
CS 343 Workload Characterization Dinda

 Page 1 of 5

Workload Characterization

The performance of a given scheduling policy depends on the statistical properties of the
workload that is offered to it. The purpose of this document is to explain some of the
basic concepts used to discuss workloads.

Charactering a measured workload
Ideally, we can either specify a workload of a system directly, but often we can only
measure the workload of an existing system and extrapolate from that to the workload of
the new system.

Workload measurement is outside of the scope of this class. Its output, however, is
simply traces of measured data. It is possible to use the traces directly in designing and
testing the system. However, there is a tradeoff. While a trace is a very accurate
representation of a workload instance, it may not be a good representative of the
workload ensemble (the set of all possible traces). In fact, it must be the case that the
workload is an ergodic process before one long trace is representative of the system.
Few workloads are ergodic. We could use many traces to overcome this issue, but then
we have the complexity of dealing with them whenever we want to test our system.

Typically, we take many traces and summarize them using statistical methods, creating
workload models that we can use to test the system quickly and over a wide range of
workload parameters. Jain1, Chapter 6 covers some of the techniques that are used to
do this summarization.

Periodic, Sporadic, Aperiodic
We adopt the real-time systems terminology of Liu's book2, which classifies tasks
according to these three terms.

Definitions:

• A task is a generator of jobs
• A job has an execution time or service time or size
• A job has a release time or arrival time
• A job may have some sort of timing constraint
• Jobs form a graph whose edges represent dependencies or communication. A

job’s dependencies must be satisfied before it can be run.

Using these definitions, a hard real-time periodic task is deterministic and can be
described as (P,T,S,D), where P is the arrival time of its first job, T is the period between
job arrivals, S is the size of a job, and D is the deadline of a job relative to its arrival time.

1 Raj Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley, 1991.
2 Jane Liu, Real-time Systems, Prentice Hall, 2000.

CS 343 Workload Characterization Dinda

 Page 2 of 5

Many tasks can be fit into this model because we can treat the parameters as upper
bounds.

A sporadic task is one which does not generate periodic jobs. Rather, the interarrival
time between job arrivals is a random variable that is bounded from below. This means
that the jobs of the task cannot arrive too often. Because of this bound, it is possible to
consider these tasks within a convention hard real-time framework.

Liu puts all other kinds of tasks into the aperiodic grab-bag. This grab-bag is what are
scheduled in a general purpose operating system. The purpose of this handout is to
explain the important distinctions that exist in this class of tasks. You can also read Jain,
Chapter 30 to get the classical view of this. The handout focuses on “modern queuing
theory”, post-dating the mid-90s.

Arrival processes
Generally speaking, aperiodic tasks belong in the domain of queuing theory. The goal of
queuing theory is much like that of circuit analysis. Given a queuing network (a system
of queues feeding servers that feed other queues), a scheduling policy for the queues
(simplistically: the order in which jobs are pulled from a queue and fed to its server), and
an arrival process for jobs into the queuing network, queuing theory seeks to give us
analytic expressions for things like the average time of a job in the system, the variance
of the time of a job in the system, and how numbers like this vary as jobs arrive faster (or
are larger). If you’ve taken a circuits theory, you’ll find your old friend Kirchoff is very
important here.

In many cases, it is impossible (or very difficult) to find analytic expressions for
performance characteristics. The ease of finding analytic expressions tends to be highly
dependent on the arrival model.

Note that the term arrival process is intended to invoke stochastic process, a key idea in
statistics, particularly time-series analysis.

A separate handout will summarize some key ideas in queueing theory.

Simplest stochastic arrival process
The simplest stochastic arrival process is one in which job interarrival times3 and the job
sizes are chosen from i.i.d.4 exponential5 distributions. The arrivals look like they are
scattered with uniform randomness over absolute time.

Exponential distributions have a couple of really important things going for them:

• They have finite variance.

3 Having just exponentially distributed interarrival times gives you a Poisson process.
4 Independent, identically distributed. Identically distributed just means that the distribution is not a
function of time. Independent means that the distribution does not depend on its output. Getting one
random variable from it does not tell you anything about what the next one will be.
5 An exponential distribution is characterized entirely by its mean.

CS 343 Workload Characterization Dinda

 Page 3 of 5

• They are memoryless. If X is a random variable from an exponential distribution
and you know that X>z, it doesn’t help you better estimate the probability that
X>2z.

In the queuing theory literature, you will find that the simplest queuing network is an
M/M/1 queue. The “M/M” means “exponential interarrival, exponential job size” and the
“/1” means “a single, infinite capacity queue feeding a single server”. The properties
noted above mean that M/M/1 and, indeed, most queuing networks fed with an “M/M”
arrival process are solvable.

Jain, Chapter 30 goes into much more detail about this.

Unfortunately, such processes are actually quite rare in actual reality.

Power-law job sizes
Suppose that you have a trace of job service times on some system and you plot a
histogram of the service times. You see that histogram decreases quickly. You fit an
exponential curve to the histogram and it seems to fit quite well. You are delighted that
your measurements show a “/M” workload model.

You may well be wrong.

It turns out that job sizes in many contexts actually follow a power-law distribution.
That is, the histogram is likely much better fitted with a function like x-B than e-x, where x
is the job size. If you plot x-B and e-x in linear-linear scale, they look nearly identical, but
this masks several important differences:

• x-B is NOT memoryless
• x-B contains MANY more large jobs than e-x
• x-B has infinite variance

These differences have profound effects on scheduling policies, often completely
changing the answer to high level questions. For example, it makes no sense to migrate
running jobs whose sizes are chosen from an exponential distribution, while it makes a
lot of sense to do so for power-law sized jobs. With exponential jobs, several online
scheduling policies that are optimal for all jobs with respect to average response time lead
to starvation of some jobs, while for power-law jobs, the starvation does not occur.

When looking at a histogram for some trace data, it is important to check for exponential
versus power-law job sizes. If you plot the histogram with a log scale vertical axis and
linear scale horizontal axis, you will see a straight line if you have exponential job sizes.
If you plot it with both axes in log scale, you will see a straight line if you have power-
law job sizes.

We often model a power-law job size distribution with a Pareto distribution. When it is
the case that job sizes are practically limited from above or below, we typically use a
Bounded Pareto distribution.

CS 343 Workload Characterization Dinda

 Page 4 of 5

Analysis of queuing networks with Pareto job sizes, or for that matter, job sizes of any
distribution, is a matter of current research.

Correlated arrivals
Often, we assume exponential interarrival times. We can, of course, model interarrival
times using other distributions. If we do so, however, queuing network analysis
becomes much harder and in many cases is a matter for current research.

A larger issue with interarrival times is the assumption of independence. In practice, it is
very often the case that interarrival times, regardless of their distribution, are not
independent. In other words, the existence of an arrival changes the probability that a
second arrival will occur within some period of time.

Correlated arrivals are often called “bursty”, meaning that arrivals occur in bursts.
Seminal work in networks in the ‘90s showed that bursts not only occur, but that they
occur at all timescales. There are 10 ms bursts, 10 hour bursts, etc. This phenomenon is
often called long-range dependence and is typically explained as (stochastic) self-
similarity because that is the only explanation that avoids nonstationarity, which we
explain shortly.

Interestingly, self-similarity is generated in systems in which power-law-sized jobs are
mixed together. Consider Jain, Chapter 30’s example of an M/M/1 queue as a generator
of Poisson arrivals. An M/G/1 queue is not. With power-law job sizes, such a queue can
be shown to generate correlated, self-similar departures.

Note that, regardless of the arrival distribution or correlation and the job size distribution
or correlation, the number of jobs in a queue is correlated over time. We can make use of
this correlation to decide whether or not to place a job on a particular queue. Correlation
over time is analyzed using an autocorrelation function.

We often need to express correlation using very simple models. One that is common in
networking is the leaky bucket. Here, the idea is that we have a bucket of n bits that
leaks at some rate b. b defines the average rate at which work arrives, while n reflects the
largest burst that can be dumped on the network at once.

More correlations
Just as job arrivals may be correlated over time, job sizes can be correlated over time.
Job sizes could conceivably be correlated with interarrival times. For example, as a user
increases the rate at which he works, the jobs he generates might become smaller in order
to get finished in time.

The most complete characterization of correlation is cointegration, which captures
correlations over time including from job size to interarrival. Cointegration would show

CS 343 Workload Characterization Dinda

 Page 5 of 5

is if, for example, the size of a current job is influenced by the interarrival time of a job
10 jobs ago.

For the most part, not much is known about these more general correlations. If they
exist, an online scheduler could exploit them to improve its performance.

Nonstationarity
In a stationary process, the outputs (job size, interarrival time) vary, but the stochastic
process that produces them does not. Nonstationarity simply means that the stochastic
process itself is a function of time. So, for example, we might have exponential
interarrival times, but the mean of the distribution might increase with time, or abruptly
change from one epoch to the next.

Nonstationarity creates tremendous problems for workload characterization, queuing
network analysis, and system design. For this reason, we often try to avoid it, modeling
systems as being self-similar. However, it is not known how much is lost in doing so. It
is conceivable that nonstationarity has as profound an effect on the answers to
fundamental questions as self-similarity and power-law job sizes did.

For an example of nonstationarity, consider, for example, the Slashdot effect. If a web
page on a particular web server suddenly becomes popular, is the server’s workload
anything like it was before the occurrence?

