for the floating-point
instructions.

The PCMOV instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=++)
 dest[i]:= selector[i] ? source1[i] : source2[i];

PCMOV Vector Conditional Moves

Mnemonic Opcode Description

PCMOV xmm1, xmm1, xmm2, xmm3/mem128 0F 24 22 /r /drex0 For each bit position of the 128 bit
field, moves the bit value from the
second source operand to the
destination (xmm1 register) when
the associated bit in the fourth
source operand =1; otherwise,
moves bit value from the third source
operand to the destination.

PCMOV xmm1, xmm1, xmm3/mem128, xmm2 0F 24 22 /r /drex1

PCMOV xmm1, xmm2, xmm3/mem128, xmm1 0F 24 26 /r /drex0

PCMOV xmm1, xmm3/mem128, xmm2, xmm1 0F 24 26 /r /drex1

Instruction Reference PCMOV 93

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVU,
FCMOVNU, CMOVcc

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

0127 0127

0127

 0

src1

src2

selector

dest
 127

 select

 select
 128 selectors

94 PCMOV Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PCOMB 95

43479—Rev. 3.01—August 2007 AMD64 Technology

Compares corresponding packed signed bytes in the first and second source operands and writes the
result of each comparison in the corresponding byte of the destination. The result of each comparison
is a 8-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMB instruction requires four operands:

PCOMB dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMB instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMB Compare Vector Signed Bytes

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

96 PCOMB Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PCOMUB, PCOMUW, PCOMUD, PCOMUQ, PCOMW, PCOMD, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mnemonic Opcode Description

PCOMB xmm1, xmm2, xmm3/mem128, imm8 0F 25 4C /r /drex0 ib

Compares signed bytes in XMM2
register with corresponding byte
in XMM3 register or 128-bit
memory location and writes 8 bits
of all 1s (TRUE) or all 0s (FALSE)
in the corresponding byte in the
destination (XMM1 register).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 dest
 0127

16 compares

127 0 src1 src2

127 0

all 1s or 0s

cond
2 0

compare

all 1s or 0s

compare

Instruction Reference PCOMB 97

43479—Rev. 3.01—August 2007 AMD64 Technology

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

98 PCOMD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Compares corresponding packed signed doublewords in the first and second source operands and
writes the result of each comparison in the corresponding doubleword of the destination. The result of
each comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMD instruction requires four operands:

PCOMD dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMD Compare Vector Signed Doublewords

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

Instruction Reference PCOMD 99

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PCOMUB, PCOMUW, PCOMUD, PCOMUQ, PCOMB, PCOMW, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCOMD xmm1, xmm2, xmm3/mem128, imm8 0F 25 4E /r /drex0 ib

Compares signed doublewords in
XMM2 register with
corresponding doubleword in
XMM3 register or 128-bit memory
location and writes 32 bits of all
1s (TRUE) or all 0s (FALSE) in
the corresponding doubleword in
the destination (XMM1 register).

 dest
 127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

cond
2 0

src1 src2

 all 1s or 0s all 1s or 0s all 1s or 0s all 1s or 0s

compare compare compare compare

100 PCOMD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PCOMQ 101

43479—Rev. 3.01—August 2007 AMD64 Technology

Compares corresponding packed signed quadwords in the first and second source operands and writes
the result of each comparison in the corresponding quadword of the destination. The result of each
comparison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMQ instruction requires four operands:

PCOMQ dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMQ Compare Vector Signed Quadwords

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

102 PCOMQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PCOMUB, PCOMUW, PCOMUD, PCOMUQ, PCOMB, PCOMW, PCOMD

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCOMQ xmm1, xmm2, xmm3/mem128, imm8 0F 25 4F /r /drex0 ib

Compares signed quadwords in
XMM2 register with
corresponding quadword in
XMM3 register or 128-bit
memory location and writes 64
bits of all 1s (TRUE) or all 0s
(FALSE) in the corresponding
quadword in the destination
(XMM1 register).

 dest
 127 64 63 0

127 64 63 0

127 64 63 0

cond
2 0

src1 src2

 all 1s or 0s all 1s or 0s

 compare compare

Instruction Reference PCOMQ 103

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

104 PCOMUB Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Compares corresponding packed unsigned bytes in the first and second source operands and writes the
result of each comparison in the corresponding byte of the destination. The result of each comparison
is an 8-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMUB instruction requires four operands:

PCOMUB dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMUB instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMUB Compare Vector Unsigned Bytes

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

Instruction Reference PCOMUB 105

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PCOMUW, PCOMUD, PCOMUQ, PCOMB, PCOMW, PCOMD, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mnemonic Opcode Description

PCOMUB xmm1, xmm2, xmm3/mem128, imm8 0F 25 6C /r /drex0 ib

Compares unsigned bytes in
XMM2 register with
corresponding byte in XMM3
register or 128-bit memory
location and writes 8 bits of all
1s (TRUE) or all 0s (FALSE) in
the corresponding byte in the
destination (XMM1 register).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 dest
 0127

16 comparisons

127 0 src1 src2

127 0

all 1s or 0s

cond
2 0

compare

all 1s or 0s

compare

…

… …

106 PCOMUB Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PCOMUD 107

43479—Rev. 3.01—August 2007 AMD64 Technology

Compares corresponding packed unsigned doublewords in the first and second source operands and
writes the result of each comparison in the corresponding doubleword of the destination. The result of
each comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMUD instruction requires four operands:

PCOMUD dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMUD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMUD Compare Vector Unsigned Doublewords

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

108 PCOMUD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PCOMUB, PCOMUW, PCOMUQ, PCOMB, PCOMW, PCOMD, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCOMUD xmm1, xmm2, xmm3/mem128, imm8 0F 25 6E /r /drex0 ib

Compares unsigned
doublewords in XMM2 register
with corresponding doubleword
in XMM3 register or 128-bit
memory location and writes 32
bits of all 1s (TRUE) or all 0s
(FALSE) in the corresponding
doubleword in the destination
(XMM1 register).

 dest
 127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

cond
2 0

src1 src2

 all1s or 0s all 1s or 0s all 1s or 0s all 1s or 0s

compare compare compare compare

Instruction Reference PCOMUD 109

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

110 PCOMUQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Compares corresponding packed unsigned quadwords in the first and second source operands and
writes the result of each comparison in the corresponding quadword of the destination. The result of
each comparison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMUQ instruction requires four operands:

PCOMUQ dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMUQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMUQ Compare Vector Unsigned Quadwords

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

Instruction Reference PCOMUQ 111

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PCOMUB, PCOMUW, PCOMUD, PCOMB, PCOMW, PCOMD, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCOMUQ xmm1, xmm2, xmm3/mem128, imm8 0F 25 6F /r /drex0 ib

Compares unsigned quadwords
in XMM2 register with
corresponding quadword in
XMM3 register or 128-bit
memory location and writes 64
bits of all 1s (TRUE) or all 0s
(FALSE) in the corresponding
quadword in the destination
(XMM1 register).

 dest
 127 64 63 0

127 64 63 0

127 64 63 0

cond
2 0

src1 src2

 all 1s or 0s all 1s or 0s

 compare compare

112 PCOMUQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PCOMUW 113

43479—Rev. 3.01—August 2007 AMD64 Technology

Compares corresponding packed unsigned words in the first and second source operands and writes
the result of each comparison in the corresponding word of the destination. The result of each
comparison is a 16-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMUW instruction requires four operands:

PCOMUW dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

PCOMUW Compare Vector Unsigned Words

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

114 PCOMUW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

The PCOMUW instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PCOMUB, PCOMUD, PCOMUQ, PCOMB, PCOMW, PCOMD, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCOMUW xmm1, xmm2, xmm3/mem128, imm8 0F 25 6D /r /drex0 ib

Compares unsigned words in
XMM2 register with
corresponding word in XMM3
register or 128-bit memory
location and writes 16 bits of all
1s (TRUE) or all 0s (FALSE) in
the corresponding word in the
destination (XMM1 register).

 dest
 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

8 comparisons

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

all 1s or 0s

cond
2 0

compare

all 1s or 0s

compare

src1 src2

…

… …

Instruction Reference PCOMUW 115

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

116 PCOMW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Compares corresponding packed signed words in the first and second source operands and writes the
result of each comparison in the corresponding word of the destination. The result of each comparison
is a 16-bit value of all 1s (TRUE) or all 0s (FALSE).

The type of comparison is specified by the three low-order bits of the immediate-byte operand, as
shown in the following diagram.

PCOM Immediate Operand

The PCOMW instruction requires four operands:

PCOMW dest, src1, src2, cond

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PCOMW instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PCOMW Compare Vector Signed Words

7 3 2 0

00000b cond

Immediate Operand Byte

Bits Descriptions

7:3 00000b

2:0 cond – Defines the comparison operation performed on the selected
operand.

cond Comparison Operation

000 Less Than

001 Less Than or Equal

010 Greater Than

011 Greater Than or Equal

100 Equal

101 Not Equal

110 False

111 True

Instruction Reference PCOMW 117

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PCOMUB, PCOMUW, PCOMUD, PCOMUQ, PCOMB, PCOMD, PCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mnemonic Opcode Description

PCOMW xmm1, xmm2, xmm3/mem128, imm8 0F 25 4D /r /drex0 ib

Compares signed words in
XMM2 register with
corresponding word in XMM3
register or 128-bit memory
location and writes 16 bits of all
1s (TRUE) or all 0s (FALSE) in
the corresponding word in the
destination (XMM1 register).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 dest
 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

8 comparisons

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

all 1s or 0s

cond
2 0

compare

all 1s or 0s

compare

src1 src2

…

…

…

118 PCOMW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PERMPD 119

43479—Rev. 3.01—August 2007 AMD64 Technology

Moves any of the four double-precision values in the source operands to each quadword of the
destination XMM register. Each double-precision value of the result can optionally have a logical
operation applied to it.

The second source operand (src2) is concatenated with the first source operand (src1) to form a logical
256-bit source consisting of four double-precision values. The third source operand (src3) contains
control bytes specifying the source quadword and the logical operation for each destination quadword.

The destination register is an XMM register addressed by the DREX.dest field.

The PERMPD instruction requires four operands:

PERMPD dest, src1, src2, src3

The control bytes for double-precision operands 0 and 1 of the destination are byte 0 and 8,
respectively, of the third source.

For each double-precision value of the 16-byte result, the corresponding control byte in src3 is used as
follows:

• bits 1:0 of src3 select one of the four quadwords from src2:src1
• bits 7:5 of src3 select the logical operation applied.

The PERMPD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

The control byte is defined in Table 2-1, “PERMPD Control Byte”‚ on page 120.

PERMPD Permute Double-Precision Floating-Point

Mnemonic Opcode Description

PERMPD xmm1, xmm1, xmm2, xmm3/mem128 0F 24 21 /r /drex0 For each double-precision result,
uses corresponding control byte
in the fourth operand to perform
an operation on one of 4 double-
precision operands from the
second and third source operands
and writes result in destination
(xmm1 register).

PERMPD xmm1, xmm1, xmm3/mem128, xmm2 0F 24 21 /r /drex1

PERMPD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 25 /r /drex0

PERMPD xmm1, xmm3/mem128, xmm2, xmm1 0F 24 25 /r /drex1

120 PERMPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Table 2-1. PERMPD Control Byte

Action
for (i=0; i<2 i=++)
 dest[i]:= control[i].op (src1|src2)control[i].src_sel;

7 5 4 2 1 0

Op Reserved Src_Sel

Control Byte

Bits Description

7:5 Op - Defines the logical operation performed on the selected operand.

OP Operation

000 Double-precision source operand

001 Absolute value of double-precision source operand

010 Negative value of double-precision source operand

011 Negative of absolute value of double-precision source operand

100 0.0

101 -1.0

110 1.0

111 The value of Pi (π), with rounding based on the setting of the
rounding control (MXCSR.RC):
RC Value
00 0x400921FB54442D18h
01 0x400921FB54442D18h
10 0x400921FB54442D19h
11 0x400921FB54442D18h

4:2 Reserved

1:0 Src_Sel - Selects the double-precision quadword source operand to be
operated on.

Src_Sel Source Selected

00 src1[63:0]

01 src1[127:64]

10 src2[63:0]

11 src2[127:64]

Instruction Reference PERMPD 121

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PSHUFHW, PSHUFD, PSHUFLW, PSHUFW, PPERM, PERMPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

src2

src1

control

dest

 op

 op

127 64 63 0127 64 63 0

127 64 63 0

127 71 64 7 0

src_sel 11 10 01 10

 mux
mux

122 PERMPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PERMPS 123

43479—Rev. 3.01—August 2007 AMD64 Technology

Moves any of the eight single-precision values in the source operands to each doubleword of the
destination XMM register. Each single-precision value of the result can optionally have a logical
operation applied to it.

The second source operand (src2) is concatenated with the first source operand (src1) to form a logical
256-bit source consisting of eight single-precision values. The third source operand (src3) contains
control bytes specifying the source doubleword and the logical operation for each destination
doubleword.

The destination register is an XMM register addressed by the DREX.dest field.

The PERMPS instruction requires four operands:

PERMPS dest, src1, src2, src3

The control bytes for single-precision operands 0, 1, 2 and 3 of the destination are byte 0, 4, 8 and 12,
respectively, of the third source.

For each single-precision value of the 16-byte result, the corresponding control byte in src3 is used as
follows:

• bits 2:0 of src3 select one of the 8 doublewords from src2:src1

• bits 7:5 of src3 select the operation applied.

The PERMPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

The control byte is defined in Table 2-2, “PERMPS Control Byte”‚ on page 124.

PERMPS Permute and Modify Single-Precision
Floating Point

Mnemonic Opcode Description

PERMPS xmm1, xmm1, xmm2, xmm3/mem128 0F 24 20 /r /drex0 For each single-precision result,
uses corresponding control byte in
the fourth operand to perform an
operation on one of 8 single-
precision operands from the
second and third source operands
and writes result in destination
(xmm1 register).

PERMPS xmm1, xmm1, xmm3/mem128, xmm2 0F 24 20 /r /drex1

PERMPS xmm1, xmm2, xmm3/mem128, xmm1 0F 24 24 /r /drex0

PERMPS xmm1, xmm3/mem128, xmm2, xmm1 0F 24 24 /r /drex1

124 PERMPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Table 2-2. PERMPS Control Byte

7 5 4 3 2 0

Op Reserved Src_Sel

Control Byte

Bits Description

7:5 Op - Defines the operation performed on the selected operand.

OP Operation

000 Single-precision source operand

001 Absolute value of single-precision source operand

010 Negative value of single-precision source operand

011 Negative of absolute value of single-precision source operand

100 +0.0

101 -1.0

110 +1.0

111 The value of Pi (π), with rounding based on the setting of the
rounding control (MXCSR.RC):
RC Value
00 0x40490FDBh
01 0x40490FDAh
10 0x40490FDBh
11 0x40490FDAh

4:3 Reserved

2:0 Src_Sel - Selects the single-precision doubleword source operand to be
operated on.

Src_Sel Source Selected

000 src1[31:0]

001 src1[63:32]

010 src1[95:64]

011 src1[127:96]

100 src2[31:0]

101 src2[63:32]

110 src2[95:64]

111 src2[127:96]

Instruction Reference PERMPS 125

43479—Rev. 3.01—August 2007 AMD64 Technology

Action
for (i=0; i<4 i=++)
 dest[i]:= control[i].op (src1|src2)control[i].src_sel;

Related Instructions

PSHUFHW, PSHUFD, PSHUFLW, PSHUFW, PPERM, PERMPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

src2

src1

control

dest

 op

op op op

127 96 95 64 63 32 31 0 127 96 95 64 63 32 31 0

127 96 95 64 63 32 31 0

127 103 96 95 71 6463 39 32 31 7 0

src_sel 111 110 101 100 011 010 001 000

mux
mux

mux mux

126 PERMPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PHADDBD 127

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds four successive 8-bit signed integer values from the second source operand and packs the sign-
extended results of the additions in a doubleword in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PHADDBD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDBW, PHADDBQ, PHADDWD, PHADDWQ, PHADDDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDBD Packed Horizontal Add Signed Byte to Signed
Doubleword

Mnemonic Opcode Description

PHADDBD xmm1, xmm2/mem128 0F 7A 42 /r
Adds four successive 8-bit signed integer values
in an XMM register or 128-bit memory location
and packs the 32-bit results in the destination
XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

 add add add add

127 96 95 64 63 32 31 0

 add add add add

addaddaddadd xmm1

128 PHADDBD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDBQ 129

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds eight successive 8-bit signed integer values from the second source operand and packs the sign-
extended results of the additions in a quadword in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PHADDBQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDBW, PHADDBD, PHADDWD, PHADDWQ, PHADDDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDBQ Packed Horizontal Add Signed Byte to Signed
Quadword

Mnemonic Opcode Description

PHADDBQ xmm1, xmm2/mem128 0F 7A 43 /r
Adds eight successive 8-bit signed integer values
in an XMM register or 128-bit memory location
and packs the 32-bit results in the destination
XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

 add add add add

 add add add add

addaddaddadd

127 64 63 0

 add add
 xmm1

130 PHADDBQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDBW 131

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds each adjacent pair of 8-bit signed integer values from the second source operand and packs the
sign-extended 16-bit integer result of each addition in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PHADDBW instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDBD, PHADDBQ, PHADDWD, PHADDWQ, PHADDDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDBW Packed Horizontal Add Signed Byte to Signed
Word

Mnemonic Opcode Description

PHADDBW xmm1, xmm2/mem128 0F 7A 41 /r
Adds each adjacent pair of 8-bit signed integer
values in an XMM register or 128-bit memory
location and packs the 16-bit results in the
destination XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

 add add add add

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 add add add add

xmm1

132 PHADDBW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDDQ 133

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds each adjacent pair of 32-bit signed integer values from the second source operand and packs the
sign-extended results of the additions in a quadword in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PHADDDQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDBW, PHADDBD, PHADDBQ, PHADDWD, PHADDWQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDDQ Packed Horizontal Add Signed Doubleword to
Signed Quadword

Mnemonic Opcode Description

PHADDDQ xmm1, xmm2/mem128 0F 7A 4B /r
Adds each adjacent pair of 32-bit signed integer
values in an XMM register or 128-bit memory
location and packs the 64-bit results in the
destination XMM register.

127 96 95 64 63 32 31 0

 xmm2/mem128

127 64 63 0

add add xmm1

134 PHADDDQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDUBD 135

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds four successive 8-bit unsigned integer values from the second source operand and packs the
results of the additions in a doubleword in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PHADDUBD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDUBW, PHADDUBQ, PHADDUWD, PHADDUWQ, PHADDUDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDUBD Packed Horizontal Add Unsigned Byte to
Doubleword

Mnemonic Opcode Description

PHADDUBD xmm1, xmm2/mem128 0F 7A 52 /r
Adds four successive 8-bit unsigned integer
values in an XMM register or 128-bit memory
location and packs the 32-bit results in the
destination XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

 add add add add

127 96 95 64 63 32 31 0

 add add add add

addaddaddadd xmm1

136 PHADDUBD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDUBQ 137

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds eight successive 8-bit unsigned integer values from the second source operand and packs the
results of the additions in a quadword in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PHADDUBQ instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDUBW, PHADDUBD, PHADDUWD, PHADDUWQ, PHADDUDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDUBQ Packed Horizontal Add Unsigned Byte to
Quadword

Mnemonic Opcode Description

PHADDUBQ xmm1, xmm2/mem128 0F 7A 53 /r
Adds eight successive 8-bit unsigned integer
values in an XMM register or 128-bit memory
location and packs the 64-bit results in the
destination XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

 add add add add

 add add add add

addaddaddadd

127 64 63 0

add add
xmm1

138 PHADDUBQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDUBW 139

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds each adjacent pair of 8-bit unsigned integer values from the second source operand and packs the
16-bit integer result of each addition in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PHADDUBW instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDUBD, PHADDUBQ, PHADDUWD, PHADDUWQ, PHADDUDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDUBW Packed Horizontal Add Unsigned Byte to Word

Mnemonic Opcode Description

PHADDUBW xmm1, xmm2/mem128 0F 7A 51 /r
Adds each adjacent pair of 8-bit unsigned integer
values in an XMM register or 128-bit memory
location and packs the 16-bit results in the
destination XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

 add add add add

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 add add add add

xmm1

140 PHADDUBW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDUDQ 141

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds each adjacent pair of 32-bit unsigned integer values from the second source operand and packs
the results of the additions in a quadword in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PHADDUDQ instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDUBW, PHADDUBD, PHADDUBQ, PHADDUWD, PHADDUWQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDUDQ Packed Horizontal Add Unsigned Doubleword to
Quadword

Mnemonic Opcode Description

PHADDUDQ xmm1, xmm2/mem128 0F 7A 5B /r
Adds each adjacent pair of 32-bit unsigned
integer values in an XMM register or 128-bit
memory location and packs the 64-bit results in
the destination XMM register.

127 96 95 64 63 32 31 0

 xmm2/mem128

127 64 63 0

add add xmm1

142 PHADDUDQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDUWD 143

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds each adjacent pair of 16-bit unsigned integer values from the second source operand and packs
the results of the addition in a doubleword in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PHADDUWD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDUBW, PHADDUBD, PHADDUBQ, PHADDUWQ, PHADDUDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDUWD Packed Horizontal Add Unsigned Word to
Doubleword

Mnemonic Opcode Description

PHADDUWD xmm1, xmm2/mem128 0F 7A 56 /r
Adds each adjacent pair of 16-bit unsigned
integer values in an XMM register or 128-bit
memory location and packs the 32-bit results in
the destination XMM register.

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 xmm2/mem128

127 96 95 64 63 32 31 0

addaddaddadd xmm1

144 PHADDUWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDUWQ 145

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds four successive 16-bit unsigned integer values from the second source operand and packs the
results of the additions in a quadword in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PHADDUWQ instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDUBW, PHADDUBD, PHADDUBQ, PHADDUWD, PHADDUDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDUWQ Packed Horizontal Add Unsigned Word to
Quadword

Mnemonic Opcode Description

PHADDUWQ xmm1, xmm2/mem128 0F 7A 57 /r
Adds four successive 16-bit unsigned integer
values in an XMM register or 128-bit memory
location and packs the 64-bit results in the
destination XMM register.

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 xmm2/mem128

addaddaddadd

 xmm1

127 64 63 0

add add

146 PHADDUWQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDWD 147

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds each adjacent pair of 16-bit signed integer values from the second source operand and packs the
sign-extended results of the addition in a doubleword in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PHADDWD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDBW, PHADDBD, PHADDBQ, PHADDWQ, PHADDDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDWD Packed Horizontal Add Signed Word to Signed
Doubleword

Mnemonic Opcode Description

PHADDWD xmm1, xmm2/mem128 0F 7A 46 /r
Adds each adjacent pair of 16-bit signed integer
values in an XMM register or 128-bit memory
location and packs the 32-bit results in the
destination XMM register.

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 xmm2/mem128

127 96 95 64 63 32 31 0

addaddaddadd xmm1

148 PHADDWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHADDWQ 149

43479—Rev. 3.01—August 2007 AMD64 Technology

Adds four successive 16-bit signed integer values from the second source operand and packs the sign-
extended results of the additions in a quadword in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PHADDWQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHADDBW, PHADDBD, PHADDBQ, PHADDWD, PHADDDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHADDWQ Packed Horizontal Add Signed Word to Signed
Quadword

Mnemonic Opcode Description

PHADDWQ xmm1, xmm2/mem128 0F 7A 47 /r
Adds four successive 16-bit signed integer values
in an XMM register or 128-bit memory location
and packs the 64-bit results in the destination
XMM register.

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 xmm2/mem128

addaddaddadd

127 64 63 0

add add xmm1

150 PHADDWQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHSUBBW 151

43479—Rev. 3.01—August 2007 AMD64 Technology

Subtracts the most significant signed integer byte from the least significant signed integer byte of each
word from the second source operand and packs the sign-extended 16-bit integer result of each
subtraction in the destination (first source). The first source/destination operand is an XMM register
and the second source operand is another XMM register or 128-bit memory location.

The PHSUBBW instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHSUBWD, PHSUBDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHSUBBW Packed Horizontal Subtract Signed Byte to
Signed Word

Mnemonic Opcode Description

PHSUBBW xmm1, xmm2/mem128 0F 7A 61 /r
Subtracts the most significant byte from the least
significant byte of each word in an XMM register or
128-bit memory location and packs the 16-bit
results in the destination XMM register.

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 xmm2/mem128

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

xmm1

subtract subtract subtract subtract subtract subtract subtract subtract

152 PHSUBBW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHSUBDQ 153

43479—Rev. 3.01—August 2007 AMD64 Technology

Subtracts the most significant signed integer doubleword from the least significant signed integer
doubleword of each quadword from the second source operand and packs the sign-extended 64-bit
integer result of each subtraction in the destination (first source). The first source/destination operand
is an XMM register and the second source operand is another XMM register or 128-bit memory
location.

The PHSUBDQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHSUBBW, PHSUBWD

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHSUBDQ Packed Horizontal Subtract Signed Doubleword to
Signed Quadword

Mnemonic Opcode Description

PHSUBDQ xmm1, xmm2/mem128 0F 7A 63 /r

Subtracts the most significant doubleword from
the least significant doubleword of each
quadword in an XMM register or 128-bit memory
location and packs the 64-bit results in the
destination XMM register.

127 96 95 64 63 32 31 0

 xmm2/mem128

127 64 63 0

 xmm1 subtract subtract

154 PHSUBDQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PHSUBWD 155

43479—Rev. 3.01—August 2007 AMD64 Technology

Subtracts the most significant signed integer word from the least significant signed integer word of
each doubleword from the second source operand and packs the sign-extended 32-bit integer result of
each subtraction in the destination (first source). The first source/destination operand is an XMM
register and the second source operand is another XMM register or 128-bit memory location.

The PHSUBWD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PHSUBBW, PHSUBDQ

rFLAGS Affected

None

MXCSR FLAGS Affected

None

PHSUBWD Packed Horizontal Subtract Signed Word to
Signed Doubleword

Mnemonic Opcode Description

PHSUBWD xmm1, xmm2/mem128 0F 7A 62 /r

Subtracts the most significant word from the least
significant word of each adjacent pair of 16-bit
signed integer values in an XMM register or 128-
bit memory location and packs the 32-bit results in
the destination XMM register.

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 xmm2/mem128

127 96 95 64 63 32 31 0

 xmm1
 subtract subtract subtract subtract

156 PHSUBWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PMACSDD 157

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each packed 32-bit signed integer value in the first source operand by the corresponding
packed 32-bit signed integer value in the second source operand, then adds the 64-bit signed integer
product to the corresponding packed 32-bit signed integer value in the third source operand, which is
the accumulator and is identical to the destination XMM register. The four results are written to the
destination (accumulator) register.

No saturation is performed on the sum. If the result of the multiply causes non-zero values to be set in
the upper 32 bits of the 64 bit product, they are ignored. If the result of the add overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only the signed low-order
32 bits of the result are written in the destination.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSDD instruction requires four operands:

PMACSDD dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSDD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+32)
{
 temp = xmm2[(31+i):i] * xmm3/mem128[(31+i):i];
 temp = xmm1[(31+i):i] + temp;
 xmm1[(31+i):i] = temp;
}

PMACSDD Packed Multiply Accumulate Signed Doubleword
to Signed Doubleword

Mnemonic Opcode Description

PMACSDD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 9E /r /drex0

Multiplies each packed 32-bit
signed integer values in the
second and third operands, then
adds the 64-bit product to the
corresponding packed 32-bit
signed integer value in the fourth
operand and writes the signed
32-bit result in the corresponding
doubleword of the destination
(xmm1 register).

158 PMACSDD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

 src1
127 96 95 64 63 32 31 0

 src2

src3 = dest

127 96 95 64 63 32 31 0

 dest = src3 (accumulator)
127 96 95 64 63 32 31 0

multiply

 add

 multiply

add

multiply
multiply

 add

add

127 96 95 64 63 32 31 0

Instruction Reference PMACSDD 159

43479—Rev. 3.01—August 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

160 PMACSDQH Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies the second 32-bit signed integer value of the first source operand by the second 32-bit
signed integer value in the second source operand, then adds the 64-bit signed integer product to the
low-order 64-bit signed integer value in the third source operand. Simultaneously, multiplies the fourth
32-bit signed integer value of the first source operand by the fourth 32-bit signed integer value in the
second source operand, then adds the 64-bit signed integer product to the second 64-bit signed integer
value in the third source operand, which is the accumulator and is identical to the destination XMM
register. Both results are written to the destination register.

No saturation is performed on the sum. If the result of the add overflows, the carry is ignored (neither
the overflow nor carry bit in rFLAGS is set). Only the low-order 64 bits of each result are written in the
destination.

The destination register is an XMM register addressed by the DREX.dest field nd is identical to the
third source register.

The PMACSDQH instruction requires four operands:

PMACSDQH dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSDQH instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+64)
{

temp = xmm2[(63+i):32+i] * xmm3/mem128[(63+i):32+i];
temp = xmm1[(63+i):i] + temp;
xmm1[(63+i):i] = temp;

}

PMACSDQH Packed Multiply Accumulate Signed High
Doubleword to Signed Quadword

Mnemonic Opcode Description

PMACSDQH xmm1, xmm2, xmm3/mem128, xmm1 0F 24 9F /r /drex0

Multiplies the high
doublewords in the second
and third operand, then adds
the signed 64-bit products to
the signed 64-bit values in the
fourth operand and writes the
quadword results in the
destination (xmm1 register).

Instruction Reference PMACSDQH 161

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

127 64 63 0

 src1
127 96 95 64 63 32 31 0

 src2

src3 = dest

127 64 63 0

 dest = src3 (accumulator)

multiply

 add

 multiply

 add

127 96 95 64 63 32 31 0

162 PMACSDQH Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PMACSDQL 163

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the low-order 32-bit signed integer value of the first source operand by the low-order 32-bit
signed integer value in the second source operand, then adds the 64-bit signed integer product to the
low-order 64-bit signed integer value in the third source operand. Simultaneously, multiplies the third
32-bit signed integer value of the first source operand by the corresponding 32-bit signed integer value
in the second source operand, then adds the 64-bit signed integer product to the second 64-bit signed
integer value in the third source operand, which is the accumulator and is identical to the destination
XMM register. Both results are written to the destination (accumulator) register.

No saturation is performed on the sum. If the result of the add overflows, the carry is ignored (neither
the overflow nor carry bit in rFLAGS is set). Only the low-order 64 bits of each result are written in the
destination.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSDQL instruction requires four operands:

PMACSDQL dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSDQL instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+64)
{

temp = xmm2[(31+i):i] * xmm3/mem128[(31+i):i];
temp = xmm1[(63+i):i] + temp;
xmm1[(63+i):i] = temp;

}

PMACSDQL Packed Multiply Accumulate Signed Low
Doubleword to Signed Quadword

Mnemonic Opcode Description

PMACSDQL xmm1, xmm2, xmm3/mem128, xmm1 0F 24 97 /r /drex0

Multiplies the low doublewords
in the second and third
operands, then adds the signed
64-bit products to the signed
64-bit values in the fourth
operand and writes the signed
quadword results in the
destination (xmm1 register).

164 PMACSDQL Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

127 64 63 0

 src1
127 96 95 64 63 32 31 0

 src2

127 64 63 0

 dest = src3 (accumulator)

 multiply

 add

 multiply

 add

127 96 95 64 63 32 31 0

src3 = dest

Instruction Reference PMACSDQL 165

43479—Rev. 3.01—August 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

166 PMACSSDD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each packed 32-bit signed integer value in the first source operand by the corresponding
packed 32-bit signed integer value in the second source operand, then adds each 64-bit signed integer
product to the corresponding packed 32-bit signed integer value in the third source operand, which is
the accumulator and is identical to the destination XMM register. The four results are written to the
destination (accumulator) register.

Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value in the destination, if the value is larger than the largest signed 32-bit integer, it is saturated to
7FFF_FFFFh, and if the value is smaller than the smallest signed 32-bit integer, it is saturated to
8000_0000h.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSSDD instruction requires four operands:

PMACSSDD dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSSDD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+32)
{
 temp = xmm2[(31+i):i] * xmm3/mem128[(31+i):i];
 temp = xmm1[(31+i):i] + temp;
 if (temp < -2^31) temp = -2^31;
 if (temp > 2^31-1) temp = 2^31-1;
 xmm1[(31+i):i] = temp;
}

PMACSSDD Packed Multiply Accumulate Signed Doubleword
to Signed Doubleword with Saturation

Mnemonic Opcode Description

PMACSSDD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 8E /r /drex0

Multiplies each packed 32-bit
signed integer values in the
second and third operands,
then adds each 64-bit product
to the corresponding packed
32-bit signed integer value in
the fourth operand and writes
the signed saturated 32-bit
result in the corresponding
doubleword of the destination
(xmm1 register).

Instruction Reference PMACSSDD 167

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 src1

127 96 95 64 63 32 31 0

 src2

127 96 95 64 63 32 31 0

 saturate saturate

 dest = src3 (accumulator)
127 96 95 64 63 32 31 0

multiply

 add

 multiply

 add

saturate saturate

multiply
multiply

 add

add

127 96 95 64 63 32 31 0

src3 = dest

168 PMACSSDD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PMACSSDQH 169

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the second 32-bit signed integer value of the first source operand by the second 32-bit
signed integer value in the second source operand, then adds the 64-bit signed integer product to the
low-order 64-bit signed integer value in the third source operand. Simultaneously, multiplies the fourth
32-bit signed integer value of the first source operand by the fourth 32-bit signed integer value in the
second source operand, then adds the 64-bit signed integer product to the high-order 64-bit signed
integer value in the third source operand, which is the accumulator and is identical to the destination
XMM register. Both results are written to the destination (accumulator) register.

Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value in the destination, if the value is larger than the largest signed 64-bit integer, it is saturated to
7FFF_FFFF_FFFF_FFFFh, and if the value is smaller than the smallest signed 64-bit integer, it is
saturated to 8000_0000_0000_0000h.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSSDQH instruction requires four operands:

PMACSSDQH dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSSDQH instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+64)
{

temp = xmm2[(63+i):32+i] * xmm3/mem128[(63+i):32+i];
temp = xmm1[(63+i):i] + temp;
if (temp < -2^63) temp = -2^63;
if (temp > (2^63 – 1)) temp = (2^63 – 1);
xmm1[(63+i):i] = temp;

}

PMACSSDQH Packed Multiply Accumulate Signed High
Doubleword to Signed Quadword with Saturation

Mnemonic Opcode Description

PMACSSDQH xmm1, xmm2, xmm3/mem128, xmm1 0F 24 8F /r /drex0

Multiplies the high
doublewords in the second
and third operands, then
adds the signed products to
the signed 64-bit integer
values in the fourth operand.
The quadword results are
saturated and written to the
destination register.

170 PMACSSDQH Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

 src1
127 96 95 64 63 32 31 0

 src2

127 64 63 0

 dest = src3 (accumulator)
127 64 63 0

multiply

 add

 multiply

 add

saturate saturate

127 96 95 64 63 32 31 0

src3 = dest

Instruction Reference PMACSSDQH 171

43479—Rev. 3.01—August 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

172 PMACSSDQL Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies the low-order 32-bit signed integer value of the first source operand by the low-order 32-bit
signed integer value in the second source operand, then adds the 64-bit signed integer product to the
low-order 64-bit signed integer value in the third source operand. Simultaneously, multiplies the third
32-bit signed integer value of the first source operand by the third 32-bit signed integer value in the
second source operand, then adds the 64-bit signed integer product to the high-order 64-bit signed
integer value in the third source operand, which is the accumulator and is identical to the destination
XMM register. Both results are written to the destination (accumulator) register.

Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value in the destination, if the value is larger than the largest signed 64-bit integer, it is saturated to
7FFF_FFFF_FFFF_FFFFh, and if the value is smaller than the smallest signed 64-bit integer, it is
saturated to 8000_0000_0000_0000h.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSSDQL instruction requires four operands:

PMACSSDQL dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSSDQL instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+64)
{

temp = xmm2[(31+i):i] * xmm3/mem128[(31+i):i];
temp = xmm1[(63+i):i] + temp;
if (temp < -2^63) temp = -2^63;
if (temp > (2^63 – 1)) temp = (2^63 – 1);
xmm1[(63+i):i] = temp;

}

PMACSSDQL Packed Multiply Accumulate Signed Low
Doubleword to Signed Quadword with Saturation

Mnemonic Opcode Description

PMACSSDQL xmm1, xmm2, xmm3/mem128, xmm1 0F 24 87 /r /drex0

Multiplies the low
doublewords in the second
and third operands, then
adds the 64-bit products to
the signed 64-bit integer
values in the fourth operand
and writes the signed
saturated quadword result in
the destination (xmm1
register).

Instruction Reference PMACSSDQL 173

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 src1
127 96 95 64 63 32 31 0

 src2

127 64 63 0

 dest = src3 (accumulator)
127 64 63 0

 multiply

 add

 multiply

 add

 saturate saturate

127 96 95 64 63 32 31 0

src3 = dest

174 PMACSSDQL Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PMACSSWD 175

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies the odd-numbered packed 16-bit signed integer values in the first source operand by the
corresponding packed 16-bit signed integer values in the second source operand, then adds the 32-bit
signed integer products to the corresponding packed 32-bit signed integer values in the third source
operand, which is the accumulator and is identical to the destination XMM register. The four results
are written to the destination (accumulator) register.

Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value in the destination, if the value is larger than the largest signed 32-bit integer, it is saturated to
7FFF_FFFFh, and if the value is smaller than the smallest signed 32-bit integer, it is saturated to
8000_0000h.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSSWD instruction requires four operands:

PMACSSWD dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSSWD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+32)
{
 temp = xmm2[(15+i):i] * xmm3/mem128[(15+i):i];
 temp = xmm1[(31+i):i] + temp;
 if (temp < -2^31) temp = -2^31;
 if (temp > 2^31-1) temp = 2^31-1;
 xmm1[(31+i):i] = temp;
}

PMACSSWD Packed Multiply Accumulate Signed Word to
Signed Doubleword with Saturation

Mnemonic Opcode Description

PMACSSWD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 86 /r /drex0

Multiplies each odd-numbered
packed 16-bit signed integer
values in the second and third
operands, then adds the 32-bit
products to the corresponding
packed 32-bit signed integer
values in the fourth operand
and writes the signed saturated
32-bit results in the destination
(xmm1 register).

176 PMACSSWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSSWW, PMACSWW, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 96 95 64 63 32 31 0

multiply

multiply

 multiply

multiply

add

add

 add

add

saturate

saturate

saturate

saturate

 dest = src3 (accumulator)
127 96 95 64 63 32 31 0

src3 = dest

Instruction Reference PMACSSWD 177

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

178 PMACSSWW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer value in the second source operand, then adds the 32-bit signed integer
products to the corresponding packed 16-bit signed integer value in the third source operand, which is
the accumulator and is identical to the destination XMM register. The eight results are written to the
destination (accumulator) register.

Out of range results of the addition are saturated to fit into a signed 16-bit integer. For each packed
value in the destination, if the value is larger than the largest signed 16-bit integer, it is saturated to
7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to 8000h.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSSWW instruction requires four operands:

PMACSSWW dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSSWW instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+16)
{
 temp = xmm2[(15+i):i] * xmm3/mem128[(15+i):i];
 temp = xmm1[(15+i):i] + temp;
 if (temp < -32768) temp = -32768;
 if (temp > 32767) temp = 32767;
 xmm1[(15+i):i] = temp;
}

PMACSSWW Packed Multiply Accumulate Signed Word to
Signed Word with Saturation

Mnemonic Opcode Description

PMACSSWW xmm1, xmm2, xmm3/mem128, xmm1 0F 24 85 /r /drex0

Multiplies packed 16-bit
signed integer values in the
second and third operands,
then adds the 32-bit products
to the corresponding packed
16-bit signed integer value in
the fourth operand and writes
the signed saturated 16-bit
results in the destination
(xmm1 register).

Instruction Reference PMACSSWW 179

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

multiply
multiply

multiply
multiply

multiply
 multiply

multiply
multiply

add
add

add
add

add
 add

 add
add

saturate
saturate

saturate
saturate

saturate
saturate

saturate

 dest = src3 (accumulator)
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

saturate

scr1 src2

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

src3 = dest

180 PMACSSWW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PMACSWD 181

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each odd-numbered packed 16-bit signed integer value in the first source operand by the
corresponding packed 16-bit signed integer value in the second source operand, then adds the 32-bit
signed integer products to the corresponding packed 32-bit signed integer value in the third source
operand, which is the accumulator and is identical to the destination XMM register. The four results
are written to the destination (accumulator) register.

If the result of the add overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is
set). Only the low-order 32 bits of the result are written in the destination.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSWD instruction requires four operands:

PMACSWD dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSWD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+32)
{
 temp = xmm2[(15+i):i] * xmm3/mem128[(15+i):i];
 temp = xmm1[(31+i):i] + temp;
 xmm1[(31+i):i] = temp;
}

PMACSWD Packed Multiply Accumulate Signed Word to
Signed Doubleword

Mnemonic Opcode Description

PMACSWD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 96 /r /drex0

Multiplies each odd-numbered
packed 16-bit signed integer
values in second and third
operands, then adds each 32-
bit product to the corresponding
packed 32-bit signed integer
value in the fourth operand and
writes the signed 32-bit result in
the destination (xmm1 register).

182 PMACSWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSSDD, PMACSDO, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 96 95 64 63 32 31 0

multiply

multiply

 multiply

multiply

add

add

 add

add

 dest = src3 (accumulator)
127 96 95 64 63 32 31 0

src3 = dest

Instruction Reference PMACSWD 183

43479—Rev. 3.01—August 2007 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

184 PMACSWW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer value in the second source operand, then adds each 32-bit signed integer
product to the corresponding packed 16-bit signed integer value in the third source operand, which is
the accumulator and is identical to the destination XMM register. The eight results are written to the
destination (accumulator) register.

No saturation is performed on the sum. If the result of the multiply causes non-zero values to be set in
the upper 16 bits of the 32 bit result, they are ignored. If the result of the add overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only the signed low-order
16 bits of the result are written in the destination.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMACSWW instruction requires four operands:

PMACSWW dest, src1, src2, src3 dest = src1* src2 + src3

The PMACSWW instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+16)
{
 temp = xmm2[(15+i):i] * xmm3/mem128[(15+i):i];
 temp = xmm1[(15+i):i] + temp;
 xmm1[(15+i):i] = temp;
}

PMACSWW Packed Multiply Accumulate Signed Word to
Signed Word

Mnemonic Opcode Description

PMACSWW xmm1, xmm2, xmm3/mem128, xmm1 0F 24 95 /r /drex0

Multiplies packed 16-bit signed
integer values in the second
and third operands, adds each
32-bit product to the
corresponding packed 16-bit
signed integer value in the
fourth operand and writes the
signed 16-bit results in the
destination (xmm1 register).

Instruction Reference PMACSWW 185

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

multiply
multiply

multiply
multiply

multiply
 multiply

multiply
multiply

add
add

add
add

add
 add

 add
add

 dest = src3 (accumulator)
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

src3 = dest

186 PMACSWW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PMADCSSWD 187

43479—Rev. 3.01—August 2007 AMD64 Technology

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer value in the second source operand, then adds the 32-bit signed integer
products of the even-odd adjacent words. Each resulting sum is then added to the corresponding
packed 32-bit signed integer value in the third source operand, which is the accumulator, as is identical
to the destination XMM register. The four results are written to the destination (accumulator) register.

Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value in the destination, if the value is larger than the largest signed 32-bit integer, it is saturated to
7FFF_FFFFh, and if the value is smaller than the smallest signed 32-bit integer, it is saturated to
8000_0000h.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMADCSSWD instruction requires four operands:

PMADCSSWD dest, src1, src2, src3 dest = src1* src2 + src3

The PMADCSSWD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+32)
{
 temp1 = xmm2[(15+i):i] * xmm3/mem128[(15+i):i];
 temp2 = xmm2[(31+i):16+i] * xmm3/mem128[(31+i):16+i];
 temp = temp1 + temp2
 temp = xmm1[(31+i):i] + temp;
 if (temp < -2^31) temp = -2^31;
 if (temp > 2^31-1) temp = 2^31-1;
 xmm1[(31+i):i] = temp;
}

PMADCSSWD Packed Multiply, Add and Accumulate Signed
Word to Signed Doubleword with Saturation

Mnemonic Opcode Description

PMADCSSWD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 A6 /r /drex0

Multiplies packed signed 16-
bit integer values in the
second and third operands,
then adds the 32-bit
products of the even-odd
adjacent words together.
Finally, adds their sum to
the corresponding packed
32-bit signed integer value
in the fourth operand and
writes the signed saturated
32-bit results in the
destination (xmm1 register).

188 PMADCSSWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 96 95 64 63 32 31 0

multiply
multiply

multiply
multiply

multiply
 multiply

multiply
multiply

 add

 add

 dest = src3 (accumulator)
127 96 95 64 63 32 31 0

 saturate

 add
 add

add

saturate

add

saturate

add

saturate

add

src3 = dest

Instruction Reference PMADCSSWD 189

43479—Rev. 3.01—August 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

190 PMADCSWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer value in the second source operand, then adds the 32-bit signed integer
products of the even-odd adjacent words together and adds their sum to the corresponding packed 32-
bit signed integer values in the third source operand, which is the accumulator and is identical to the
destination XMM register. The four results are written to the destination (accumulator) register.

No saturation is performed on the sum. If the result of the adds overflows, the carry is ignored (neither
the overflow nor carry bit in rFLAGS is set). Only the signed 32-bits of the result are written in the
destination.

The destination register is an XMM register addressed by the DREX.dest field and is identical to the
third source register.

The PMADCSWD instruction requires four operands:

PMADCSWD dest, src1, src2, src3 dest = src1* src2 + src3

The PMADCSWD instruction is an SSE5 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
for (i=0; i<128; i=i+32)
{
 temp1 = xmm2[(15+i):i] * xmm3/mem128[(15+i):i];
 temp2 = xmm2[(31+i):16+i] * xmm3/mem128[(31+i):16+i];
 temp = temp1 + temp2
 temp = xmm1[(31+i):i] + temp;
 xmm1[(31+i):i] = temp;
}

PMADCSWD Packed Multiply Add and Accumulate Signed
Word to Signed Doubleword

Mnemonic Opcode Description

PMADCSWD xmm1, xmm2, xmm3/mem128, xmm1 0F 24 B6 /r /drex0

Multiplies packed signed 16-
bit integer values in the
second and third operands,
then adds the 32-bit products
of the even-odd adjacent
words together. Finally, adds
their sum to the
corresponding packed 32-bit
signed integer value in the
fourth operand and writes
the signed 32-bit results in
the destination
(xmm1register).

Instruction Reference PMADCSWD 191

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PMACSSWW, PMACSWW, PMACSSWD, PMACSWD, PMACSSDD, PMACSDD, PMACSSDQL,
PMACSSDQH, PMACSDQL, PMACSDQH, PMADCSSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

127 96 95 64 63 32 31 0

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 96 95 64 63 32 31 0

multiply
multiply

multiply
multiply

multiply
 multiply

multiply
multiply

 add

 add

 dest = src3 (accumulator)

 add
 add

add

add

add

add

src3 = dest

192 PMADCSWD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PPERM 193

43479—Rev. 3.01—August 2007 AMD64 Technology

Moves any of the 32-packed bytes in the source operands to each byte of the destination XMM register.
Each byte of the result can optionally have a logical operation applied to it.

The 32-byte source operand consists of the second source operand (src2) concatenated with the first
source operand (src1). The third source operand (src3) contains control bytes specifying the source
byte and the logical operation for each destination byte.

The destination register is an XMM register addressed by the DREX.dest field.

The PPERM instruction requires four operands:

PPERM dest, src1, src2,src3

For each byte of the 16-byte result, the corresponding byte in src3 is used as follows:

• bits 4:0 of src3 select one of the 32 bytes from src2:src1

• bits 7:5 of src3 select the logical operation applied.

The PPERM instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

The control byte is defined in Table 2-3, “PPERM Control Byte”‚ on page 194.

PPERM Packed Permute Bytes

Mnemonic Opcode Description

PPERM xmm1, xmm1, xmm2, xmm3/mem128 0F 24 23 /r /drex0 For each byte position of the 16-
byte result, uses corresponding
control byte in fourth operand to
perform logical operation on one of
32 bytes from the second and third
source operands and writes result
in destination (xmm1 register).

PPERM xmm1, xmm1, xmm3/mem128, xmm2 0F 24 23 /r /drex1

PPERM xmm1, xmm2, xmm3/mem128, xmm1 0F 24 27 /r /drex0

PPERM xmm1, xmm3/mem128, xmm2, xmm1 0F 24 27 /r /drex1

194 PPERM Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Table 2-3. PPERM Control Byte

7 5 4 0

Op Src_Sel

Control Byte

Bits Description

7:5 Op - Defines the logical operation performed on the selected operand.

OP Operation

000 Source byte (no logical operation)

001 Invert source byte

010 Bit reverse of source byte

011 Bit reverse of inverted source byte

100 0x00

101 0xFF

110 Most significant bit of source byte replicated in all bit positions.

111 Invert most significant bit of source byte and replicate in all bit positions.

4:0 Src_Sel Selects the source byte to be operated on.

Src_Sel Source Selected Src_Sel Source Selected

00000 Src1[7:0] 10000 Src2[7:0]

00001 Src1[15:8] 10001 Src2[15:8]

00010 Src1[23:16] 10010 Src2[23:16]

00011 Src1[31:24] 10011 Src2[31:24]

00100 Src1[39:32] 10100 Src2[39:32]

00101 Src1[47:40] 10101 Src2[47:40]

00110 Src1[55:48] 10110 Src2[55:48]

00111 Src1[63:56] 10111 Src2[63:56]

01000 Src1[71:64] 11000 Src2[71:64]

01001 Src1[79:72] 11001 Src2[79:72]

01010 Src1[87:80] 11010 Src2[87:80]

01011 Src1[95:88] 11011 Src2[95:88]

01100 Src1[103:96] 11100 Src2[103:96]

01101 Src1[111:104] 11101 Src2[111:104]

01110 Src1[119:112] 11110 Src2[119:112]

01111 Src1[127:120] 11111 Src2[127:120]

Instruction Reference PPERM 195

43479—Rev. 3.01—August 2007 AMD64 Technology

Action
for (i=0; i<16; i=++)
 dest[i]:= control[i].op (src1|src2)control[i].src_sel;

Related Instructions

PSHUFHW, PSHUFD, PSHUFLW, PSHUFW, PERMPS, PERMPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

015 14 1 0 15 14 1

015 14 1

src2

src1

control

dest
 15 14 1 0

 logical

 mux

 logical

src_sel 1F 1E 11 10 0F 0E 01 00

 mux
..... ...

196 PPERM Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PROTB 197

43479—Rev. 3.01—August 2007 AMD64 Technology

Rotates each byte of the source operand by the amount specified in the signed value of the
corresponding count byte and writes the result in the corresponding byte of the destination.

If the count value is positive, bits are rotated to the left (toward the more significant bit positions). The
bits rotated out left of the most significant bit are rotated back in at the right end (least-significant bit)
of the byte.

If the count value is negative, bits are rotated to the right (toward the least significant bit positions).
The bits rotated out right of the least significant bit are rotated back in at the left end (most-significant
bit) of the byte.

The rotate amount is stored in two’s-complement form. The count is modulo 8.

The PROTB instruction has two variants:

• PROTB dest, src, variable-count—The first instruction operand is the destination register and is an
XMM register addressed by the DREX.dest field. Each byte of the source operand is rotated by the
amount specified in the corresponding byte of the variable-count operand, which is an XMM
register or 128-bit memory operand.

• PROTB dest, src, fixed-count—Each byte of the source operand is rotated by the identical amount,
as specified by the immediate byte fixed-count operand.

The PROTB instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PROTB Packed Rotate Bytes

Mnemonic Opcode Description

PROTB xmm1, xmm2, xmm3/mem128 0F 24 40 /r /drex0 Rotates each byte of the source operand
(2nd operand) by the amount specified in the
signed value of the corresponding count byte
(3rd operand) and writes the result in the
corresponding byte of the destination.

PROTB xmm1, xmm3/mem128, xmm2 0F 24 40 /r /drex1

PROTB xmm1, xmm2/mem128, imm8 0F 7B 40 /r ib Rotates each byte of the source operand
(2nd operand) by the (same) amount
specified in the signed value of the count
byte (immediate operand which is the 3rd
operand) and writes the result in the
corresponding byte of the destination.

198 PROTB Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

127 0

 0127

 src

count bytes

rotate
rotate

127 0

 dest
 0127

16 rotates

 src

 dest

16 rotates
rotate

127 0

 imm8

rotate count

…
…

…

…

…

Instruction Reference PROTB 199

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

200 PROTD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Rotates each of the four doublewords of the source operand by the amount specified in the signed value
of the corresponding count byte and writes the result in the corresponding doubleword of the
destination.

If the count value is positive, bits are rotated to the left (toward the more significant bit positions). The
bits rotated out left of the most significant bit are rotated back in at the right end (least-significant bit)
of the doubleword.

If the count value is negative, bits are rotated to the right (toward the least significant bit positions).
The bits rotated out right of the least significant bit are rotated back in at the left end (most-significant
bit) of the doubleword.

The rotate amount is stored in two’s-complement form. The count is modulo 32.

The PROTD instruction has two variants:

• PROTD dest, src, variable-count—The first instruction operand is the destination register and is an
XMM register addressed by the DREX.dest field. Each doubleword of the source operand is
rotated by the amount specified in the corresponding doubleword of the variable-count operand,
which is an XMM register or 128-bit memory operand.

• PROTD dest, src, fixed-count—Each doubleword of the source operand is rotated by the identical
amount, as specified by the immediate byte fixed-count operand.

The PROTW instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PROTD Packed Rotate Doublewords

Mnemonic Opcode Description

PROTD xmm1, xmm2, xmm3/mem128 0F 24 42 /r /drex0 Rotates each doubleword of the source
operand (2nd operand) by the amount
specified in the low-order byte of the
corresponding count doubleword (3rd
operand) and writes the result in the
corresponding doubleword of the
destination.

PROTD xmm1, xmm3/mem128, xmm2 0F 24 42 /r /drex1

PROTD xmm1, xmm2/mem128, imm8 0F 7B 42 /r ib Rotates each doubleword of the source
operand (2nd operand) by the (same)
amount specified in the signed value of the
count byte (immediate operand which is the
3rd operand) and writes the result in the
corresponding doubleword of the
destination.

Instruction Reference PROTD 201

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PROTB, PROTW, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

127 96 95 64 63 32 31 0

 src

count bytes

127 96 95 64 63 32 31 0

 dest
 127 96 95 64 63 32 31 0

 103 96 71 64 39 32 7 0

 rotate

 rotate
 rotate

rotate

 src

 dest

127 96 95 64 63 32 31 0

 rotate rotate rotate rotate

 imm8

count

202 PROTD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PROTQ 203

43479—Rev. 3.01—August 2007 AMD64 Technology

Rotates each of the quadwords of the source operand by the amount specified in the signed value of the
corresponding count byte and writes the result in the corresponding quadword of the destination.

If the count value is positive, bits are rotated to the left (toward the more significant bit positions). The
bits rotated out left of the most significant bit are rotated back in at the right end (least-significant bit)
of the quadword.

If the count value is negative, bits are rotated to the right (toward the least significant bit positions).
The bits rotated out right of the least significant bit are rotated back in at the left end (most-significant
bit) of the quadword.

The rotate amount is stored in two’s-complement form. The count is modulo 64.

The PROTQ instruction has two variants:

• PROTQ dest, src, variable-count—The first instruction operand is the destination register and is an
XMM register addressed by the DREX.dest field. Each quadword of the source operand is rotated
by the amount specified in the corresponding quadword of the variable-count operand, which is an
XMM register or 128-bit memory operand.

• PROTQ dest, src, fixed-count—Each quadword of the source operand is rotated by the identical
amount, as specified by the immediate byte fixed-count operand.

The PROTQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PROTQ Packed Rotate Quadwords

Mnemonic Opcode Description

PROTQ xmm1, xmm2, xmm3/mem128 0F 24 43 /r /drex0 Rotates each quadword of the source
operand (2nd operand) by the amount
specified in the low-order byte of the
corresponding quadword in the third
operand and writes the result in the
corresponding quadword of the destination.

PROTQ xmm1, xmm3/mem128, xmm2 0F 24 43 /r /drex1

PROTQ xmm1, xmm2/mem128, imm8 0F 7B 43 /r ib Rotates each quadword of the source
operand (2nd operand) by the (same)
amount specified in the signed value of the
count byte (immediate operand which is the
3rd operand) and writes the result in the
corresponding quadword of the destination.

204 PROTQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PROTB, PROTW, PROTD, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

 127 64 63 0

 src

count bytes

127 64 63 0

 dest
 127 64 63 0

 103 96 71 64 7 0

 rotate

 rotate

 src

 dest

127 64 63 0

rotate rotate

 imm8

count

Instruction Reference PROTQ 205

43479—Rev. 3.01—August 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

206 PROTW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Rotates each of the eight words of the source operand by the amount specified in the signed value of
the corresponding count byte and writes the result in the corresponding word of the destination.

If the count value is positive, bits are rotated to the left (toward the more significant bit positions). The
bits rotated out left of the most significant bit are rotated back in at the right end (least-significant bit)
of the word.

If the count value is negative, bits are rotated to the right (toward the least significant bit positions).
The bits rotated out right of the least significant bit are rotated back in at the left end (most-significant
bit) of the word.

The rotate amount is stored in two’s-complement form. The count is modulo 16.

The PROTW instruction has two variants:

• PROTW dest, src, variable-count—The first instruction operand is the destination register and is an
XMM register addressed by the DREX.dest field. Each word of the source operand is rotated by
the amount specified in the corresponding word of the variable-count operand, which is an XMM
register or 128-bit memory operand.

• PROTW dest, src, fixed-count—Each word of the source operand is rotated by the identical
amount, as specified by the immediate byte fixed-count operand.

The PROTW instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PROTW Packed Rotate Words

Mnemonic Opcode Description

PROTW xmm1, xmm2, xmm3/mem128 0F 24 41 /r /drex0 Rotates each word of the source operand
(2nd operand) by the amount specified in
the low-order byte of the corresponding
word in the third operand and writes the
result in the corresponding word of the
destination.

PROTW xmm1, xmm3/mem128, xmm2 0F 24 41 /r /drex1

PROTW xmm1, xmm2/mem128, imm8 0F 7B 41 /r ib Rotates each word of the source operand
(2nd operand) by the (same) amount
specified in an immediate byte and writes
the result in the corresponding word of the
destination.

Instruction Reference PROTW 207

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PROTB, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src

count bytes

rotate
rotate

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 dest

 119 112 103 96 87 80 71 64 55 48 39 32 23 16 7 0 8 rotates

 src

 dest

 8 rotates
rotate rotate

 127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 imm8

count…

…

…

208 PROTW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PSHAB 209

43479—Rev. 3.01—August 2007 AMD64 Technology

Shifts each byte of the source operand by the amount specified in the signed value of the corresponding
count byte and writes the result in the corresponding byte of the destination.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions). The
most significant bit is replicated and shifted in at the left end (most-significant bit) of the byte.

The shift amount is stored in two’s-complement form. The count is modulo 8.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHAB instruction requires three operands:

PSHAB dest, src, count

The PSHAB instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAW, PSHAD, PSHAQ

PSHAB Packed Shift Arithmetic Bytes

Mnemonic Opcode Description

PSHAB xmm1, xmm2, xmm3/mem128 0F 24 48 /r /drex0 Shifts each byte of second operand by an
amount specified in the corresponding byte
in the third operand and writes the result in
the corresponding byte of the destination
(xmm1 register).

PSHAB xmm1, xmm3/mem128, xmm2 0F 24 48 /r /drex1

 src

 count

 shift
 shift

127 0

127 0

 dest
 0127

16 shifts

…

…

…

210 PSHAB Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PSHAD 211

43479—Rev. 3.01—August 2007 AMD64 Technology

Shifts each of the four doublewords of the source operand by the amount specified in the signed value
of the corresponding count byte and writes the result in the corresponding doubleword of the
destination.

The count byte is located in the low-order byte of the corresponding doubleword of the count operand.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions). The
most significant bit is replicated and shifted in at the left end (most-significant bit) of the doubleword.

The shift amount is stored in two’s-complement form. The count is modulo 32.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHAD instruction requires three operands:

PSHAD dest, src, count

The PSHAD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PSHAD Packed Shift Arithmetic Doublewords

Mnemonic Opcode Description

PSHAD xmm1, xmm2, xmm3/mem128 0F 24 4A /r /drex0 Shifts each doubleword of second
operand by an amount specified in the
low-order byte of the corresponding
doubleword of third operand and writes
the result in the corresponding
doubleword of the destination (xmm1
register).

PSHAD xmm1, xmm3/mem128, xmm2 0F 24 4A /r /drex1

 src

 count

127 96 95 64 63 32 31 0

 dest
 127 96 95 64 63 32 31 0

 103 96 71 64 39 32 7 0

 shift

 shift
 shift

 shift

212 PSHAD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PSHAQ 213

43479—Rev. 3.01—August 2007 AMD64 Technology

Shifts the two quadwords of the source operand by the amount specified in the signed value of the
corresponding count byte and writes the result in the corresponding quadword of the destination.

The count byte is located in the low-order byte of the corresponding quadword of the count operand.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions). The
most significant bit is replicated and shifted in at the left end (most-significant bit) of the quadword.

The shift amount is stored in two’s-complement form. The count is modulo 64.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHAQ instruction requires:

PSHAQ dest, src, count

The PSHAQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD

PSHAQ Packed Shift Arithmetic Quadwords

Mnemonic Opcode Description

PSHAQ xmm1, xmm2, xmm3/mem128 0F 24 4B /r /drex0 Shifts each quadword of second operand
by an amount specified in the low-order
byte of the corresponding quadword in the
third operand and writes the result in the
corresponding quadword of the destination
(xmm1 register).

PSHAQ xmm1, xmm3/mem128, xmm2 0F 24 4B /r /drex1

 src

count bytes

127 64 63 0

 dest
 127 64 63 0

 71 64 7 0

 shift

 shift

214 PSHAQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PSHAW 215

43479—Rev. 3.01—August 2007 AMD64 Technology

Shifts each of the eight words of the source operand by the amount specified in the signed value of the
corresponding count byte and writes the result in the corresponding word of the destination.

The count byte is located in the low-order byte of the corresponding word of the count operand.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions). The
most significant bit is replicated and shifted in at the left end (most-significant bit) of the word.

The shift amount is stored in two’s-complement form. The count is modulo 16.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHAW instruction requires three operands:

PSHAW dest, src, count

The PSHAW instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAD, PSHAQ

PSHAW Packed Shift Arithmetic Words

Mnemonic Opcode Description

PSHAW xmm1, xmm2, xmm3/mem128 0F 24 49 /r /drex0 Shifts each word of second operand by an
amount specified in the low-order byte of
the corresponding word in the third operand
and writes the result in the corresponding
word of the destination (xmm1 register).

PSHAW xmm1, xmm3/mem128, xmm2 0F 24 49 /r /drex1

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src

count bytes
 shift

shift

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 dest

 119 112 103 96 87 80 71 64 55 48 39 32 23 16 7 0 8 shifts

…

…

216 PSHAW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PSHLB 217

43479—Rev. 3.01—August 2007 AMD64 Technology

Shifts each byte of the source operand by the amount specified in the signed value of the corresponding
count byte and writes the result in the corresponding byte of the destination.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions).
Zeros are shifted in at the left end (most-significant bit) of the byte.

The shift amount is stored in two’s-complement form. The count is modulo 8.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHLB instruction requires three operands:

PSHLB dest, src, count

 The PSHLB instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLW, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

PSHLB Packed Shift Logical Bytes

Mnemonic Opcode Description

PSHLB xmm1, xmm2, xmm3/mem128 0F 24 44 /r /drex0 Shifts each byte of the second operand by
an amount specified in the corresponding
byte in the third operand and writes the
result in the corresponding byte of the
destination (xmm1 register).

PSHLB xmm1, xmm3/mem128, xmm2 0F 24 44 /r /drex1

 src

 count

 shift
 shift

127 0

127 0

 dest
 0127

16 shifts

…

…

…

218 PSHLB Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Instruction Reference PSHLD 219

43479—Rev. 3.01—August 2007 AMD64 Technology

Shifts each of the four doublewords of the source operand by the amount specified in the signed value
of the corresponding count byte and writes the result in the corresponding doubleword of the
destination.

The count byte is located in the low-order byte of the corresponding doubleword of the count operand.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions).
Zeros are shifted in at the left end (most-significant bit) of the doubleword.

The shift amount is stored in two’s-complement form. The count is modulo 32.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHLD instruction requires three operands:

PSHLD dest, src, count

The PSHLD instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PSHLD Packed Shift Logical Doublewords

Mnemonic Opcode Description

PSHLD xmm1, xmm2, xmm3/mem128 0F 24 46 /r /drex0 Shifts each doubleword of second operand
by an amount specified in the low-order
byte of the corresponding doubleword in
the third operand and writes the result in
the corresponding doubleword of the
destination (xmm1 register).

PSHLD xmm1, xmm3/mem128, xmm2 0F 24 46 /r /drex1

220 PSHLD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

127 96 95 64 63 32 31 0

 src

 count

127 96 95 64 63 32 31 0

 dest

 103 96 71 64 39 32 7 0

 shift

 shift
 shift

 shift

Instruction Reference PSHLD 221

43479—Rev. 3.01—August 2007 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

Exception Real
Virtual
8086 Protected Cause of Exception

222 PSHLQ Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Shifts the two quadwords of the source operand by the amount specified in the signed value of the
corresponding count byte and writes the result in the corresponding quadword of the destination.

The count byte is located in the low-order byte of the corresponding quadword of the count operand.
Bit 6 of the count byte is ignored.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions).
Zeros are shifted in at the left end (most-significant bit) of the quadword.

The shift amount is stored in two’s-complement form. The count is modulo 64.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHLQ instruction requires:

PSHLQ dest, src, count

The PSHLQ instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

PSHLQ Packed Shift Logical Quadwords

Mnemonic Opcode Description

PSHLQ xmm1, xmm2, xmm3/mem128 0F 24 47 /r /drex0 Shifts each quadword of second operand by
an amount specified in the low-order byte of
the corresponding quadword in the third
operand and writes the result in the
corresponding quadword of the destination
(xmm1 register).

PSHLQ xmm1, xmm3/mem128, xmm2 0F 24 47 /r /drex1

 src

 count

127 64 63 0

 dest
 127 64 63 0

 71 64 7 0

 shift

 shift

Instruction Reference PSHLQ 223

43479—Rev. 3.01—August 2007 AMD64 Technology

Related Instructions

PROTB, PROTW, PROTD, PROTQ, PSHLB, PSHLW, PSHLD, PSHAB, PSHAW, PSHAD, PSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

224 PSHLW Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Shifts each of the eight words of the source operand by the amount specified in the signed value of the
corresponding count byte and writes the result in the corresponding word of the destination.

The count byte is located in the low-order byte of the corresponding word of the count operand.

If the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.

If the count value is negative, bits are shifted to the right (toward the least significant bit positions).
Zeros are shifted in at the left end (most-significant bit) of the word.

The shift amount is stored in two’s-complement form. The count is modulo 16.

The first instruction operand is the destination register and is an XMM register addressed by the
DREX.dest field.

The PSHLW instruction requires three operands:

PSHLW dest, src, count

The PSHLW instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

PROTB, PROLW, PROTD, PROTQ, PSHLB, PSHLD, PSHLQ, PSHAB, PSHAW, PSHAD, PSHAQ

PSHLW Packed Shift Logical Words

Mnemonic Opcode Description

PSHLW xmm1, xmm2, xmm3/mem128 0F 24 45 /r /drex0 Shifts each word of the second operand by
an amount specified in the low-order byte of
the corresponding word in the third operand
and writes the result in the corresponding
word of the destination (xmm1 register).

PSHLW xmm1, xmm3/mem128, xmm2 0F 24 45 /r /drex1

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src

 count
 shift

shift

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 dest

 119 112 103 96 87 80 71 64 55 48 39 32 23 16 7 0 8 shifts

…

…
…

Instruction Reference PSHLW 225

43479—Rev. 3.01—August 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

226 PTEST Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Performs a bitwise logical AND between the source XMM register or 128-bit memory location and
destination XMM register. Sets the ZF flag to 1 if all bit positions specified in the mask operand are set
to 0 in the source operand, and clears it otherwise. Sets the CF flag to 1 if all bit positions specified in
the mask operand are set to 1 in the source operand. The first operand contains the source bits, the
second operand contains the mask.

The PTEST instruction is an SSE5 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See the CPUID Specification, order# 25481.)

Action
IF ((MASK[127:0] AND SRC[127:0]) = 0)
 ZF=1
 ELSE
 ZF=0

IF ((MASK[127:0] AND NOT SRC[127:0]) = 0)
 CF=1
 ELSE
 CF=0

Related Instructions

TEST

rFLAGS Affected

MXCSR Flags Affected

None

PTEST Predicate Test Register

Mnemonic Opcode Description

PTEST xmm1, xmm2/mem128 66 0F 38 17 /r

Set ZF, if the result of a logical AND of all bits in
xmm2/m128 with the corresponding bits in xmm1 is
0s. Set CF, if the result of the logical AND of the
source with a logical NOT of the destination is 0s.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 0 M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3 and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Instruction Reference PTEST 227

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

228 ROUNDPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Rounds each of the two double-precision floating-point values in an XMM register or a 128-bit
memory location to the nearest integer, as determined by the rounding mode specified by the 8-bit
immediate operand and writes the floating-point results in the corresponding 64 bits in a destination
XMM register.

The 8-bit immediate operand specifies three control fields for the rounding operation.

The precision mask (P) of the 8-bit immediate operand defines how the processor handles a precision
exception. When the P bit is clear, the ROUNDPD instruction reports precision exceptions when an
input is not an integer; when the P bit is set, ROUNDPD will not report precision exceptions.

The rounding select bit (RS) specifies the rounding mode control source. If the RS bit is set to 1, the
rounding mode is determined by the value of the MXCSR.RC field; if the RS bit is cleared to zero, the
rounding mode is determined by the RC field of the 8-bit immediate operand.

The rounding control (RC) field specifies a non-sticky rounding-mode value.

ROUNDPD Round Packed Double-Precision Floating-Point

7 4 3 2 1 0

Reserved P RS RC

Bits Mnemonic Description

7–4 Reserved

3 P Precision Mask

2 RS Rounding Select

1–0 RC Rounding Control

Table 2-4. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode
RC Field
Setting

Description

Round to Nearest
(Even)

00b
The rounded result is that which is closest to the infinitely precise
result. If two values are equally close, the integer value with the least-
significant bit of zero (the even value) is returned.

Round Down
(Toward –∞)

01b
The rounded result is closest to but no greater than the infinitely precise
result.

Round Up
(Toward +∞)

10b
The rounded result is closest to but no less than the infinitely precise
result.

Round Toward Zero
(Truncate)

11b
The rounded result is closest to the infinitely precise result but no
greater in absolute value.

Instruction Reference ROUNDPD 229

43479—Rev. 3.01—August 2007 AMD64 Technology

If any source operand is an SNaN, it will be converted to a QNaN. If DAZ is set to 1, then denormals
are rounded to signed zero regardless of rounding mode.

The ROUNDPD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPS, ROUNDSD, ROUNDSS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDPD xmm1, xmm2/mem128,imm8 66 0F 3A 09 /r ib

Rounds two packed double-precision
floating-point values in xmm2 or 128-bit
memory location and writes the results
in the destination (xmm1 register).

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127

06364127

xmm2/mem128

xmm1

 round round

230 ROUNDPD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value

Precision exception
(PE) X X X The source operand was not an integral value.

Instruction Reference ROUNDPS 231

43479—Rev. 3.01—August 2007 AMD64 Technology

Rounds each of the four single-precision floating-point values in an XMM register or a 128-bit
memory location to the nearest integer, as determined by the rounding mode specified by the 8-bit
immediate operand and writes the floating-point results in the corresponding 32 bits in a destination
XMM register.

The 8-bit immediate operand specifies three control fields for the rounding operation.

The precision mask (P) of the 8-bit immediate operand defines how the processor handles a precision
exception. When the P bit is clear, the ROUNDPS instruction reports precision exceptions when an
input is not an integer; when the P bit is set, ROUNDPS will not report precision exceptions.

The rounding select bit (RS) specifies the rounding mode control source. If the RS bit is set to 1, the
rounding mode is determined by the value of the MXCSR.RC field; if the RS bit is cleared to zero, the
rounding mode is determined by then RC field of the 8-bit immediate operand.

If any source operand is an SNaN, it will be converted to a QNaN. If DAZ is set to 1, then denormals
are rounded to signed zero regardless of rounding mode.

ROUNDPS Round Packed Single-Precision Floating-Point

7 4 3 2 1 0

Reserved P RS RC

Bits Mnemonic Description

7–4 Reserved

3 P Precision Mask

2 RS Rounding Select

1–0 RC Rounding Control

Table 2-5. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode
RC Field
Setting Description

Round to Nearest
(Even)

00b
The rounded result is that which is closest to the infinitely precise
result. If two values are equally close, the integer value with the
least-significant bit of zero (the even value) is returned.

Round Down
(Toward –∞)

01b
The rounded result is closest to but no greater than the infinitely
precise result.

Round Up
(Toward +∞)

10b
The rounded result is closest to but no less than the infinitely
precise result.

Round Toward Zero
(Truncate)

11b
The rounded result is closest to the infinitely precise result but no
greater in absolute value.

232 ROUNDPS Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

The ROUNDPS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDSD, ROUNDSS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDPS xmm1, xmm2/mem128,imm8 66 0F 3A 08 /r ib

Rounds four packed single-precision
floating-point values in xmm2 or 128-bit
memory location and writes the results
in the destination (xmm1 register).

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127

xmm2/mem128

xmm131329596

06364127 31329596

round roundround round

Instruction Reference ROUNDPS 233

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM=0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled while
MXCSR.MM=1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value

Precision exception
(PE) X X X The source operand was not an integral value.

234 ROUNDSD Instruction Reference

AMD64 Technology 43479—Rev. 3.01—August 2007

Rounds the double-precision floating-point value in the low position of an XMM register or a 64-bit
memory location to the nearest integer, as determined by the rounding mode specified by the 8-bit
immediate operand and writes the results as a double-precision floating-point value in the low 64 bits
of the destination XMM register. The upper double-precision floating-point value in the destination
register is not affected.

The 8-bit immediate operand specifies three control fields for the rounding operation.

The precision mask (P) of the 8-bit immediate operand defines how the processor handles a precision
exception. When the P bit is clear, the ROUNDSD instruction reports precision exceptions when an
input is not an integer; when the P bit is set, ROUNDSD will not report precision exceptions.

The rounding select bit (RS) specifies the rounding mode control source. If the RS bit is set to 1, the
rounding mode is determined by the value of the MXCSR.RC field; if the RS bit is cleared to zero, the
rounding mode is determined by then RC field of the 8-bit immediate operand.

The rounding control (RC) field specifies a non-sticky rounding-mode value.

ROUNDSD Round Scalar Double-Precision Floating-Point

7 4 3 2 1 0

Reserved P RS RC

Bits Mnemonic Description

7–4 Reserved

3 P Precision Mask

2 RS Rounding Select

1–0 RC Rounding Control

Table 2-6. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode
RC Field
Setting

Description

Round to Nearest
(Even)

00b
The rounded result is that which is closest to the infinitely precise
result. If two values are equally close, the integer value with the
least-significant bit of zero (the even value) is returned.

Round Down
(Toward –∞)

01b
The rounded result is closest to but no greater that the infinitely
precise result.

Round Up
(Toward +∞)

10b
The rounded result is closest to but no less than the infinitely precise
result.

Round Toward Zero
(Truncate)

11b
The rounded result is closest to the infinitely precise result but no
greater in absolute value.

235

43479—Rev. 3.01—August 2007 AMD64 Technology

If any source operand is an SNaN, it will be converted to a QNaN. If DAZ is set to 1, then denormals
are rounded to signed zero regardless of rounding mode.

The ROUNDSD instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDSD xmm1, xmm2/mem64,imm8 66 0F 3A 0B /r ib

Rounds the scalar double-precision
floating-point value in the lowest position
in xmm2 or 64-bit memory location and
writes the results in the lowest position in
the destination (xmm1 register).

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

06364127

06364127

xmm2/mem128

xmm1

 round

236

AMD64 Technology 43479—Rev. 3.01—August 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value

Precision exception
(PE) X X X The source operand was not an integral value.

237

43479—Rev. 3.01—August 2007 AMD64 Technology

Rounds the single-precision floating-point value in the lowest position of an XMM register or a 32-bit
memory location to the nearest integer, as determined by the rounding mode specified by the 8-bit
immediate operand and writes the results as a double-precision floating-point value in the lowest 32
bits of the destination XMM register. The upper three single-precision floating-point values in the
destination register are not affected.

The 8-bit immediate operand specifies three control fields for the rounding operation.

The precision mask (P) of the 8-bit immediate operand defines how the processor handles a precision
exception. When the P bit is clear, the ROUNDSS instruction reports precision exceptions when an
input is not an integer; when the P bit is set, ROUNDSS will not report precision exceptions.

The rounding select bit (RS) specifies the rounding mode control source. If the RS bit is set to 1, the
rounding mode is determined by the value of the MXCSR.RC field; if the RS bit is cleared to zero, the
rounding mode is determined by then RC field of the 8-bit immediate operand.

The rounding control (RC) field specifies a non-sticky rounding-mode value.

ROUNDSS Round Scalar Single-Precision Floating-Point

7 4 3 2 1 0

Reserved P RS RC

Bits Mnemonic Description

7–4 Reserved

3 P Precision Mask

2 RS Rounding Select

1–0 RC Rounding Control

Table 2-7. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode
RC Field
Setting Description

Round to Nearest
(Even)

00b
The rounded result is that which is closest to the infinitely precise
result. If two values are equally close, the integer value with the
least-significant bit of zero (the even value) is returned.

Round Down
(Toward –∞)

01b
The rounded result is closest to but no greater that the infinitely
precise result.

Round Up
(Toward +∞)

10b
The rounded result is closest to but no less than the infinitely precise
result.

Round Toward Zero
(Truncate)

11b
The rounded result is closest to the infinitely precise result but no
greater in absolute value.

238

AMD64 Technology 43479—Rev. 3.01—August 2007

If any source operand is an SNaN, it will be converted to a QNaN. If DAZ is set to 1, then denormals
are rounded to signed zero regardless of rounding mode.

The ROUNDSS instruction is an SSE5 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See the CPUID Specification, order# 25481.)

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSD

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDSS xmm1, xmm2/mem32, imm8 66 0F 3A 0A /r ib

Rounds the scalar single-precision
floating-point value in the lowest position
in xmm2 or 32-bit memory location and
writes the result in the lowest position in
the destination (xmm1 register).

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

 M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

xmm2/mem128

xmm1

06364127 31329596

round

06364127 31329596

239

43479—Rev. 3.01—August 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE5 instructions are not supported, as
indicated by ECX bit 11 of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment Check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT=1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value

Precision exception
(PE) X X X The source operand was not an integral value.

240

AMD64 Technology 43479—Rev. 3.01—August 2007

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience

	1 New 128-Bit Instructions
	1.1 New 128-Bit Media Instruction Format
	1.1.1 Opcode3 Byte
	1.1.2 DREX Byte

	1.2 Four-Operand 128-Bit Media Instructions
	1.2.1 NaN Results on FMAC Instructions

	1.3 Three-Operand 128-Bit Media Instructions
	1.4 Other 128-Bit Media Instructions
	1.5 16-Bit Floating-Point Data Type
	1.6 Floating Point Multiply and Add/Subtract
	1.7 Integer Multiply (Add) and Accumulate Instructions
	1.7.1 Saturation
	1.7.2 Multiply and Accumulate Instructions
	1.7.3 SSE5 Integer Multiply, Add and Accumulate Instructions

	1.8 Packed Integer Horizontal Add and Subtract
	1.9 Vector Conditional Moves
	1.10 Packed Integer Rotates and Shifts
	1.10.1 Packed Integer Shifts
	1.10.2 Packed Integer Rotate

	1.11 Floating Point Comparison and Predicate Generation
	1.11.1 Floating-Point Comparison Operations
	1.11.2 Integer Comparison and Predicate Generation

	1.12 Test Instruction
	1.13 Precision Control and Rounding
	1.14 Convert

	2 SSE5 128-Bit Media Instructions
	2.1 Notation
	2.1.1 Opcode Syntax

	2.2 Instruction Reference
	COMPD
	COMPS
	COMSD
	COMSS
	CVTPH2PS
	CVTPS2PH
	FMADDPD
	FMADDPS
	FMADDSD
	FMADDSS
	FMSUBPD
	FMSUBPS
	FMSUBSD
	FMSUBSS
	FNMADDPD
	FNMADDPS
	FNMADDSD
	FNMADDSS
	FNMSUBPD
	FNMSUBPS
	FNMSUBSD
	FNMSUBSS
	FRCZPD
	FRCZPS
	FRCZSD
	FRCZSS
	PCMOV
	PCOMB
	PCOMD
	PCOMQ
	PCOMUB
	PCOMUD
	PCOMUQ
	PCOMUW
	PCOMW
	PERMPD
	PERMPS
	PHADDBD
	PHADDBQ
	PHADDBW
	PHADDDQ
	PHADDUBD
	PHADDUBQ
	PHADDUBW
	PHADDUDQ
	PHADDUWD
	PHADDUWQ
	PHADDWD
	PHADDWQ
	PHSUBBW
	PHSUBDQ
	PHSUBWD
	PMACSDD
	PMACSDQH
	PMACSDQL
	PMACSSDD
	PMACSSDQH
	PMACSSDQL
	PMACSSWD
	PMACSSWW
	PMACSWD
	PMACSWW
	PMADCSSWD
	PMADCSWD
	PPERM
	PROTB
	PROTD
	PROTQ
	PROTW
	PSHAB
	PSHAD
	PSHAQ
	PSHAW
	PSHLB
	PSHLD
	PSHLQ
	PSHLW
	PTEST
	ROUNDPD
	ROUNDPS
	ROUNDSD
	ROUNDSS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

