
CS 340 Introduction to Networking Dinda, Winter 2003

 Page 1 of 7

Introduction to Networking
Syllabus

Web Page
 http://www.cs.northwestern.edu/~pdinda/netclass-w03

Instructor
 Peter A. Dinda

1890 Maple Avenue, Room 338
847-467-7859

 pdinda@cs.northwestern.edu
 Office hours: Thursdays, 2-4pm or by appointment

Teaching assistant
 Jason Skicewicz
 1890 Maple Avenue, Room 332
 847-491-7150
 jskitz@cs.northwestern.edu
 Office hours: Mondays 3-6pm or by appointment

Location and Time
 1890 Maple Avenue, CS Department classroom, MWF 2-2:50pm

Prerequisites
 Required CS 311 or equivalent data structures course
 Required Knowledge of C and C++
 Highly recommended CS 213 or equivalent computer systems course
 Highly recommended CS 343 or equivalent operating systems course
 Highly recommended Unix development experience (gcc, gdb, make, etc)
 Recommended Unix systems programming experience

Textbook and other readings
James Kurose and Keith Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, Second Edition, Addison Wesley, 2002 (Textbook)

• Buy the hardcover second edition, not the softcover “preliminary edition”
or the first edition. The book includes access to the on-line version at
http://www.awl.com/kurose-ross.

Richard Stevens, TCP/IP Illustrated, Volume I: The Protocols, Addison Wesley,
1994, (ISBN: 0-201-63346-9) (Required)

• Very detailed look at the protocols, including tcpdump from the wire.
Essential to doing the projects well.

CS 340 Introduction to Networking Dinda, Winter 2003

 Page 2 of 7

Internet Requests For Comments (RFCs) (Useful)
• Official specifications for the Internet which are available from

http://www.ietf.org/rfc.html

Richard Stevens, Unix Network Programming (volumes 1 and 2), Prentice Hall,
1997, 1998 (ISBN 0-134-90012-X and 0-130-81081-9) (Useful)

• Describes the nitty-gritty details of socket programming and IPC on Unix

Richard Stevens, Advanced Programming in the Unix Environment, Addison-
Wesley, 1992 (ISBN 0-201-56317-7) (Useful)

• Describes how to think like a Unix systems programmer

Bjarne Stroustrup, The C++ Programming Language, Special Edition, 2000,
Addison-Wesley, (ISBN 0201700735) (Useful)

• Definitive reference to C++

Objectives, framework, philosophy, and caveats
This course introduces the underlying concepts behind networking using the
Internet and its protocols as examples. There are three goals: (1) to give you an
understanding of how networks, especially the Internet, work, (2) to give you
experience in “programming in the large”, and (3) to teach you network
programming.

We will cover the first five chapters of Kurose in detail, working our way down
the network stack from the application layer to the data-link layer. Concurrent
with the lectures, you (in groups of two) will be building a functional TCP/IP
stack and a small web server that will run on it. What you build will be “real” –
your code will interoperate with other TCP/IP stacks and you’ll be able to talk to
your web server using any browser on any TCP/IP stack.

This is a learn-by-doing kind of class. You will get your hands dirty by
examining parts of our Internet infrastructure and building other parts. It will be
a lot of work, but it will also be a lot of fun, provided you enjoy this sort of thing.
We will assume that you do and that you will make a good faith effort. We don’t
want to have to spend too much time measuring your performance. If you care
about what we’re teaching, you’ll do a better job of that yourself, and if you don’t
care, then you should take some course that you do care about.

After finishing the course, you will be able to do the following.

• Understand the Internet protocols
• Build implementations of the Internet protocols
• Generalize this knowledge to other networking protocols.
• Be a competent network and systems programmer.
• Think like a networking practitioner
• Read and judge articles on networking in trade magazines
• Begin to read and judge research and technical articles on networking

CS 340 Introduction to Networking Dinda, Winter 2003

 Page 3 of 7

• Create simplicity and reliability out of complexity and unreliability
• Structure and design software systems to achieve that simplicity and

reliability

Project
Over the course of the quarter, you will implement a user-level TCP/IP stack and
a small web server that runs on top of it. Your code will not implement the full
functionality of HTTP or TCP/IP, but it will implement enough of it to be able to
interoperate with other, complete implementations. In keeping with the top-down
approach of Kurose and Ross, you will build this from the web server down
instead of from the network card up. I will initially provide you with the whole
stack (as object code) and you will implement the web server. Next, I will peal
away the layers of the stack, leaving you to implement your own versions. Each
layer will have well-defined interfaces that you will fill out.

Here are the layers, as well as each one’s percentage of the project grade. Note
that the layers in italics will be supplied to you and are included only for
completeness.

20 % Web server (a)
Sockets

 50 % TCP (b) UDP
 30 % IP (c) ARP
 Ethernet

The implementation language will be C++ and the platform will be Red Hat
Linux 7.3. We hope that you will use g++ 2.96 or later as your compiler, make as
your build tool, and CVS as your version control system. You may also find that
the C++ standard template library will make your life easier. You’ll be using the
PCs in the TLAB, which will be specially configured for this class. You are
welcome to use other machines, but we must be able to compile and run your
code on our machines. Note that the Ethernet layer of the code requires that your
kernel supports the Berkeley packet filter interface and that you can run your
Ethernet card in promiscuous mode to extract and inject raw packets.

To evaluate your project, we will spot-check your source code, compile it, and run
randomized testcases on it. When appropriate, we will supply you with examples
of such testcases.

In this iteration of the class, part (c) of the project will probably involve a separate
routing simulation instead of an actual small implementation of IP. I have not
decided yet which of these we’ll be doing.

Homework
There will be four homework problems sets that will be periodically assigned to
help you improve your understanding of the material.

CS 340 Introduction to Networking Dinda, Winter 2003

 Page 4 of 7

Exams
There will be a midterm exam and a final exam. The final exam will not be
cumulative.

Grading
50 % Project
20 % Midterm
20 % Final
10 % Homework

Final grades will be computed in the following way. A final score from 0 to 100
will be computed as a weighted sum of each of the project components, the
homeworks, and the exams. Scores greater than 90 or greater than 90th percentile
will be assigned As, scores greater than 80 or greater than 80th percentile will be
assigned Bs, scores greater than 70 or greater than 70th percentile will be assigned
Cs, scores greater than 60 or greater than 60th percentile will be assigned Ds, and
the remainder will be assigned Fs. Notice that this means that if everyone works
hard and gets >90, everyone gets an A. Please choose wisely where you put your
time.

Late Policy
For each calendar day after the due date for a homework or a lab, 10% is lost.
After 1 day, the maximum score is 90%, after 2 days, 80%, etc, for a maximum of
10 days.

Cheating
Since cheaters are mostly hurting themselves, we do not have the time or energy
to hunt them down. We much prefer that you act collegially and help each other
to learn the material and to solve development problems than to have you live in
fear of our wrath and not talk to each other. Nonetheless, if we detect blatant
cheating, we will deal with the cheaters as per Northwestern guidelines.

Schedule
Please don’t let all this reading frighten you. Only KR and the HOs are required
reading. RS is highly recommended and will help a lot in doing the projects. You
almost certainly will end up reading RS as you work on the project, unless you are
either a genius or insane. RFCs are quite long, so I recommend that you scan them.

A good progression is to read KR and HO, skim RS, listen to the lecture, work on
the project until you’re confused, and then take a deeper look at RS. A key thing
that RS gives you is an example of what a correct implementation behaves like.
When you have a question about the correctness of an implementation decision, it’s
time to look at the RFCs.

Lecture Date Topics Readings Homework/Project

CS 340 Introduction to Networking Dinda, Winter 2003

 Page 5 of 7

 1/6 M (classes begin)
1 1/6 M Mechanics,

Introduction,
Fundamental concepts:
communication models,
network, end-to-end
philosophy, protocol, stacks,
layering, TCP/IP

KR ch 1
RS ch 1,
TLAB HO

Project Part (a) out
Find partner
(groups of up to 2)
Install and play
with Minet

2 1/8 W Fundamental concepts: tools
for exploration, much more on
protocols and what they do,
encapsulation, TCP/IP

KR ch 1
RS ch 1,
7, 8, A
Tools HO

Homework 1 out

3 1/10 F Fundamental concepts:
latency, bandwidth, delay,
throughput, goodput, naming,
addressing, services

KR ch 2,
RS ch 1,
14

4 1/13 M Application layer protocols,
focusing on HTTP 1.0:
client/server, text-based
protocols, GET/POST,
headers, static and dynamic
content, HTTP 1.1 extensions

KR ch 2
RFC 1945

5 1/15 W Unix Systems Programming:
error model, data model, file
descriptors,
open/read/write/seek/close,
semantics, files, blocking and
select

KR ch 2
USP HO,
SP HO,
MSI HO

6 1/17 F Unix Network Programming:
select, IPC, connection
concept, socket abstraction,
socket creation

KR ch 2
USP HO,
SP HO,
MSI HO

7 1/20 M Unix Network Programming:
socket programming, Minet
socket interface

KR ch 2
USP HO,
SP HO,
MSI HO

8 1/22 W Project Help Day or Slack Day
9 1/24 F Application layer protocols:

video and audio: data types,
issues, compression, RTP, QoS
networking

skim KR
ch 6

10 1/27 M Transport layer: socket layer,
logical connection,
multiplexing, UDP

KR ch 3,
RS ch 11

Project Part (a) in
Project Part (b)
out, Homework 1
in, Homework 2
out

CS 340 Introduction to Networking Dinda, Winter 2003

 Page 6 of 7

11 1/29 W Transport layer: the channel,
error control and checksum

KR ch 3

12 1/31 F Transport layer: dealing with
loss and re-ordering, pipelined
protocols, stop-and-wait, go-
back-n, selective-repeat

KR ch 3

13 2/3 M Transport layer: TCP:
sequence numbers, segments,
semantics, TCP as go-back-n
with extensions

KR ch 3
RS ch 17-
24, RFC
793

14 2/5 W Transport Layer: TCP: syntax
and dataflow

KR ch 3
RS ch 17-
24, RFC
793

15 2/7 F Transport layer: TCP: flow
control and connection
establishment

KR ch 3
RS ch 17-
24, RFC
793

16 2/10 M Transport layer: TCP:
congestion control and
connection management

KR ch 3
RS ch 17-
24, RFC
793

17 2/12 W Project Help Day or Slack Day Homework 2 in
Homework 3 out

18 2/14 F Network layer: packet, circuit,
virtual circuit switching,
distributed graph algorithms,
routing algorithms, flooding,
hot potatoe (age-test: who is
this an homage to?)

KR ch 4

19 2/17 M Network layer: routing
algorithms: link-state &
Djikstra, distance vector &
Bellman-ford, hierarchical
routing, IP routing

KR ch 4
Graph
algs HO.
RS ch 3,
9, 10,
RFC 791

Midterm, tentatively Monday, 2/17, 6-7:30pm (covers 1-16)
20 2/19 W Network layer: IP routing,

ICMP, BGP, RIP, OSPF
KR ch 4
RS ch 3, 6
9, 10,
RFC 791

21 2/21 F Network layer: IP
Fragmentation, IPv6, broadcast
and multicast

KR ch 4
RS ch 3,
9, 10, 12,
13, RFC
791

Project Part (b) in
Project Part (c) out

CS 340 Introduction to Networking Dinda, Winter 2003

 Page 7 of 7

22 2/24 M Data-link layer: addressing,
ARP, MAC, CS Dept network

KR ch 5,
RS ch 2, 4

23 2/26 W Data-link layer: MAC, error
control, NIC architecture,
Ethernet

KR ch 5
RS ch 2, 4

Homework 3 in
Homework 4 out

24 2/28 F Ethernet: IP over Ethernet,
ARP, different types of
Ethernet, switches, hubs, etc,
Gigabit Ethernet, 10 Gigabit
Ethernet

KR ch 5
RS ch 2, 4
RFC 826,
RFC 894

25 3/3 M ATM KR ch 5
26 3/5 W Project Help Day or Slack Day
27 3/7 F Wireless KR ch 5
28 3/10 M Project Help Day or Slack day
29 3/12 W Security skim KR

ch 7
Project Part (c) in

30 3/14 F Networking Research topics CNR HO Homework 4 in
Final Exam: Wednesday, 3/19, 9-10:30am (covers 17-30)

KR = Kurose and Ross
RS = Richard Stevens
HO = Handout
TLAB HO = The TLAB Cluster HO
USP HO= Unix Systems Programming in a Nutshell HO
SP HO = Sockets Programming in a Nutshell HO
MSI HO = Minet Socket Interface HO
MS HO = Minet TCP/IP Stack HO
CNR HO = Computer Networking Research HO

