
CS 343 Operating Systems, Winter 2025
Producer-Consumer Lab: Concurrency Control

Contents

1 Introduction 2

2 Setup 2

3 Ring buffers 3

4 Task 0: Run the code, including in gdb 3

5 Synchronization primitive concepts 4

6 Task 1: Implement a spinlock 5

7 Task 2: Apply your spinlock for synchronization 6

8 Task 3: Consider interrupts for your spinlock implementation 6

9 Task 4: Repeat tasks 2+3 with a mutex 7

10 Task 5: Repeat tasks 2+3 with semaphores 7

11 Testing your code 8

12 Grading 10

13 Queuing pc-run Jobs 11

14 Extra credit 13

1



1 Introduction

The purpose of this lab is for you to engage with the challenges of concurrency control in the context of an
important problem in every concurrent system: the producer-consumer problem. The framework of the lab,
while user-level, attempts to emulate the environment of a modern kernel, for example Linux.

You may work in a group of up to three people in this lab. Clarifications and revisions will be posted to
the course discussion group.

2 Setup

You can work on this lab on any modern Linux system, although we will test your work on the class server
(Moore) and the Amdahl machines (Section 13). We will describe the details of how to access the lab repo
via Github Classroom on Piazza. Use this information to clone the repo. At this point you should will have
a subdirectory named something like pclab. If this is on a shared machine, you probably want to mark the
directory as private (chmod 700 pclab).

Within the clone repository, there will be three implementation directories each of which contains a copy
of the same starter code:

• atomics.[ch]: A small (and incomplete) set of primitives for concurrency control that are built
on top of hardware mechanisms.

• ring.[ch]: A ring buffer implementation that has no concurrency control and thus will not work
correctly but will do so very fast.

• harness.c: A test harness that evaluates your implementation for correctness and performance.

• Makefile: Makefile for the project.

• README.md: More information. Please read this for more details!

• config.h: Configuration information including DEBUG printing.

You should only make modifications to ring.[ch] and atomics.[ch], as we will use the default
harness.c, config.h, and Makefile when grading.

To compile the lab, with an implementation just run make. This will build the program harness
(the test harness). harness has numerous options, which you can see by running it, but here is a simple
invocation:

$ ./harness 2 4 16 1024

This will create an environment in which there are 2 producer threads feeding 4 consumer threads using a
16 element queue, and then it will operate it for 1024 uses (the producers will push 1024 elements onto the
queue, and the consumers will pull 1024 elements from it). After everything is done, harness will check
for correctness and also tell you the throughput.

Note that, out of the box, there is no synchronization at all and thus the code has numerous race condi-
tions. As a consequence, harness will indicate failure, unless you are very lucky. Harness may even segfault
due to its race conditions.

The harness.c and ring.[ch] makes use of the macro DEBUG for debugging output. It is im-
portant to note that when you do performance testing, this macro needs to be disabled so that no debug

2



output occurs. You can disable debug printing by setting #define DEBUG_OUTPUT 0 in config.h.
It may seem like printing things out is a fast operation, but, in fact, it’s glacial and can severely reduce the
throughput you see here. Make sure that you do not add printf statements, which won’t be disabled, or
else your performance could be severely impacted.1 Only use DEBUG statements.

3 Ring buffers

A ring buffer is a fixed size queue that connects one or more producers with one or more consumers. In
this lab, the elements in the queue are void pointers (void*), meaning that anything can be pushed into the
queue by reference. You can consult ring.h to see the specific details of the interface required of a ring
buffer for this lab, but here are the core operations:

• Push: This pushes one element into the queue, waiting until it is possible to do so.

• Try Push: This pushes one element into the queue, if possible. If not possible, because the queue is
full, it returns immediately.

• Pull: This pulls one element from the queue, waiting until it is possible to do so.

• Try Pull: This pulls one element from the queue, if possible. If not possible, because the queue is
empty, it returns immediately.

As you might guess, producers use Push and Try Push, while consumers use Pull and Try Pull. Note
that the default implementations do not check if there is room in the queue before pushing or items in the
queue before pulling. You’ll do that when implementing waiting.

4 Task 0: Run the code, including in gdb

Get it, build it, run it. Make sure you have a sense for how it works and what is going on.
Run it again in gdb. Learn about gdb’s support for threads and signal handlers. Note that info threads

will show you the threads in the program, while thread 3 will switch to thread 3 of the program. Break-
points and watchpoints apply in all threads and signal handlers.

Note that all the DEBUG statements print to STDERR. Which means that if you are attempting to capture
the output of running harness, it won’t work properly. To save the output to a file, you’ll also need to
redirect STDERR to STDOUT.

For example, in the default tcsh shell you can do:

$ ./harness 2 4 16 1024 >& OUTPUT.txt

Or in a bash shell (or fish from CS211) you can do:

$ ./harness 2 4 16 1024 &> OUTPUT.txt

Yes, it is indeed quite frustrating that they are arbitrarily different.

1You may think that printing something out is a quick thing to do, but while it is quick to you, as a human, it actually takes an
eternity compared to the timescales at which we will work in this lab. Printing something out requires an algorithm to convert to a
human-readable representation, buffering that, and then calling the kernel to actually do output.

3



5 Synchronization primitive concepts

You will implement concurrency control with three different approaches: spinlocks, mutexes, and semaphores.
For the mutex and semaphore approaches, you will use library implementations. The trick will be to use
them correctly. For the spinlock approach, you will build your own (very simple) spinlock implementation
and then use it correctly. We will present the three approaches in the order given above because, for this
problem, a simple spinlock is very easy to implement and use, your mutex solution will look like a variant
of your spinlock solution, and your semaphore solution will be more involved.

A spinlock is an extremely simple concept: it is either locked or not, and when multiple threads try
to lock it at once, only one wins; the other threads wait, spinning (repeatedly trying to lock the spinlock
until they succeed). A spinlock makes direct use of hardware atomic instructions that operate over shared
memory. A critical point is that the kernel and its scheduler are not involved in the implementation of the
spinlock. This is both an advantage and disadvantage. The advantage is that if a thread doesn’t typically have
to wait for long to lock the spinlock, then we avoid an expensive interaction with the kernel/scheduler—the
lock operation involves only a few cycles. The disadvantage is that if a thread has to wait for a long time,
it does so in a very inefficient manner (spinning). This is particularly problematic if the threads are on the
same hardware CPU: Suppose thread A successfully locks the spinlock, then the scheduler context-switches
to thread B, which tries to lock the spinlock. Thread B will now spin uselessly until the scheduler happens
to context-switch back to A and A unlocks the spinlock. Later, the scheduler will happen to context-switch
back to B, which will then be able to lock the spinlock.2 Recall that the scheduler is unaware of the spinlock
by design.

Spinlocks are extremely widely used in kernels, database engines, and parallel language implementa-
tions that target multicore computers (pretty much all computers outside of small embedded systems). They
are sometimes combined in a kernel with the ability to temporarily disable interrupts on the current hardware
CPU. Disabling interrupts stops preemption on the current hardware CPU, while locking the spinlock stops
code on other CPUs from doing so (until we unlock it).

More complex/abstract synchronization primitives are often built on top of spinlocks within the kernel.
It is hard to beat using hardware primitives at the lowest level of abstraction. Spinlocks build on top of the
hardware’s cache coherence and consistency models. There are numerous variants of spinlocks (indeed, a
whole research cottage industry!) beyond the basic spinlock you’ll build that optimize for all sorts of condi-
tions, including efficiency, fairness, etc. You might consider trying alternative spinlock implementations on
your own.

A mutex, which is described in detail in your reading, looks very similar to a spinlock (it has the same
concept of locking and unlocking), but it also interacts with the kernel/scheduler. The basic idea is that
when a mutex cannot be immediately locked, the kernel is invoked. Let’s say thread A currently has the
mutex locked, but thread B is attempting to lock it. The scheduler puts B to sleep waiting on the mutex,
and switches to some other thread.3 When A eventually runs and unlocks the mutex, this invokes the kernel.
The kernel then “wakes up” B and tells it it is has successfully locked the mutex.

In contrast to spinlocks, the disadvantage with mutexes is that locks and unlocks now involve a trip
2By the way, if, in this example, B was an interrupt handler, then B would spin forever because interrupt handlers are not

preemptable by threads; this is a form of deadlock. If this were to happen in a kernel, the watchdog timer would likely fire, leading
to a kernel panic.

3Putting a thread to sleep just means that it is no longer in the set of threads the scheduler will consider for the CPU. Waiting
on the mutex means the thread is put into the set of threads waiting on a unlock of the mutex. Typically, these “sets” are queues,
with the queue of threads waiting on the CPU called the “run queue”, while the queue of threads waiting on some event is called
the “wait queue [for that event]”.

4



through the kernel/scheduler, which makes the “fast” case (an “uncontended lock” or a situation in which
the lock is held for only a tiny period of time) much slower. It also considerably increases the time taken
from when one thread unlocks (“releases the lock”) and another thread locks (“acquires the lock”). The
huge advantage of mutexes is that waiting to lock is now very efficient—instead of spinning, the thread
attempting to lock the mutex is not running at all, leaving room for the thread that currently has the mutex
locked to run (and unlock it!), or for an unrelated thread to run and make better use of the CPU than just
spinning.4 Usually, we think about efficiency in terms of getting useful work done, but it’s important to note
that this is tied to energy efficiency as well. Spinning is among the most energy-consuming things you can
make the hardware do. If the code on your phone, say, does a lot of spinning, the result would be a very hot
phone which is just quickly eating through battery charge to warm your pocket.

A semaphore provides a more abstract synchronization primitive that is often very useful when do-
ing concurrency control that involves counting or signalling. There is much more info in your book on
semaphores, which we will not cover here. The implementation of semaphores you will use in this lab in-
volves interaction with the kernel/scheduler, similar to mutexes, and thus has similar advantages/disadvantages
from a performance perspective. The important idea with the semaphore abstraction is that it might be a
cleaner match to a producer-consumer concurrency control problem. Consider that when a producer pushes
to the ring, it can signal to consumers that a new item is available, while when a consumer pulls from the
queue, it can signal to producers that a new place to put an item is available.

The line between synchronization primitives that do not involve the kernel/scheduler (e.g., spinlocks)
and those that do (e.g, mutex, semaphore, etc) is a bit blurry in a modern kernel. The mutex and semaphore
implementations you will use are built on a kernel feature called futexes that make it possible to build
synchronization primitives that can avoid the kernel/scheduler when possible.

Modern software also makes use of lock-free/wait-free data structures. Here, the basic idea is to use
hardware atomic instructions to directly implement the concurrent data structure (the ring in our case) so that
no separate locking of any kind is needed. That is, we make concurrency control a part of the data structure
design instead of adding it afterwards. An important example in most kernels are “read-copy-update” (RCU)
mechanisms, which basically use the atomic instructions to version-control the data structure. You don’t
need to worry about these for this lab.

6 Task 1: Implement a spinlock

Start off in the spinlock_implementation/ directory.
Your overall job in this lab is to make the ring buffer implementation perform correctly by introducing

synchronization as needed. At the same time, your implementation should strive to minimize performance
impact. That is, you want to achieve the highest possible throughput, while being correct.

To begin with you need to implement a simple spinlock. It is both straightforward to implement and
performs quite well in multicore scenarios. Take a look in atomics.h to see some of the tools you can
work with.

You must build your spinlock using the atomic instructions provided. For this part of the lab you may
not use the pthread or other library synchronization primitives.

4If all threads are currently waiting on events, then the scheduler runs the “idle thread”, which uses a special hardware instruction
(“halt”) to efficiently wait for an interrupt (interrupts are the source of those events, ultimately)

5



7 Task 2: Apply your spinlock for synchronization

Use your spinlock implementation within ring.[ch] to make the four operations described earlier correct
under all conditions involving threads. Note that there are two issues here that need to be solved. First, there
could be a data race between any two threads that are running. Consider what might happen if two threads
attempt to modify the ring buffer concurrently. Second, there is no guarantee about what order producers or
consumers might run in. Consider what might happen if all the producers run for many iterations before any
consumer runs.

8 Task 3: Consider interrupts for your spinlock implementation

Within a kernel, concurrency due to hardware interrupts is unavoidable, and must be dealt with. In some
cases, user-level code faces a similar situation. The user-level analog to an interrupt is a signal. The combi-
nation of signals and threads at user-level exhibits most of the same special concerns that the combination
of interrupts and threads within a kernel does. The harness.c code emulates the kernel environment of
kernel threads and interrupts using preemptable user threads and signals.

A key issue with interrupts and the producer-consumer problem occurs when an interrupt handler can be
a producer or consumer. Consider producers. A producer thread can wait to acquire a lock on the queue, and
wait for the queue to drain enough to make room for new data. Depending on the synchronization primitive,
the way in which it waits may be more or less efficient, but it can wait indefinitely. The thread scheduler can
assure that other threads can make progress. For example, it can switch to the thread that currently holds the
lock, or a consumer thread that will drain the queue.

In contrast, an interrupt handler cannot wait indefinitely. On x64 machines, for example, interrupts are
disabled on entry to the interrupt handler. Even if the programmer reenables them, the interrupt controller
will only allow in interrupts of higher priority than the one currently active. The interrupt handler is also
not a thread, and so is not schedulable. In other words, for the duration of the interrupt handler, nothing else
will happen on the CPU on which the interrupt is running.

Note also that there is an entirely new opportunity for deadlock when interrupt handlers are considered.
If, for example, a thread is holding a simple lock, and then is interrupted by a handler that then needs to
acquire the same lock, the handler will wait forever trying to acquire it.

Your next task is to enhance your solution for synchronizing the ring buffer assuming that producers and
consumers can run within interrupt handlers. You can create this scenario using a command like this:

$ ./harness -i pc -t 100000 2 4 16 1024

As before, this indicates 2 producer threads, 4 consumer threads, a 16 element ring, and 1024 operations.
In addition, both the producer and consumer threads will see interrupts (-i pc), and these will occur at
random points in time with an average of 100000 µs apart. The interrupt handlers will themselves also
produce and consume items using the Try Push and Try Pull interfaces.

Be warned that debugging from within an interrupt context is not always easy. Notably, DEBUG() does
not function correctly in a signal handler. The way printf() works properly across threads is by using
an internal mutex or spinlock, which means that when used in an interrupt/signal handler it could cause a
deadlock!

Your successful interrupt rate is unlikely to reach 100%. However, a good solution will have at least
some successes given enough operations. We will be grading you on correctness, not performance.

6



9 Task 4: Repeat tasks 2+3 with a mutex

For this part of the lab, work in the mutex_implementation/ directory.
In this task, you will use the pthread library implementation of mutexes instead of your implemen-

tation of spinlocks to achieve correct concurrency control for the ring. Your code must be performant and
must handle interrupts.

pthread is huge, but don’t let it daunt you. It’s huge because pthread (POSIX Thread) is a standard
for writing multithreaded programs that is implemented on pretty much all platforms (certainly Linux, Win-
dows, MacOS, ...). As a standard, it’s comprehensive, and is also designed to be implementable in numerous
ways even on unusual platforms.

The pthread mutex is provided in <pthread.h>. It includes the following functions:

• pthread_mutex_init() initializes a mutex as unlocked.

• pthread_mutex_unlock() unlocks a mutex and wakes up a waiting thread (if any).

• pthread_mutex_lock() attempts to lock the mutex and puts the calling thread to sleep if this
cannot be done now.

• pthread_mutex_trylock() attempts to lock the mutex and returns an error if this cannot be
done now.

Two important notes about pthread mutexes. First, when you initialize a mutex, you supply a mu-
tex attribute set. To start just use the default one (pass in NULL). Second, all of the mutex functions re-
turn an int. In standard Unix fashion, a zero return value means success, while a nonzero value means
some sort of failure has occurred. It is important that you check the return values. This is also how
pthread_mutex_trylock() indicates the the mutex could not be locked.

10 Task 5: Repeat tasks 2+3 with semaphores

For this last part of the lab you should work in the semaphore_implementation/ directory.
Now that you’ve implemented the basic solution with both spinlocks and mutexes, your task is to im-

plement a third solution using the semaphore primitive. This solution should follow the general producer-
consumer solution pattern. Three total semaphores should exist: one binary semaphore used as a mutex, one
counting semaphore used for producers, and one counting semaphore used for consumers. Your solution
should be performant and should also handle interrupts as with your other solutions.

You should use the POSIX semaphore implementation provided in <semaphore.h>. It includes the
following functions:

• sem_init() which initializes a semaphore with an initial value.

• sem_post() which increments the value and wakes another thread.

• sem_wait() which decrements the value and possibly blocks the current thread.

• sem_trywait() which checks to see if a decrement would block the thread, and if so returns an
error instead.

7

https://man7.org/linux/man-pages/man3/pthread_mutex_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/sem_init.3.html
https://man7.org/linux/man-pages/man3/sem_post.3.html
https://man7.org/linux/man-pages/man3/sem_wait.3.html
https://man7.org/linux/man-pages/man3/sem_wait.3.html


More details for each of these functions can be found by following the link on their names or generally
at https://man7.org/linux/man-pages/man7/sem_overview.7.html. The “unnamed”
memory-based semaphores are what we will be using.

Two important notes about the semaphore library. First, when initializing the semaphores you should
ensure that they are shared between all threads of the process (pshared should be zero).5 Second, be
aware that sem_wait() can return without succeeding! These spurious wakeups include the occurrence
of a signal, which will happen in this application if interrupts are enabled. Always be sure to check the
return value of sem_wait(), which will return zero on success and non-zero on failure. In the case of a
failure, the internal value will not be modified and your code should simply call sem_wait() again.

You should, hopefully, find that this solution can be far more efficient than a spinlock or mutex alone in
some cases. Unlike the prior solutions, threads in this solution will only contend for the mutex if they are
actually able to perform the desired action. So if there are many threads, this solution will perform better.
Remember that the overhead of using a semaphore is non-zero, so for simple workloads with few threads,
the spinlock or mutex implementations will still win out.

11 Testing your code

For testing the performance of your implementations, we will be using the following tests as well as a few
“secret” ones. We will compare your performance to our relatively naive staff solution and will provide a
large range of acceptable values. Remember that correctness is more important than running fast.

When testing, be sure to disable debugging in config.h. Otherwise the print statements will slow
down your code dramatically.

These commands should usually take 0.1–20 seconds for most of the implementations depending on
the load on the class server. Be careful reading these commands, as the last parameter varies between ten
thousand and a million depending on the test case. Some implementations may take considerably longer
than the expected 20 seconds for some of these tests. If you’re finding that one is taking an extremely long
time, consider the number of producers/consumers and the implementation to determine whether this is
expected or not.

Separate cores This test places each producer and each consumer on their own cores to consider com-
munication between threads. In this version the 2 producer threads will run on CPUs 0 and 1, while the 4
consumer threads will run on CPUs 2 through 5.

$ ./harness -p 2 -c 4 2 4 16 1024

Many to many Creates many producers and many consumers, such that there are several of each on
every CPU.

$ ./harness 100 100 16 100000

One to one Creates only one producer and one consumer. Also limits the ring buffer to a single slot.

$ ./harness 1 1 1 1000000

5The reason behind names, pshared, etc is to allow semaphores to work across processes, not just across threads within one
process. This is a feature that we are not using in this lab.

8

https://man7.org/linux/man-pages/man7/sem_overview.7.html


One to many (Black Friday) Creates one producer but many consumers. The producer is placed on one
core and all consumers share one other core.

$ ./harness -p 1 -c 1 1 200 10 100000

Interrupter Causes frequent interrupts during the producer/consumer exchange.

$ ./harness -i pc -t 1 2 4 16 10000

Note that -t 1 means the mean interval between interrupts is 1 µs, which might lead to livelock on some
systems. You can try with a larger mean interval if you think this is happening to you.

Halfsies Uses all cores on Moore: half for producers and half for consumers.

$ ./harness -p 24 -c 24 24 24 1024 1000000

Important note on sharing the server(s) with your fellow students

As you scale up to more threads, interrupts, and CPUs, it is possible for harness to consume massive
amounts of CPU time, across many or even all CPUs, on the server, slowing everyone down. Even worse,
some implementations of some synchronization primitives can cause the hardware itself to run very slowly
as it works to maintain correctness for the underlying atomic instructions. Some of the testcases/scenarios
we may give you to try out can do this, especially with problematic implementation.

This can look like a “runaway process”. A runaway process is one that is consuming lots of resources
continuously, and never seems to finish. If you have a runaway process, it may affect other students (and
yourself) until it’s been stopped.

Here are some things you can do to prevent runaway processes:

• Periodically run the top command. If you have a harness process high on the list and it’s there for
a long time, you should use the kill <pid> command to kill it. If it doesn’t want to stop, you can
use kill -9 <pid>. “-9” is like “force quit” in MacOS or Windows. The kernel just nukes the
process instead of asking it to stop.

• You might have left harness processes running in the background without realizing it. To kill such
processes, you can run killall -9 harness. This will try to kill every process which is running
an executable named harness. You may get some error messages, but that’s OK—it’s just telling
you it can’t kill processes you don’t own (those of other students).

• You can restrict the amount of time that your harness process is allowed to run. To do this, use the
following.

server> timeout 10 ./harness ...

This will stop (kill) your harness command after 10 seconds.

• You can restrict the total amount of CPU time that your harness process is allowed to run. To do
this, use the following. This requires you to be using the bash shell or similar (not tcsh):

server> ulimit -t 10 # set limit to 10 seconds of CPU time
server> ./harness ..

9



After 10 seconds of CPU time are consumed by harness, it will be killed. ulimit applies to all
child processes of the process in which it is run (your shell), so be careful not to run something
important, like your editor, in the same shell as you’ve run ulimit If you do, it will also be
killed after it accumulates 10 seconds of CPU time.

• You can run your program at a lower priority. To do this:

server> nice -n +20 ./harness ...

(Negative niceness is limited to privileged users.)

In Section 13, we describe how to do runs of your code using a batch system that will send them to the
Amdahl servers. That will allow you to test your code on an Amdahl server without any conflict with any
other code. This will also allow you to do performance evaluation, and compare your performance with
other students, if you choose.

12 Grading

Your group should regularly push commits to Github. You also should create a file named STATUS in which
you regularly document (and push) what is going on, todos, what is working, etc. Your commits are visible
to us, but not to anyone else outside of your group. The commits that we see up to deadline will constitute
your hand-in of the code. The STATUS file should, at that point, clearly document that state of your lab
(what works, what doesn’t, etc). Make sure the STATUS file includes the names and NetIDs of everyone
working on the project.

You will also need to submit your files to Gradescope. To do so, in the root of the repository run:

server> ./submit

That will upload the ring.[ch] and atomics.[ch] files from each implementation to Gradescope
along with your STATUS file. After you submit, you’ll need to mark your group members on your submis-
sion. Unfortunately, you will need to do this each time you submit.

We will test your code on the class servers (moore and amdahls) using similar commands to those given
above, but with different parameters. This will constitute correctness. In each implementation, we will
replace harness.c, config.h, and Makefile with their default initial versions as included in your
starter code. Be sure to only make modifications to ring.[ch] and atomics.[ch]. We will also
disable debug printing when testing your code. Make sure that you do not add printf() statements,
which won’t be disabled, or else your performance could be severely impacted.

The breakdown in score will be as follows:

• 15% Task 1—Functional and sensible implementation of a spinlock synchronization primitive.

• 25% Task 2—Spinlock implementation of ring buffer concurrency that passes concurrency tests that
only involve threads.

• 20% Task 3—Spinlock implementation of ring buffer concurrency that passes concurrency tests that
use both threads and interrupts.

• 10% Task 4—Mutex implementation of ring buffer concurrency that passes concurrency tests that use
both threads and interrupts.

10



• 30% Task 5—Semaphore implementation of ring buffer concurrency that passes concurrency tests
that use both threads and interrupts.

Reasonable performance is expected, but correctness is essential.

13 Queuing pc-run Jobs

In order to evaluate and compare performance in PC Lab, it is only meaningful to measure on a dedicated
machine. We have configured the Amdahl machines in order to support this.

The Amdahl machines are also very different from Moore. Each of these machines has an Intel Xeon
Phi 7210 “Knight’s Landing” processor.6 This processor is unusual in that runs really slowly (just 1.3
GHz), but has 64 physical cores, and 4 hyperthreads per core for a total of 256 logical cores (hyperthreads)!
Additionally, the mechanisms that are used for coherence and consistency on these processors have different
performance characteristics than Moore’s.

We have implemented a queuing system to make sure no two people/groups try to get the same machine
simultaneously. If two groups did get the same machine, then your performance results would be invalid.
All queuing operations are hidden behind the pc-run script, so you do not need to worry about this too
much.7

We have set hard limits on the number of jobs you may be running simultaneously and the number of
jobs you may have in the queue. Notably:

• You may have a maximum of 2 jobs running simultaneously.

• You may have a maximum of 5 jobs total (running and in the queue).

• Your job will run for a maximum of 30 minutes, as measured by the wall time.8

There are three commands you can use:

• scripts/pc-run will let you queue jobs for testing on Amdahl and conducting a performance
evaluation on Amdahl. Note that the command might refuse your job because you currently have too
many running or pending. If it does accept your job, it will give you a job id (a number) to refer to it.

• scripts/pc-lookwill let you see the jobs that you (and everyone) have submitted using pc-run
that are either running or have pending. Pending just means the job is waiting to run. Jobs move from
pending to running in a first-come-first-served manner, sort of like a checkout line at a grocery store.

• scripts/pc-cancel allows you to cancel any of your running or pending jobs. You run the
command with a list of job IDs to cancel. The course staff can cancel any student’s running or
pending jobs.

You can instruct the queuing system to keep the contents of your run after it completes, so you can toy
with the generated program and debug it on Moore, without having to submit another job. Just pass either
the -K (capital K) or the --keep flags.

You can run scripts/pc-run on its own to get a list of its options. Here are some examples:
6Intel names microarchitectures after landmarks in the Hillsboro, Oregon area where they are headquartered.
7If you are curious, we are building on top of the Slurm Workload Manager, which is commonly used in supercomputers and

clusters.

11

https://slurm.schedmd.com/


• scripts/pc-run -n netid1_netid2_netid3 --spinlock
This will submit your spinlock implementation for execution on an Amdahl machine. The system
will run a series of scenarios like those documented in Section 11 and give you back the results. The
netids in the command should reflect your team members.

• scripts/pc-run -n netid1_netid2_netid3 --all
This will submit your all three of your implementations (spinlock, mutex, semaphore) for execution
on an Amdahl machine, using the same scenarios, and give you back the results.

• scripts/pc-run -n netid1_netid2_netid3 --eval -t our_team_name
This will submit all three of your implementations for execution on an Amdahl machine and evaluate
them as before. It will also test our implementation9 alongside yours, and compare performance.

The evaluation run (last bullet point above) will also add your results to a class leaderboard. Only your
team name (and not your netids) will appear on the leaderboard.10

9Our implementations are in ∼cs343lab/HANDOUT. Only our binaries are included (no source code).
10The leaderboard is a work in progress, although the evaluation run already works fine. We will inform you on Piazza when the

leaderboard is ready.

12



14 Extra credit

We will allow up to 20% extra credit in this lab. The amount of extra credit awarded will vary with dif-
ficulty and quality of your implementation. If you would like to do extra credit, please complete the
main part of the lab first, then reach out to the instructor and TAs with a plan. You should implement
your additional mechanism using additional parallel directories to the spinlock_implementation,
mutex_implementation, and semaphore_implementation directories in the handout. Make
sure to add these directories/files to your repo using git add and commit and push often. Document your
extra credit in your STATUS file.

Some possible extra credit concepts are the following:

• Implement other forms of spinlocks and compare. For example, you might implement a ticket lock or
MCS lock.

• Specialize your synchronization for single-producer, single-consumer, single-producer, multiple-consumer,
and/or multiple-producer/single-consumer. Can you make these special cases of the producer-consumer
problem faster?

• Try to optimize for a different machines. You have access to moore, the amdahl machines, hanlon,
finagle, and the “batman” machines.

• Build a synchronized, linked-list-based producer-consumer queue. How do things change if you are
guarding access to a pointer-based data structure instead of an array-based one?

• (Challenging!) Implement a lock-free scheme for the ring buffer. A lock-free data structure does
not use synchronization primitives. Instead, it directly uses atomic primitives to manipulate the data
structure in such a way that no races exist. Even more interestingly, there exist wait-free data structures
which can guarantee that no computation is ever blocked.

• (Challenging!) Build a distributed, work-stealing queuing system. Here, the idea is that each con-
sumer has its own queue. When a producer has a new item, it picks a consumer and pushes the item
into the consumer’s queue. This is called the “initial placement”, and how to choose a good initial
placement without consulting all the consumers is a challenge. A consumer normally just pulls from
its own queue, but if it is empty, the consumer picks a different consumer (which one?!) and pulls
items from that consumer’s queue (this is called “work-stealing”). This model has the advantage that
synchronization is distributed (each queue has its own separate lock, for example), and any contention
for the queues and synchronization (lock contention) is also distributed. These properties make the
approach more scalable. Work-stealing is needed for efficiency—to make sure that it is never the case
that there is work to do but some consumer is idle. This model is much harder to get right than one
with a single queue.

• (Challenging!) On some hardware systems, particularly those that integrate computation into DRAM
memory, there are two categories of CPUs: “host” and “special”. These CPUs all share the same
memory, but the “special” CPUs are not coherent/consistent with each other. Furthermore, “special”
CPUs cannot even communicate with each other, but have to do so via a “host” CPU. Devise a syn-
chronization approach for producer/consumer in which “host” CPUs are the producers and “special”
CPUs are the consumers, and vice-versa. What if we want the “special” CPUs to simultaneously be
producers and consumers for each other?

13


	Introduction
	Setup
	Ring buffers
	Task 0: Run the code, including in gdb
	Synchronization primitive concepts
	Task 1: Implement a spinlock
	Task 2: Apply your spinlock for synchronization
	Task 3: Consider interrupts for your spinlock implementation
	Task 4: Repeat tasks 2+3 with a mutex
	Task 5: Repeat tasks 2+3 with semaphores
	Testing your code
	Grading
	Queuing pc-run Jobs
	Extra credit

