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Homework index

1 Reading assignment . . . . . . . . . . . . . . 45
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Goals for lecture

• Resource representations

• Graph extensions for pre/post-computation and

streaming/pipelining

• Scheduling problem categories

• Overview of scheduling algorithms

– Will initially focus on static scheduling

• Sensor networks
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Processing resource description

• Often table-based

• Price, area

• For each task

– Execution time

– Power consumption

– Preemption cost

– etc.

• etc.

Similar characterization for communication resources

Wise to use process-based
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Communication resource description

• Can use bus-bridge based models for distributed systems

– Some protocols make static analysis difficult

• Wireless models

• System-level design, especially for a single chip, depends on wire

delays!
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Graph extensions
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Allows pipelining and pre/post-computation

In contrast with book, not difficult to use if conversion automated

6

Problem definition

PE 0 PE 1minimize completion time
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• Given a set of tasks,

• a cost function,

• and a set of resources,

• decide the exact time each task will execute on each resource

7

Types of scheduling problems
• Discrete time – Continuous time

• Hard deadline – Soft deadline

• Unconstrained resources – Constrained resources

• Uni-processor – Multi-processor

• Homogeneous processors – Heterogeneous processors

• Free communication – Expensive communication

• Independent tasks – Precedence constraints

• Homogeneous tasks – Heterogeneous tasks

• One-shot – Periodic

• Single rate – Multirate

• Non-preemptive – Preemptive

• Off-line – On-line
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Discrete vs. continuous timing

System-level: Continuous

• Operations are not small integer multiples of the clock cycle

High-level: Discrete

• Operations are small integer multiples of the clock cycle

Implications:

• System-level scheduling is more complicated. . .

• . . . however, high-level also very difficult.

• Can we solve this by quantizing time? Why or why not?
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Hard deadline – Soft deadline

Tasks may have hard or soft deadlines

• Hard deadline

– Task must finish by given time or schedule invalid

• Soft deadline

– If task finishes after given time, schedule cost increased
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Real-time – Best effort

• Why make decisions about system implementation statically?

– Allows easy timing analysis, hard real-time guarantees

• If a system doesn’t have hard real-time deadlines, resources can

be more efficiently used by making late, dynamic decisions

• Can combine real-time and best-effort portions within the same

specification

– Reserve time slots

– Take advantage of slack when tasks complete sooner than

their worst-case finish times
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Unconstrained – Constrained resources

• Unconstrained resources

– Additional resources may be used at will

• Constrained resources

– Limited number of devices may be used to execute tasks
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Uni-processor – Multi-processor

• Uni-processor

– All tasks execute on the same resource

– This can still be somewhat challenging

– However, sometimes in P

• Multi-processor

– There are multiple resources to which tasks may be scheduled

• Usually NP-complete
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Homogeneous – Heterogeneous processors

• Homogeneous processors

– All processors are the same type

• Heterogeneous processors

– There are different types of processors

– Usually NP-complete
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Free – Expensive communication

• Free communication

– Data transmission between resources has no time cost

• Expensive communication

– Data transmission takes time

– Increases problem complexity

– Generation of schedules for communication resources

necessary

– Usually NP-complete
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Independent tasks –

Precedence constraints
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• Independent tasks: No previous execution sequence imposed

• Precedence constraints: Weak order on task execution order
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Homogeneous – Heterogeneous tasks
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• Homogeneous tasks: All tasks are identical

• Heterogeneous tasks: Tasks differ
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One-shot – Periodic

time

• One-shot: Assume that the task set executes once

• Periodic: Ensure that the task set can repeatedly execute at

some period
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Single rate – Multirate

3 copies

2 copies

period = 30 ms

system hyperperiod = 60 ms

time

period = 20 ms

• Single rate: All tasks have the same period

• Multirate: Different tasks have different periods
– Complicates scheduling
– Can copy out to the least common multiple of the periods

(hyperperiod)
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Periodic graphs

period = 20 ms
deadline = 20 ms

3 copies

period = 30 ms
deadline = 40 ms

system hyperperiod = 60 ms

2 copies

time
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Aperiodic/sporadic graphs

• No precise periods imposed on task execution

• Useful for representing reactive systems

• Difficult to guarantee hard deadlines in such systems

– Possible if minimum inter-arrival time known
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Periodic vs. aperiodic

Periodic applications

• Power electronics

• Transportation applications
– Engine controllers
– Brake controllers

• Many multimedia applications
– Video frame rate
– Audio sample rate

• Many digital signal processing (DSP) applications

However, devices which react to unpredictable external stimuli have
aperiodic behavior

Many applications contain periodic and aperiodic components
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Aperiodic to periodic

Can design periodic specifications that meet requirements posed by

aperiodic/sporadic specifications

• Some resources will be wasted

Example:

• At most one aperiodic task can arrive every 50 ms

• It must complete execution within 100 ms of its arrival time
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Aperiodic to periodic

• Can easily build a periodic representation with a deadline and

period of 50 ms

– Problem, requires a 50 ms execution time when 100 ms

should be sufficient

• Can use overlapping graphs to allow an increase in execution

time

– Parallelism required

The main problem with representing aperiodic problems with periodic

representations is that the tradeoff between deadline and period must

be made at design/synthesis time
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Non-preemptive – Preemptive
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• Non-preemptive: Tasks must run to completion

• Ideal preemptive: Tasks can be interrupted without cost

• Non-ideal preemptive: Tasks can be interrupted with cost
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Off-line – On-line

Off-line

• Schedule generated before system execution

• Stored, e.g., in dispatch table. for later use

• Allows strong design/synthesis/compile-time guarantees to be
made

• Not well-suited to strongly reactive systems

On-line

• Scheduling decisions made during the execution of the system

• More difficult to analyze than off-line
– Making hard deadline guarantees requires high idle time
– No known guarantee for some problem types

• Well-suited to reactive systems
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Hardware-software co-synthesis scheduling

Automatic allocation, assignment, and scheduling of system-level

specification to hardware and software

Scheduling problem is hard

• Hard and soft deadlines

• Constrained resources, but resources unknown (cost functions)

• Multi-processor

• Strongly heterogeneous processors and tasks

– No linear relationship between the execution times of a tasks

on processors
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Hardware-software co-synthesis scheduling

• Expensive communication

– Complicated set of communication resources

• Precedence constraints

• Periodic

• Multirate

• Strong interaction between NP-complete

allocation-assignment and NP-complete scheduling problems

• Will revisit problem later in course if time permits
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Behavioral synthesis scheduling

• Difficult real-world scheduling problem

– Not multirate

– Discrete notion of time

– Generally less heterogeneity among resources and tasks

• What scheduling algorithms should be used for these problems?
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Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– RMS

– Multiple costs

• MILP

• Force-directed
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Clock-driven scheduling

Clock-driven: Pre-schedule, repeat schedule

Music box:

• Periodic

• Multi-rate

• Heterogeneous

• Off-line

• Clock-driven
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Weighted round robbin
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Time
Weighted round-robbin: Time-sliced with variable time slots
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List scheduling

• Pseudo-code:

– Keep a list of ready jobs

– Order by priority metric

– Schedule

– Repeat

• Simple to implement

• Can be made very fast

• Difficult to beat quality

33

Priority-driven

• Impose linear order based on priority metric

• Possible metrics

– Earliest start time (EST)

– Latest start time

* Danger! LST also stands for least slack time.

– Shortest execution time first (SETF)

– Longest execution time first (LETF)

– Slack (LFT - EFT)
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List scheduling

• Assigns priorities to nodes

• Sequentially schedules them in order of priority

• Usually very fast

• Can be high-quality

• Prioritization metric is important
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Prioritization

• As soon as possible (ASAP)

• As late as possible (ALAP)

• Slack-based

• Dynamic slack-based

• Multiple considerations
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As soon as possible (ASAP)
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• From root, topological sort on the precedence graph

• Propagate execution times, taking the max at reconverging paths

• Schedule in order of increasing earliest start time (EST)
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As late as possible (ALAP)
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• From deadlines, topological sort on the precedence graph

• Propagate execution times, taking the min at reconverging paths

• Consider precedence-constraint satisfied tasks
– Schedule in order of increasing latest start time (LST)
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Slack-based

• Compute EFT, LFT

• For all tasks, find the difference, LFT − EFT

• This is the slack

• Schedule precedence-constraint satisfied tasks in order of

increasing slack

• Can recompute slack each step, expensive but higher-quality

result

– Dynamic critical path scheduling

39

Multiple considerations

• Nothing prevents multiple prioritization methods from being used

• Try one method, if it fails to produce an acceptable schedule,

reschedule with another method
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Effective release times

• Ignore the book on this

– Considers simplified, uniprocessor, case

• Use EFT, LFT computation

• Example?
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EDF, LST optimality

• EDF optimal if zero-cost preemption, uniprocessor assumed

– Why?

– What happens when preemption has cost?

• Same is true for slack-based list scheduling in absence of

preemption cost
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Breaking EDF, LST optimality

• Non-zero preemption cost

• Multiprocessor

• Why?
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Rate mononotic scheduling (RMS)

• Single processor

• Independent tasks

• Differing arrival periods

• Schedule in order of increasing periods

• No fixed-priority schedule will do better than RMS

• Guaranteed valid for loading ≤ ln2 = 0.69

• For loading > ln2 and < 1, correctness unknown

• Usually works up to a loading of 0.88

• More detail in later lectures
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Reading assignment

• Skim and refer to K. Ramamritham and J. Stankovic, “Scheduling

algorithms and operating systems support for real-time systems,”

Proc. IEEE, vol. 82, pp. 55–67, Jan. 1994

• Skim and refer to Y.-K. Kwok and I. Ahmad, “Static scheduling

algorithms for allocating directed task graphs to multiprocessors,”

ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Finish Chapter 5, read Chapter 6 by Thursday
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