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Goals for lecture
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Resource representations

Graph extensions for pre/post-computation and
streaming/pipelining

Scheduling problem categories

Overview of scheduling algorithms

— Will initially focus on static scheduling

Sensor networks



Processing resource description

Often table-based

Price, area

For each task

— Execution time

— Power consumption
— Preemption cost

— etc.
e etc.
Similar characterization for communication resources

Wise to use process-based



Communication resource description
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* Can use bus-bridge based models for distributed systems

— Some protocols make static analysis difficult
* Wireless models

* System-level design, especially for a single chip, depends on wire
delays!



Graph extensions
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a) conventional ~ b) pre— and post— ¢) streaming
computation

Allows pipelining and pre/post-computation
In contrast with book, not difficult to use if conversion automated



Problem definition
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minimize completion time PE 0 PE 1

Given a set of tasks,
a cost function,
and a set of resources,

decide the exact time each task will execute on each resource
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Problem definition
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Problem definition

minimize completion time

Given a set of tasks,
a cost function,
and a set of resources,

decide the exact time each task will execute on each resource
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Types of scheduling problems

Discrete time — Continuous time

Hard deadline — Soft deadline

Unconstrained resources — Constrained resources
Uni-processor — Multi-processor

Homogeneous processors — Heterogeneous processors
Free communication — Expensive communication
Independent tasks — Precedence constraints
Homogeneous tasks — Heterogeneous tasks
One-shot — Periodic

Single rate — Multirate

Non-preemptive — Preemptive

Off-line — On-line
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Discrete vs. continuous timing
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System-level: Continuous

* Operations are not small integer multiples of the clock cycle
High-level: Discrete

* Operations are small integer multiples of the clock cycle
Implications:

e System-level scheduling is more complicated. . .

* ...however, high-level also very difficult.

* Can we solve this by quantizing time? Why or why not?
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Hard deadline — Soft deadline

Tasks may have hard or soft deadlines

e Hard deadline

— Task must finish by given time or schedule invalid

e Soft deadline

— If task finishes after given time, schedule cost increased
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Real-time — Best effort
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* Why make decisions about system implementation statically?
— Allows easy timing analysis, hard real-time guarantees

* If a system doesn’t have hard real-time deadlines, resources can
be more efficiently used by making late, dynamic decisions

* Can combine real-time and best-effort portions within the same
specification
— Reserve time slots

— Take advantage of slack when tasks complete sooner than
their worst-case finish times
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Unconstrained — Constrained resources
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 Unconstrained resources

— Additional resources may be used at will

e Constrained resources

— Limited number of devices may be used to execute tasks
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Uni-processor — Multi-processor
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* Uni-processor
— All tasks execute on the same resource
— This can still be somewhat challenging

— However, sometimes in P

* Multi-processor

— There are multiple resources to which tasks may be scheduled

e Usually NP-complete
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Homogeneous — Heterogeneous processors
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* Homogeneous processors

— All processors are the same type

* Heterogeneous processors
— There are different types of processors

— Usually NP-complete
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Free — Expensive communication
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e Free communication

— Data transmission between resources has no time cost

* Expensive communication
— Data transmission takes time
— Increases problem complexity

— Generation of schedules for communication resources
necessary

— Usually NP-complete
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Independent tasks —
Precedence constraints
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* Independent tasks: No previous execution sequence imposed

22



Independent tasks —
Precedence constraints
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* Independent tasks: No previous execution sequence imposed

e Precedence constraints: Weak order on task execution order
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Homogeneous — Heterogeneous tasks
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* Homogeneous tasks: All tasks are identical
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Homogeneous — Heterogeneous tasks
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* Homogeneous tasks: All tasks are identical

* Heterogeneous tasks: Tasks differ
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One-shot — Periodic
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e One-shot: Assume that the task set executes once
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One-shot — Periodic
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e One-shot: Assume that the task set executes once

* Periodic: Ensure that the task set can repeatedly execute at
some period
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One-shot — Periodic
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e One-shot: Assume that the task set executes once

* Periodic: Ensure that the task set can repeatedly execute at
some period
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Single rate — Multirate
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time

period = 20 ms

* Single rate: All tasks have the same period

* Multirate: Different tasks have different periods
— Complicates scheduling

— Can copy out to the least common multiple of the periods
(hyperperiod)

28



Single rate — Multirate
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time
e
3 copies
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period = 20 ms

/A >e P period = 30 ms
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2 copies
system hyperperiod = 60 ms

* Single rate: All tasks have the same period

* Multirate: Different tasks have different periods
— Complicates scheduling

— Can copy out to the least common multiple of the periods
(hyperperiod)
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Periodic grap
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time

S

3 copies

2 copies
system hyperperiod = 60 ms
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period = 20 ms
deadline = 20 ms

period = 30 ms
deadline = 40 ms



Periodic grap
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time

S

3 copies
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2 copies

system hyperperiod = 60 ms
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hs

period = 20 ms
deadline = 20 ms

period = 30 ms
deadline = 40 ms



Periodic graphs

— — —— — = . -

T

time

3 copies
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period = 20 ms
deadline = 20 ms

period = 30 ms
deadline = 40 ms

2 copies

system hyperperiod = 60 ms
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Aperiodic/sporadic graphs
* No precise periods imposed on task execution

* Useful for representing reactive systems

* Difficult to guarantee hard deadlines in such systems

— Possible if minimum inter-arrival time known
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Periodic vs. aperiodic
Periodic applications
* Power electronics

* Transportation applications
— Engine controllers
— Brake controllers

* Many multimedia applications
— Video frame rate
— Audio sample rate

* Many digital signal processing (DSP) applications

However, devices which react to unpredictable external stimuli have
aperiodic behavior

Many applications contain periodic and aperiodic components
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Aperiodic to periodic
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Can design periodic specifications that meet requirements posed by
aperiodic/sporadic specifications

* Some resources will be wasted
Example:
* At most one aperiodic task can arrive every 50 ms

* It must complete execution within 100 ms of its arrival time
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Aperiodic to periodic
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* Can easily build a periodic representation with a deadline and
period of 50 ms

— Problem, requires a 50 ms execution time when 100 ms
should be sufficient
e Can use overlapping graphs to allow an increase in execution
time
— Parallelism required
The main problem with representing aperiodic problems with periodic

representations is that the tradeoff between deadline and period must
be made at design/synthesis time
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Non-preemptive — Preemptive

-
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Non-preemptive — Preemptive

non-preempt.

* Non-preemptive: Tasks must run to completion
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Non-preemptive — Preemptive
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non-preempt.

* Non-preemptive: Tasks must run to completion
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Non-preemptive — Preemptive

- - i

non-preempt.

* Non-preemptive: Tasks must run to completion
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Non-preemptive — Preemptive
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* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost
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Non-preemptive — Preemptive
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ideal

non-preempt. N

* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost
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Non-preemptive — Preemptive
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* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost
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Non-preemptive — Preemptive
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* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost
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Non-preemptive — Preemptive
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ideal non-ideal

hon-preempt.  compt. preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost
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Non-preemptive — Preemptive
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ideal non-ideal

hon-preempt.  compt. preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost
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Non-preemptive — Preemptive
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ideal non-ideal
preempt. preempt.

non-preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost
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Non-preemptive — Preemptive

ideal non-ideal
preempt. preempt.

non-preempt.
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* Non-ideal preemptive: Tasks can be interrupted with cost
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Non-preemptive — Preemptive
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preempt. preempt.

non-preempt.
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Non-preemptive — Preemptive
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ideal non-ideal
preempt. preempt.

non-preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost
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Off-line — On-line
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Off-line
* Schedule generated before system execution
* Stored, e.g., in dispatch table. for later use

* Allows strong design/synthesis/compile-time guarantees to be
made

* Not well-suited to strongly reactive systems
On-line
* Scheduling decisions made during the execution of the system

* More difficult to analyze than off-line
— Making hard deadline guarantees requires high idle time
— No known guarantee for some problem types

* Well-suited to reactive systems
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Hardware-software co-synthesis scheduling
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Automatic allocation, assignment, and scheduling of system-level
specification to hardware and software

Scheduling problem is hard
* Hard and soft deadlines
* Constrained resources, but resources unknown (cost functions)
* Multi-processor

* Strongly heterogeneous processors and tasks

— No linear relationship between the execution times of a tasks
ONn processors
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Hardware-software co-synthesis scheduling
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Expensive communication

— Complicated set of communication resources
Precedence constraints

Periodic

Multirate

Strong interaction between NP-complete
allocation-assignment and NP-complete scheduling problems

Will revisit problem later in course if time permits
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Behavioral synthesis scheduling
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* Difficult real-world scheduling problem
— Not multirate
— Discrete notion of time

— Generally less heterogeneity among resources and tasks

* What scheduling algorithms should be used for these problems?
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Clock
Weighted round-robbin
List scheduling

Priority

— EDF, LST
— Slack

— RMS

— Multiple costs
MILP

Force-directed

Scheduling methods
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Clock-driven scheduling
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Clock-driven: Pre-schedule, repeat schedule
Music box:

e Periodic

Multi-rate

Heterogeneous

Off-line

Clock-driven
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Welighted round robbin

Time

Weighted round-robbin: Time-sliced with variable time slots
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List scheduling

Pseudo-code:

— Keep a list of ready jobs
— Order by priority metric
— Schedule

— Repeat

Simple to implement
Can be made very fast

Difficult to beat quality

99



Priority-driven

* Impose linear order based on priority metric

* Possible metrics
— Earliest start time (EST)

— Latest start time

«» Danger! LST also stands for least slack time.
— Shortest execution time first (SETF)
— Longest execution time first (LETF)

— Slack (LFT - EFT)
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List scheduling
Assigns priorities to nodes
Sequentially schedules them in order of priority
Usually very fast

Can be high-quality

Prioritization metric is important
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Prioritization
As soon as possible (ASAP)
As late as possible (ALAP)
Slack-based

Dynamic slack-based

Multiple considerations
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As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)
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As soon as possible (ASAP)

* From root, topological sort on the precedence graph
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As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)
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As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)
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As soon as possible (ASAP)

max(7, 11)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)
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As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)
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As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)
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As late as possible (ALAP)
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* From deadlines, topological sort on the precedence graph

* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)

deadline = 20

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)

deadline = 20

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
/9\6/789

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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As late as possible (ALAP)
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* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)
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Slack-based

Compute EFT, LFT
For all tasks, find the difference, LFT — EFT
This Is the slack

Schedule precedence-constraint satisfied tasks in order of
Increasing slack

Can recompute slack each step, expensive but higher-quality
result

— Dynamic critical path scheduling
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Multiple considerations
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* Nothing prevents multiple prioritization methods from being used

* Try one method, if it fails to produce an acceptable schedule,
reschedule with another method

86



Effective release times
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* Ignore the book on this

— Considers simplified, uniprocessor, case
 Use EFT, LFT computation

* Example?
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EDF, LST optimality

* EDF optimal if zero-cost preemption, uniprocessor assumed
— Why?

— What happens when preemption has cost?

* Same is true for slack-based list scheduling in absence of
preemption cost

88



Breaking EDF, LST optimality
. No;l-ze_ro preempti;n cost | . |

* Multiprocessor

* Why?
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Rate mononotic scheduling (RMS)
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Single processor

Independent tasks

Differing arrival periods

Schedule in order of increasing periods

No fixed-priority schedule will do better than RMS
Guaranteed valid for loading < In2 = 0.69

For loading > In2 and < 1, correctness unknown
Usually works up to a loading of 0.88

More detail in later lectures
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Reading assignment

Skim and refer to K. Ramamritham and J. Stankovic, “Scheduling
algorithms and operating systems support for real-time systems,’
Proc. IEEE, vol. 82, pp. 55—67, Jan. 1994

Skim and refer to Y.-K. Kwok and |. Ahmad, “Static scheduling
algorithms for allocating directed task graphs to multiprocessors,”
ACM Computing Surveys, vol. 31, no. 4, pp. 406—471, 1999

J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,
NJ, 2000

Finish Chapter 5, read Chapter 6 by Thursday
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