
CS 343 Operating Systems, Winter 2020
Queuing Lab: Exploring Scheduling and

Learning Discrete Event Simulation

1 Introduction

The purpose of this lab is for you to gain some experience with scheduling, and to understand how conse-
quential scheduling can be under conditions of high load. In addition, the lab will introduce you to discrete
event simulation, which is a very widely used model for simulating systems in which it is possible to identify
events and cause/effect relationships among them.

The framework of the lab creates the environment of a single CPU (i.e., single hardware thread) schedul-
ing problem. In multiple CPU systems (which are by far the most common today), a common approach is
to have a separate single CPU scheduler for each CPU, and then have these schedulers steal work from each
other (or foist work on each other).

The framework was originally created to support a lab in real-time systems, and adopts a common
model from that domain.1 You may see the terms “periodic”, “sporadic”, and “aperiodic” in the code and
our discussion. “Aperiodic” refers to non-real-time work, and it is the only form of work you need to be
concerned about in the lab. If you are curious about real-time, there is extra credit you can do.

You may work in a group of up to three people in this lab. Clarifications and revisions will be posted to
the course discussion group.

2 Setup

You can work on this lab on any modern Linux system, although we will test your work on the class
server(s). We will describe the details of how to access the lab repo via github classroom in lecture and
on the discussion group. Use this information to clone the repo. At this point you should will have a
subdirectory named queuelab. If this is on a shared machine, you probably want to mark the directory as
private (chmod 700 queuelab).

Looking in your queuelab directory, you’ll see at least the following files:

• scheduler.[cch] The implementation of the scheduler within the simulator. Currently, it sup-
ports only the simplest conceivable scheduling model. You will extend this.

• job.[cch]: The implementation of a job within the simulator.
1In a real-time system, the user process describes the work to be done and the deadline by which it must be done. If the kernel

accepts the work, the kernel guarantees that the work will be done before its deadline. In case of a soft real-time system, the
guarantee is weak (usually statistical), while in a hard real-time system, the guarantee is ironclad, and it is a failure for the kernel
not to meet a deadline.

1



• jobqeueue.[cch]: The implementation of a job queue (e.g. ready queue) within the simulator.

• event.[cch]: The simulator’s event implementation.

• eventqueue.[cch] The simulator’s event queue implementation.

• context[cch]: The context of the current simulation.

• plot.pl: Tool to plot data as we run.

• queuesim.[cch]: The simulator’s event loop.

• make_arrivals.pl and Gen.pm: These tools create a starting condition for simulation by creat-
ing an initial set of events.

• README: More information.

Please be sure to read the README file.
To compile the lab for the first time:

$ touch .dependencies
$ make depend
$ make

After that, you should be able to recompile just by running make.
This will build the program queuesim (the simulator itself). The simulator needs an input. You

can make these using the make_arrivals.pl command, but we also include a simple one to start it,
e1.txt. To run the simulator using that input file:

$ ./queuesim fifo_all 100 e1.txt

Here fifo_all refers to the scheduler being used (the simplest conceivable model—fifo_all just runs
jobs in the order received without any preemption), 100 refers to the portion of the CPU to dedicate to
non-real-time jobs (100%), and e1.txt is the set of initial events, such as job arrivals.

The command will run the simulation and capture the results. After it is done, if you have graphics
functional, this will pop up a graph showing running information about jobs as a function of time. Next, it
will print the statistics of what the jobs experienced given the scheduler in use. Different schedulers will
produce different behaviors here, especially at high load.

3 Scheduling terminology

queuesim uses the following terminology with regard to the scheduling system it is simulating:

• Job: a job is self-contained chunk of work for the CPU that has a given Arrival Time and Size.2

2The code also uses the term Task. A Task refers to a sequence of jobs and is only relevant to the real-time parts of the system.
Specifically, a Periodic Task produces a sequence of Periodic Jobs that have Arrival Times with a fixed interval between them.
Real-time jobs also have a deadline.

2



• Job Arrival Time: the point in time when a job becomes known to the scheduler. For example, if a
job has an arrival time of 1024 seconds, this means that it becomes available to the scheduler 1024
seconds after the scheduler is booted.

• Job Size: the amount of time on the CPU required to complete the job. For example, a job that has size
12 seconds means that it needs to execute on the CPU for 12 seconds before it is complete. Another
term for this concept is the job service time.

• Job Completion Time: The point in time when a job has run on the CPU for its entire size, and thus is
finished.

• Job Response Time: The difference between a job’s arrival time and its completion time.

• Job Queuing Time: The difference between a job’s response time and its size.

• Job Slowdown: The ratio of a job’s response time to its size.

The event file given to the simulator typically includes a set of job arrivals (each having the time it
occurs, and the job size). Using your scheduler, the simulator computes the completion time of each job,
and thus its response and queuing times, as well as its slowdowns.3

4 Discrete event simulation and queuesim

queuesim is a discrete event simulator. What this means is that instead of simulating the passage of time
directly, it instead jumps from event to event. For example, suppose the current time is 100 and a job of
size 50 arrives. This is represented as a “job arrival” event (for a size 50 job) that occurs at time 100. If
there is no job currently running, the scheduler might decide to immediately run the new job. To do so, it
tells the simulator to post a “job completion” event for time 150. If there is no other event between now
(time 100) and time 150, the simulator can immediately jump to time 150. When the simulator gets that
“job completion” event, it records the response time as being 50, and its slowdown as being 1.

Discrete event simulators are very powerful tools that are widely used in science and engineering.
queuesim is implemented in the usual manner for a discrete event simulator. There is an priority queue,
called the event queue, which stores the events in time order. The simulator main loop simply repeatedly
pulls the earliest event from the queue and passes it to a handler until there are no more events in the queue.
The handler for an event may insert one or more new events into the event queue. A handler can also update
or delete events in the queue. As in the example, the handler for a job arrival might post a new comple-
tion event for itself. As another example, the handler for a timer interrupt event (needed for preemptive
schedulers) might delete the current job’s completion event, put that job to sleep, switch to a different job,
schedule that job’s completion event, and then also schedule a new timer interrupt event.

Getting started with queuesim may be a bit confusing as your scheduler will itself manage queues of
jobs, while the simulator core will manage a queue of events.

The following are the kinds of events that can be placed directly into the input file, out of the box. You
can also place comments into the file—blank lines or those staring with # are ignored. The first set of events
is self-explanatory:

3When real-time tasks and jobs are considered, the simulator will also report on whether these jobs meet their deadlines or not.

3



arrival_time PERIODIC_TASK_ARRIVAL period slice numiters

arrival_time SPORADIC_JOB_ARRIVAL size absolute_deadline

arrival_time APERIODIC_JOB_ARRIVAL size

The first two of these are for real-time tasks and jobs. You can treat these the same as aperiodic jobs unless
you are interested in extra credit. APERIODIC_JOB_ARRIVAL is simply the “job arrival” concept from
before.

The remaining events are for generating output:

arrival_time PRINT_STATS

arrival_time PRINT_JOB_QUEUES

arrival_time PRINT_EVENT_QUEUE

arrival_time PRINT_ALL

arrival_time DISPLAY_QUEUE_DEPTHS

The last of these pops up a gnuplot window with a graph showing the history of the depths of your queues
over time. The simulation will stall until you hit enter.

In addition to the events that can appear in the file, your scheduler may add these three kinds of events
to the queue:

JOB_DONE

JOB_BLOCKED

TIMER Timer interrupt

Your scheduler must implement the following methods:

AcceptanceTestOutput PeriodicTaskArrival(Job *job, SimulationContext *c);

AcceptanceTestOutput SporadicJobArrival(Job *job, SimulationContext *c);

AcceptanceTestOutput AperiodicJobArrival(Job *job, SimulationContext *c);

The idea here is that when a job arrives, your scheduler has the opportunity to veto it. Acceptance testing
periodic tasks and sporadic jobs is an important part of real-time scheduler, but ignored in a non real-time
scheduler. Aperiodic (i.e., non-real-time) jobs are always accepted. Since you are writing non-real-time
schedulers, all of these functions can simply return true.

Your scheduler will also need to implement these functions, which correspond to the events described
earlier:

void JobDone(Job *job, SimulationContext *c);

4



void JobBlocked(Job *job, SimulationContext *c);

void TimerInterrupt(SimulationContext *c);

The SimulationContext gives you access to the event queue (for inserting/modifying/deleting
events) and the scheduler’s queues (which you must maintain).

The output functions, which use the state representation in the SimulationContext class, are han-
dled for you. If you decide to change the representation, you will also need to rewrite these functions.

5 Task 0: Run the code, including single-stepping

Get it, build it, run it on the example input file. Run it again in single-stepping mode (just append single
to the command). Out of the box, everything will be run through the fifo_all scheduler. Make sure you
understand how the event simulator is working, and how this simple default scheduler is implemented.

The fifo_all scheduler is a non-preemptive scheduler applied to all tasks (real-time or not). When a
job arrives, it is placed at the back of the job queue. When a job is complete, the scheduler selects the next
job from the front of the job queue. The job will run to completion—this a non-preemptive scheduler. “fifo”
stands for “first-in, first-out”. Intuitively, this scheduler operates just like standing in line at a grocery store.

6 Task 1: Implement a non-preemptive random scheduler

Your next task is to write your own scheduler, rand_all. rand_all will act just like fifo_all, but
instead of selecting the next job from the front of the job queue, it will select a job from a random position
in the job queue. Every job in the queue is equally likely to be picked.

This may seem like quite a strange policy for a scheduler to have, but it surprising how often “random”
is good or at least useful model in systems. It’s also a good choice in general in the absence of information.

7 Task 2: Implement a non-preemptive shortest job first scheduler

In this task, you will write a scheduler that is actually optimal under certain conditions. The idea of
sjf_all is that when you select the next job, you will choose the one which has the smallest size (shortest
service time).

This policy can be proven to minimize the average response time seen by jobs. It does require that
the size of the jobs be known when they arrive, which is a serious challenge, particularly in a commodity
operating system. The policy can also lead to starvation. Consider what happens if a short job arrives,
followed by a long job, and then a long chain of short jobs.

8 Task 3: Implement a preemptive shortest remaining processing time sched-
uler

Now you will implement your first preemptive scheduler, srpt_all. In a preemptive scheduler, an event
can happen that requires us to pause the currently running job (preempt it), and replace it with some other job.
Eventually, we will resume running the preempted job. srpt_all is the preemptive variant of sjf_all.
It also has a range of desirable properties and is used in a number of contexts.

5



The idea is that each job will have a remaining time associated with it—this is how much time it has
left to run. When a new job arrives, its remaining time is set to the job size (service time). If the new job’s
remaining time is less than the remaining time of the current job, then the current job is preempted by the
new job.

The simulator code for a preemptive scheduler is considerably more complex than for a nonpreemptive
scheduler. In particular, you will need to be able to update or delete events, not just add them.

9 Task 4: Implement a preemptive round-robin scheduler

Next you will build a scheduler that preempts by time. The idea is that you have a hardware device, a timer,
that can invoke the scheduler periodically, not just on job arrivals and completions. To simulate a periodic
hardware timer that operates at 100 Hz (it goes off 100 times per second), you can create a timer event for
the current time plus 1/100. Every time you handle the timer event, you repeat the process, creating a new
timer event for the future.

In your round-robin scheduler, rr_all, whenever the timer goes off, you will pause the current job,
put it at the back of the job queue, and then resume the job at the front of the job queue. Otherwise, it works
like fifo_all

The basic benefits of such a scheduler are that it is simple, assures that all jobs make progress, and
spreads the pain of high load. Suppose you have 10 jobs in your queue and your are working at 100Hz.
Each one runs for 0.01 seconds over every 0.1 second interval. Or, you can think that each one runs 10 times
slower than if it was running alone.

You can see an example of a real round-robin scheduler in NK, if you are curious. Note that the code
will not help you here, and your simulator-based implementation will be much simpler.

10 Task 5: Implement a preemptive lottery scheduler

In this task,you will implement a preemptive scheduler with priorities that are interpreted probabilistically,
lottery_all. This scheduler combines the concepts of task 1 (randomness), task 3 (arrival preemption)
and task 4 (timer preemption). The idea here is that when your timer fires (or there is a new job arrival), you
will create a probability distribution over all the jobs in the job queue, and then select the next job based on
that probability distribution. If there are n jobs, then the probability of picking job i is:

priority(jobi)∑n−1
j=0 priority(jobj)

The simulator does not currently have a notion of priority for aperiodic job arrivals. You can either add one,
or just assign these jobs a random priority on arrival.

You can see an example of a real lottery scheduler in NK, if you are curious. Note that the code will not
help you here, and your simulator-based implementation will be much simpler.

11 Task 6: Evaluate schedulers on supplied workloads

In your final task, you will apply each of your schedulers to several different workloads we will supply later,
and report on the results. In particular, for each workload, we want you to see how the mean and variance
of the response time and slowdown are effected by the choice of scheduler. These metrics are in the last few
lines of the output from queuesim. You will make a table of the results and then comment on the table.

6



12 Grading

Your group should regularly push commits to github. You also should create a file named STATUS in which
you regularly document (and push) what is going on, todos, what is working, etc. Your commits are visible
to us, but not to anyone else outside of your group. The commits that we see up to deadline will constitute
your hand-in of the code. The STATUS file should, at that point, clearly document that state of your lab
(what works, what doesn’t, etc). In addition, you will add and push a file RESULTS which will contain your
evaluation (task 6).

The breakdown in score will be as follows:

• 10% Task 1 rand_all functional and gives reasonable results.

• 10% Task 2 sjf_all functional and gives reasonable results.

• 20% Task 3 srpt_all functional and gives reasonable results.

• 20% Task 4 rr_all functional and gives reasonable results.

• 20% Task 5 lottery_all functional and gives reasonable results.

• 20% Task 6 Evaluation of schedulers. Note that for the comment part there is no right answer—we
want your thoughts.

13 Extra credit

We will allow up to 20% extra credit in this lab. If you would like to do extra credit, please complete the
main part of the lab first, then reach out to the instructor and TAs with a plan. Some possible extra credit
concepts are the following:

• Implement a preemptive earliest deadline first (EDF) scheduling core for use with the periodic and
sporadic real-time tasks. This is also known as a fixed priority scheduler—it guarantees that the
highest priority job is always the one currently running.

• Implement rate-monotonic or utilization-based admission control for periodic and sporadic real-time
tasks that will be scheduled under EDF.

• Implement the classic dynamic priority scheduler from Unix.

7


