
CS 343 Operating Systems, Winter 2022
Getting Started Lab

1 Introduction

In this lab you will get, build, and run an operating system kernel, plus attach a remote debugger to it. This
lab must be done individually. Any clarifications or revisions will be posted to Campuswire.

The purpose of this tiny lab is to make sure that you have everything set up so that you can do class labs.
If you are having problems, please post questions to Campuswire so we can assist you.

2 Task 1: Remote display

You can work on this lab on any modern Linux system, but we strongly suggest you do this lab on our class
server moore.wot.eecs.northwestern.edu first.1

We need you to have remote display capability from the server. There are several ways to do this,
including FastX2, VNC, or X11. We will post more details about this on Campuswire. When you have this
set up, you’ll be able to do something like this:

client> ssh -Y you@server # NOT for FastX
server> emacs &

with the result that a new text editor window pops up on your client. Note that the first line is not needed for
FastX, only X11. In FastX, just open a terminal window in your FastX browser session (click on Red Hat /
Activities, then select terminal icon) — this is server>.

Note: in order for some of the following commands to execute properly, we assume you are using the
bash shell on the server. If you aren’t (and by default you are not), you can start it by running

server> bash

3 Task 2: Setup

We will describe the details of how to access the lab repo via Github classroom in lecture and on Cam-
puswire. You will use this information to clone the assignment repo using a command like this:

server> git clone [ssh-url]

1For students who definitely want to work on their own machines, we will give guidance on Campuswire.
2This is the preferred way to set things up for this quarter. See http://it.eecs.northwestern.edu/info/2020/

09/14/info-labs-fastx.html

1

http://it.eecs.northwestern.edu/info/2020/09/14/info-labs-fastx.html
http://it.eecs.northwestern.edu/info/2020/09/14/info-labs-fastx.html


It is very important that you use the ssh URL (and not the https URL) for this and other labs in the class.3

This will give you the entire codebase and history of the Nautilus kernel framework (“NK”). This is an
actively developed research tool among several institutions, including Northwestern.

4 Task 3: Build it

To start, you will need to configure the kernel:

server> cd [assignment directory cloned from Github]
server> cp configs/cs343-base-config .config

To compile the kernel and produce a bootable disk, do the following in your assignment directory:

server> source ENV
server> make -j 8 isoimage

The end result of this should be a file nautilus.bin, which is the kernel, and nautilus.iso,
which is the bootable disk. Run these commands and capture the results (see Section 7):

server> ls -ltr | tail -5
server> md5sum nautilus.bin

5 Task 4: Run it

To run the kernel in emulation, execute:

server> source ENV
server> ./run

Note: if source ENV fails. You probably forgot to start a bash shell. See Section 2.
You should see a new window pop up, with content that looks like a computer booting. You will also

see a bunch of output (boot messages) show up in the terminal where you ran ./run.
Eventually, the new window will go blue and present you with a prompt that says root-shell> This

is the command prompt of an NK shell. Type the following commands:

root-shell> cpuid 0 3
root-shell> mem fd520 128

The first of these commands shows information about your processor. The second dumps out a part of the
system firmware (the BIOS). Save the results (you will see everything duplicated in the terminal, where it
is easy to copy and paste).

Feel free to play with it more. Type help to see commands. Note that this is not a Linux shell. This is
a minimal interactive interface that is running within NK. You can do anything with full privilege and very
easily nuke the kernel. Try int 0 23 for an easy panic.

3The ssh url will look like git@github.com:... You will need to set up ssh public key authentication for your github
account—and you should learn how to do this in any case. Why no https? Github no longer supports pushes to an https URL, which
is needed to hand things in in this class. If you make a mistake and use the https URL, you don’t need to panic—we can help you
fix this after the fact, but it’s a lot easier to not have to fix it.

2



6 Task 5: Run it with a debugger

In this final task, you will attach gdb to do remote debugging of the kernel. First, while gdb uses a default
port to attach its debugger to, if every student in the class uses the default port, they will all conflict with
each other and the operation will fail. In your assignment directory run:

server> ./mynumber_cs343.pl

That will provide you with a unique number N based on your username that you should use for the following
GDB commands.

Start NK using the run command. While in the blue window, type CTRL-ALT-2. This will switch to a
black screen with a (qemu) prompt. This is a command interface for the emulator on which the kernel is
running. Run

(qemu) gdbserver tcp::N

where N is your unique number. Now type CTRL-ALT-1. This will switch you back to the blue window
(NK). Now, in a separate window on the server, attach to it:

server> gdb nautilus.bin
(gdb) target remote localhost:N

where N is your unique number. Finally, run the following gdb commands and capture what they show:

(gdb) info threads
(gdb) bt
(gdb) x/s 0xfd7fd

The first command shows the hardware threads of the emulated environment on which the kernel is running.
The second shows the the stack trace for the currently selected hardware thread. The last command dumps
out memory at the given address as a string. This string is within the system firmware (BIOS).

7 Submission and grading

To hand in your work, create a file called STATUS in the repo you have checked out from Github classroom.
Place the outputs we told you to capture in Tasks 3, 4, and 5 into this file. Now add the file to your repo,
commit it, and push:

server> git add STATUS
server> git commit -m "Done!"
server> git push

That’s it! We will look at your STATUS file to confirm you’ve successfully completed these steps.
The purpose of this tiny lab is to make sure you have everything in place for future labs. We will help

you do this if you have issues. The grade for this tiny lab is therefore all-or-nothing.

3



8 Other stuff you can do if you are curious

If you got this far, you are done. You don’t need to do anything else. If you’d like to learn more about this
codebase and related concepts, keep reading.

By default, the build infrastructure4 for NK hides the details of the commands it is running. You can see
them by adding V=1 to the command line, like this:

server> source ENV
server> make V=1 clean
server> make V=1 isoimage

NK is a statically configurable codebase, meaning that the developer can choose which pieces are in-
cluded, how various features are configured, and more. You can play with the configuration like this:

server> source ENV
server> make clean
server> make menuconfig

This will show you text-based menus that allow you do change the configuration. Once you are done, you
can run

server> source ENV
server> make isoimage

to build the codebase for your new configuration.
In this class, we will run NK in a specially built version5 of the QEMU system emulator that is installed

on moore. You can also run QEMU on your own machine by installing QEMU. After you install QEMU,
you will run it as in the run script. QEMU creates an emulated machine with whatever options you ask for
(what kind of CPUs, how many, how much memory, different I/O devices, etc) from its command line. The
run script is just using some baseline options.

You can also run NK under a virtual machine monitor, like VMWare or VirtualBox—the nautilus.iso
file is a bootable CD.

If you’d like to live dangerously, you can also try out NK on physical hardware. It should be able to
boot on most PC hardware, though multiple processors and complicated memory systems can challenge
it, and the static configuration has to be compatible with the hardware. One way to do this is to burn
nautilus.iso onto a physical CD and then boot from that. Another is to write nautilus.iso onto a
USB stick (it needs to overwrite the entire stick, not just be a file on the stick), and then boot from that.

If you look at README.md in your NK directory, you will see other information. This is displayed more
pleasingly on the repo page on github.

The structure of the codebase is like this:

• This is a kernel for x64 machines that is written mostly in C, with a bit of x64 assembly. There is
also assorted glue code for C++ and Rust, plus a few other research languages. The idea is to make it
possible write kernel components in those languages.

4It is called KBuild, and is the infrastructure designed for the Linux kernel. It’s used in numerous other codebases as well.
5Our version is “specially built” because we want it to not change/be updated, and because of the graphics part of the Device

Driver Lab, which requires particular components in QEMU to work.

4



• The include directories parallel the src directories. So, for example, include/nautilus/timer.h
is the header file that includes the timer abstraction, while src/nautilus/timer.c is the imple-
mentation of that abstraction.

• The 2nd-level within src largely reflects major components: dev=device drivers; fs=file sys-
tems; gc=garbage collectors; nautilus=core kernel; net=networking; rt=language runtimes;
test=test code.

• Architecture-specific elements are (mostly) in src/arch/[arch]/...

• Assembly is (largely) in src/asm, though there are other .S files in the codebase, plus inline as-
sembler.

5


	Introduction
	Task 1: Remote display
	Task 2: Setup
	Task 3: Build it
	Task 4: Run it
	Task 5: Run it with a debugger
	Submission and grading
	Other stuff you can do if you are curious

