
CS 395-0, Section 22 Project Part B Dinda, Fall 2000

 Page 1 of 5

TCP for Minet

Project Part B

Overview
In this part of the project, you and your partner will build an implementation of TCP for
the Minet TCP/IP stack. You will be provided with all parts of the stack except for the
TCP module. You may implement the module in any way that you wish so long as it
conforms to its interfaces to other Minet components, and to the reduced TCP standard
described here. However, Minet provides a considerable amount of code, in the form of
C++ classes, that you may use in your implementation. Furthermore, we recommend that
you implement your module as a select-based server, similar in spirit to the third part of
your previous project. You may also earn extra credit by implementing additional parts
of the TCP standard.

The Minet TCP/IP Stack
The Minet TCP/IP Stack is documented in a separate, eponymous handout. The low-
level details of how Minet works, including the classes it makes available to you, the
modules out of which the stack is constructed, and how the modules interface with each
other is documented in that handout. Of course, it also doesn’t hurt to look at the code.
You will be given the source code to all of the Minet modules except for tcp_module and
ip_module. You will also receive binaries for ip_module, reader, and writer.

It is vital that you use the reader and writer binaries that we give you. These programs
must be run as root or else they will not work. Because we don’t want to give you root
access, we are giving you binaries that are setuid to root. This means that these programs
(and only these programs) run as root. If you would like to use reader and writer on a
machine outside the TLAB, you will need root privileges on that machine.

Your IP Addresses
Each of you will be assigned 255 IP addresses to use for the rest of the quarter. These
address are of the form 10.10.x.y, where x will depend on your login id and y will range
from 1 to 255. These addresses are special in that packets sent to them will not be
forwarded beyond the local network. In fact, if you are using machines other than the
TLAB machines, you will need to add a route so that they actually make it to the local
network.

Dedicated TLAB Machines
You may use any of the TLAB machines, either from the console or remotely via ssh. In
fact, you’ ll usually want to use two of them simultaneously. We have dedicated TLAB-
11 through TLAB-15 to running Linux for the duration of the quarter. These machines
should always be available for remote or console login. If they are not, send mail to
request@cs.cmu.edu. Skysaw will also continue to be available, but you will find it
easier to work on this project on the TLAB machines. Note that Skysaw is not on the

CS 395-0, Section 22 Project Part B Dinda, Fall 2000

 Page 2 of 5

same network as the TLAB machines, so you will not be able to communicate with them
using your 10.10.x.y addresses.

TCP Specification
The core specification for TCP is RFC 793, which you can and should fetch from
www.ietf.org. In general, you will implement TCP as defined in that document, except
for the parts listed below.

• You do not have to support outstanding connections (i.e., an incoming connection
queue to support the listen backlog) in a passive open.

• You do not have to implement congestion control.
• You do not have to implement support for the URG and PSH flags, the urgent

pointer, or urgent (out-of-band) data.
• You do not have to support TCP options.
• You do not have to implement a keep-alive timer
• You do not have to implement the Nagle algorithm.
• You do not have to implement delayed acknowledgements.
• You do not have to generate or handle ICMP errors.
• You may assume that simultaneous opens and closes do not occur
• You may assume that sock_module only makes valid requests (that is, you do not

have to worry about application errors)
• You may assume that exceptional conditions such as aborts do not occur.
• You should generate IP packets no larger than 576 bytes, and you should set your

MSS (maximum [TCP] segment size) accordingly, to 536 bytes. Notice that this
is the default MSS that TCP uses if there is no MSS option when a connection is
negotiated.

 Chapter 3 of your textbook also serves as an excellent introduction to TCP concepts and
should be read before the RFC. In addition, we will be handing out other information as
the quarter progresses. Rick Steven’s book, “TCP/IP Illustrated, Volume1: The
Protocols” is also very useful, as is Doug Comer’s “Internetworking With TCP/IP
Volume I: Principles, Protocols, and Architecture” . Both of these books are available
from Peter.

Recommended Approach
There are many ways you can approach this project. The only requirements are that you
meet the TCP specification detailed above, that your TCP module interfaces correctly to
the rest of the Minet stack, and that your code builds and works on the TLAB machines.
We recommend, however, that you use C++ and exploit the various classes and source
code available in the Minet TCP/IP stack. Furthermore, we recommend you take the
roughly the following approach.

1. Read Chapter three of your textbook
2. Read RFC 793.
3. Read the “Minet TCP/IP Stack” handout.

CS 395-0, Section 22 Project Part B Dinda, Fall 2000

 Page 3 of 5

4. Fetch, configure, and build Minet.
5. Examine the code in udp_module.cc. The UDP module has almost exactly the

same interface to the IP multiplexor and to the Sock module as your TCP module
will have. Feel free to steal this code to act as the framework for your TCP
module.

6. Write a TCP module that does nothing but connect to its fifos and then repeatedly
runs select, unserializes arriving packets, and prints them. You should be able to
run the stack with this basic module, send traffic to it from another machine using
netcat (nc), and see it arrive at your TCP module. You may find the classes in
packet.h and ip.h to be useful. Now is a good time to familiarize yourself with
Minet’s various environment variables. You should check out what the various
MINET_DISPLAY options do.

7. Learn how to use select’s timeout feature. You will be using this to implement
TCP’s timers.

8. Write a class that represents the state of a connection. Think carefully about what
this should contain. Think of a connection as being a finite state machine and
consider using the states described in RFC 793. You may find the various classes
in constate.h to be helpful here. In particular, your connection should have
various timers associated with it. Your connection will also probably have input
and output buffers associated with it.

9. Write a class that maps connection addresses (the Connection class) to connection
state. Again, you may find constate.h to be helpful.

10. Add code to your TCP module to handle incoming IP packets. Begin by adding
code to handle passive opens. Even without the Sock module, you can test this
code by using a hard-coded connection representing a passive open. Note that the
element of time enters in here. You will need to use one of your timers to deal
with lost packets. You may find the classes in tcp.h and ip.h to be useful.

11. Add code to your TCP module to handle active opens. Again, you do not need to
use the Sock module here. You can hard code the active open for now.

12. Add code to your TCP module to handle data transfer. Again, note the element of
time and think of how to implement your timers using select. Remember that you
do not have to implement congestion control, only flow control.

13. Add code to your TCP module to handle closes.
14. At this point, your TCP module should be able to carry on conversation with a

hard-coded partner. Congratulations! You are finished with the most difficult
part!

15. Re-read the discussion of the interface between the Sock module and the TCP
module in the Minet TCP/IP Stack handout.

16. Make sure you understand the SockRequestResponse class.
SockRequestResponses will advance your connections’ state machines just like IP
packets do. They will also affect the set of outstanding connections (item 9).

17. Add code that keeps track of outstanding requests that your TCP module has
passed up to the Sock module. Recall that the interface is asynchronous. When
you send a request to Sock module, the response may arrive at any time later. The
only guarantee is that responses will arrive in the same order that requests were
sent.

CS 395-0, Section 22 Project Part B Dinda, Fall 2000

 Page 4 of 5

18. Add code to support the CONNECT request. This should simply create a
connection address to state mapping and initiate an active open.

19. Add code to support the ACCEPT request. This should simply create a
connection address (with an unbound remote side) to state mapping and initiate a
passive open.

20. Add code to pass incoming connections on a passively open connection address
(one for which you have received an ACCEPT) up to the Sock module as zero
byte WRITE requests.

21. Add code to support the CLOSE request. This should shut down the connection
gracefully, and then remove the connection

22. Add code to support the WRITE request. This should push data into the
connection’s output queue.

23. Add code to send new data up to the Sock module as WRITE requests. Note that
the Sock module may refuse such a WRITE. In such cases, the TCP module
should wait and try to resend the data later. We are currently working on a better
flow control protocol between the Sock module and the TCP module.

24. Verify that you are generating and handling STATUS requests correctly.
25. Change your HTTP client from the last project to use Minet (minet_init(USER)).

Run it as the “app” and verify that it works and can communicate with an HTTP
server on the local network.

26. Do the same thing with your HTTP server. Note that while a Minet stack
currently supports only a single application, you can run multiple Minet stacks on
the same machine or on different TLAB machines to test your code.

Extra Credit: Congestion control
For extra credit, you may implement the congestion control parts of TCP as they are
described in your textbook and in the other sources. Please note that while this is not
much code, it does take considerable effort to get right.

Caveat Emptor
The Minet TCP/IP Stack is a work in progress. You are the first class to use it. You can
and will find bugs in it. We will do our best to make your experience as pleasant and fair
as possible. If you try hard, you will do well. If some part of Minet turns out to be an
unexpected impediment, this will not be reflected in your grade.

We also appreciate constructive feedback and suggestions. We plan to use Minet
extensively for teaching in the future. Your ideas, which we will credit accordingly, can
therefore have a lot of impact.

Mechanics
• Your code must function as a tcp_module within the Minet TCP/IP Stack, as

described in a separate, eponymous handout.
• Your code should be written in C or C++ and must compile and run under Red Hat

Linux 6.2 on the machines in the TLAB. In particular, we will compile your code
using GCC 2.95.2 and GNU Make 3.78.1, which are installed on the lab machines.
You must provide a Makefile. We will expect that running “make” will generate the

CS 395-0, Section 22 Project Part B Dinda, Fall 2000

 Page 5 of 5

executable tcp_module and that this module will meet the specification described
in this document and in the “Minet TCP/IP Stack” handout.

Things That May Help You
• RFC 793 is essential.
• Chapter 3 of your book. Section 3.5 is a good introduction to TCP. Sections 3.6 and

3.7 are about congestion control. You should read them, but you do not have to
implement congestion control.

• Rick Stevens, “TCP/IP Illustrated, Volume1: The Protocols”
• Doug Comer, “Internetworking With TCP/IP Volume I: Principles, Protocols, and

Architecture”
• Rick Steven, “Advanced Programming in the Unix Environment” – especially handy

if you are having issues with fifos.
• The handout “Unix Systems Programming in a Nutshell”
• The handout “Make in a Nutshell”
• The handout “The TLAB Cluster”
• The C++ Standard Template Library. Herb Schildt’s “STL Programming From the

Ground Up” appears to be a good introduction
• GDB, Xemacs, etc.
• The “Introduction to the Unix Development Environment” seminar that will be held

on Thursday, October 12 at 6:30pm in the CS classroom.
• CVS (http://www.loria.fr/~molli/cvs-index.html) is a powerful tool for managing

versions of your code and helping you and your partner avoid stepping on each
other’s toes.

