Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science
Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda

Office: L477 Tech 338, 1890 Maple Ave.

=k dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467—-2298 467-7859

Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

- — _—

1 Reading assignment

Homework index

 —

91

Goals for lecture

- - — s ——

Resource representations

Graph extensions for pre/post-computation and
streaming/pipelining

Scheduling problem categories

Overview of scheduling algorithms

— Will initially focus on static scheduling

Sensor networks

Processing resource description

Often table-based

Price, area

For each task

— Execution time

— Power consumption
— Preemption cost

— etc.
e etc.
Similar characterization for communication resources

Wise to use process-based

Communication resource description

- - i

* Can use bus-bridge based models for distributed systems

— Some protocols make static analysis difficult
* Wireless models

* System-level design, especially for a single chip, depends on wire
delays!

Graph extensions

a —— — —_ — —= i g— -

9 kb

a) conventional ~ b) pre— and post— ¢) streaming
computation

Allows pipelining and pre/post-computation
In contrast with book, not difficult to use if conversion automated

Problem definition

— e — —— — — . — -

ﬂﬂ!ﬂ

 Given a set of tasks,

Problem definition

“nﬂﬂ

minimize completion time

 Given a set of tasks,

e a cost function,

Problem definition

e s — — “—— = W i .

ﬂﬂ!ﬂ

minimize completion time PE 0 PE 1

 Given a set of tasks,
e a cost function,

e and a set of resources,

Problem definition

e s — — “—— = W i .

~anp=
\

minimize completion time PE 0 PE 1

Given a set of tasks,
a cost function,
and a set of resources,

decide the exact time each task will execute on each resource

10

Problem definition

i p— — e EE N =1 e — -

~ooge

minimize completion time PE 0

Given a set of tasks,
a cost function,
and a set of resources,

decide the exact time each task will execute on each resource

11

Problem definition

— e — —— e EE N =1 i, if— -

“nﬂﬂ

minimize completion time

Given a set of tasks,
a cost function,
and a set of resources,

decide the exact time each task will execute on each resource

12

Problem definition

minimize completion time

Given a set of tasks,
a cost function,
and a set of resources,

decide the exact time each task will execute on each resource

13

Types of scheduling problems

Discrete time — Continuous time

Hard deadline — Soft deadline

Unconstrained resources — Constrained resources
Uni-processor — Multi-processor

Homogeneous processors — Heterogeneous processors
Free communication — Expensive communication
Independent tasks — Precedence constraints
Homogeneous tasks — Heterogeneous tasks
One-shot — Periodic

Single rate — Multirate

Non-preemptive — Preemptive

Off-line — On-line

14

Discrete vs. continuous timing

- = _— & e

System-level: Continuous

* Operations are not small integer multiples of the clock cycle
High-level: Discrete

* Operations are small integer multiples of the clock cycle
Implications:

e System-level scheduling is more complicated. . .

* ...however, high-level also very difficult.

* Can we solve this by quantizing time? Why or why not?

15

Hard deadline — Soft deadline

Tasks may have hard or soft deadlines

e Hard deadline

— Task must finish by given time or schedule invalid

e Soft deadline

— If task finishes after given time, schedule cost increased

16

Real-time — Best effort

- - - = e ——

* Why make decisions about system implementation statically?
— Allows easy timing analysis, hard real-time guarantees

* If a system doesn’t have hard real-time deadlines, resources can
be more efficiently used by making late, dynamic decisions

* Can combine real-time and best-effort portions within the same
specification
— Reserve time slots

— Take advantage of slack when tasks complete sooner than
their worst-case finish times

17

Unconstrained — Constrained resources

- — s ——

 Unconstrained resources

— Additional resources may be used at will

e Constrained resources

— Limited number of devices may be used to execute tasks

18

Uni-processor — Multi-processor

. e & = . —

* Uni-processor
— All tasks execute on the same resource
— This can still be somewhat challenging

— However, sometimes in P

* Multi-processor

— There are multiple resources to which tasks may be scheduled

e Usually NP-complete

19

Homogeneous — Heterogeneous processors

- - _ & - - i

* Homogeneous processors

— All processors are the same type

* Heterogeneous processors
— There are different types of processors

— Usually NP-complete

20

Free — Expensive communication

- - —

e Free communication

— Data transmission between resources has no time cost

* Expensive communication
— Data transmission takes time
— Increases problem complexity

— Generation of schedules for communication resources
necessary

— Usually NP-complete

21

Independent tasks —
Precedence constraints

= ol — S — e e

e
e &

* Independent tasks: No previous execution sequence imposed

22

Independent tasks —
Precedence constraints

@/ \@
AW
@

* Independent tasks: No previous execution sequence imposed

e Precedence constraints: Weak order on task execution order

23

Homogeneous — Heterogeneous tasks

B - — - e —

/\
\

* Homogeneous tasks: All tasks are identical

24

Homogeneous — Heterogeneous tasks

B - — - e —

/\
\

* Homogeneous tasks: All tasks are identical

* Heterogeneous tasks: Tasks differ

25

One-shot — Periodic

- - - S — i

time
—

=

e One-shot: Assume that the task set executes once

26

One-shot — Periodic

- - — — — e — -

time

é

Py v P

e One-shot: Assume that the task set executes once

* Periodic: Ensure that the task set can repeatedly execute at
some period

27

One-shot — Periodic

s — —_— — - i g— -

time

ﬁ

Py v P

e One-shot: Assume that the task set executes once

* Periodic: Ensure that the task set can repeatedly execute at
some period

28

Single rate — Multirate

- - —

time

period = 20 ms

* Single rate: All tasks have the same period

* Multirate: Different tasks have different periods
— Complicates scheduling

— Can copy out to the least common multiple of the periods
(hyperperiod)

28

Single rate — Multirate

_— — e

time
e
3 copies

/\/_/\

period = 20 ms

/A >e P period = 30 ms

N —~—

2 copies
system hyperperiod = 60 ms

* Single rate: All tasks have the same period

* Multirate: Different tasks have different periods
— Complicates scheduling

— Can copy out to the least common multiple of the periods
(hyperperiod)

30

Periodic grap

—_ — = = —

time

S

3 copies

2 copies
system hyperperiod = 60 ms

31

hs

period = 20 ms
deadline = 20 ms

period = 30 ms
deadline = 40 ms

Periodic grap

e oo i s e

time

S

3 copies

/_\J\/\

2 copies

system hyperperiod = 60 ms

32

hs

period = 20 ms
deadline = 20 ms

period = 30 ms
deadline = 40 ms

Periodic graphs

— — —— — = . -

T

time

3 copies

/_\J\/\

period = 20 ms
deadline = 20 ms

period = 30 ms
deadline = 40 ms

2 copies

system hyperperiod = 60 ms

33

Aperiodic/sporadic graphs
* No precise periods imposed on task execution

* Useful for representing reactive systems

* Difficult to guarantee hard deadlines in such systems

— Possible if minimum inter-arrival time known

34

Periodic vs. aperiodic
Periodic applications
* Power electronics

* Transportation applications
— Engine controllers
— Brake controllers

* Many multimedia applications
— Video frame rate
— Audio sample rate

* Many digital signal processing (DSP) applications

However, devices which react to unpredictable external stimuli have
aperiodic behavior

Many applications contain periodic and aperiodic components

35

Aperiodic to periodic

- - e e ———

Can design periodic specifications that meet requirements posed by
aperiodic/sporadic specifications

* Some resources will be wasted
Example:
* At most one aperiodic task can arrive every 50 ms

* It must complete execution within 100 ms of its arrival time

36

Aperiodic to periodic

- - e e ———

* Can easily build a periodic representation with a deadline and
period of 50 ms

— Problem, requires a 50 ms execution time when 100 ms
should be sufficient
e Can use overlapping graphs to allow an increase in execution
time
— Parallelism required
The main problem with representing aperiodic problems with periodic

representations is that the tradeoff between deadline and period must
be made at design/synthesis time

37

Non-preemptive — Preemptive

-

38

Non-preemptive — Preemptive

non-preempt.

* Non-preemptive: Tasks must run to completion

39

Non-preemptive — Preemptive

- - i

non-preempt.

* Non-preemptive: Tasks must run to completion

40

Non-preemptive — Preemptive

- - i

non-preempt.

* Non-preemptive: Tasks must run to completion

41

Non-preemptive — Preemptive

- - —

Aready--------- - m _____________
BliE acy e Rl T T
B deadline- 'i'/'/ -------------------------
A deadline------------"-"""-"-""-""-"-"-"--"--~----
non-preempt CEEL
on-p PL- " breempt.

* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost

42

Non-preemptive — Preemptive

- - —

ideal

non-preempt. N

* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost

43

Non-preemptive — Preemptive

- - —

ideal

non-preempt. N

* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost

44

Non-preemptive — Preemptive

- - —

ideal

non-preempt. N

* Non-preemptive: Tasks must run to completion

* Ideal preemptive: Tasks can be interrupted without cost

45

Non-preemptive — Preemptive

- - —

ideal non-ideal

hon-preempt. compt. preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost

46

Non-preemptive — Preemptive

- - —

ideal non-ideal

hon-preempt. compt. preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost

47

Non-preemptive — Preemptive

- - —

ideal non-ideal
preempt. preempt.

non-preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost

48

Non-preemptive — Preemptive

ideal non-ideal
preempt. preempt.

non-preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost

49

Non-preemptive — Preemptive

ideal non-ideal
preempt. preempt.

non-preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost

50

Non-preemptive — Preemptive

- - - —

ideal non-ideal
preempt. preempt.

non-preempt.

* Non-preemptive: Tasks must run to completion
* Ideal preemptive: Tasks can be interrupted without cost

* Non-ideal preemptive: Tasks can be interrupted with cost

51

Off-line — On-line

- - o

Off-line
* Schedule generated before system execution
* Stored, e.g., in dispatch table. for later use

* Allows strong design/synthesis/compile-time guarantees to be
made

* Not well-suited to strongly reactive systems
On-line
* Scheduling decisions made during the execution of the system

* More difficult to analyze than off-line
— Making hard deadline guarantees requires high idle time
— No known guarantee for some problem types

* Well-suited to reactive systems

52

Hardware-software co-synthesis scheduling

- - - _— & - - i

Automatic allocation, assignment, and scheduling of system-level
specification to hardware and software

Scheduling problem is hard
* Hard and soft deadlines
* Constrained resources, but resources unknown (cost functions)
* Multi-processor

* Strongly heterogeneous processors and tasks

— No linear relationship between the execution times of a tasks
ONn processors

53

Hardware-software co-synthesis scheduling

- - - _— & - - i

Expensive communication

— Complicated set of communication resources
Precedence constraints

Periodic

Multirate

Strong interaction between NP-complete
allocation-assignment and NP-complete scheduling problems

Will revisit problem later in course if time permits

54

Behavioral synthesis scheduling

- e e ———

* Difficult real-world scheduling problem
— Not multirate
— Discrete notion of time

— Generally less heterogeneity among resources and tasks

* What scheduling algorithms should be used for these problems?

55

Clock
Weighted round-robbin
List scheduling

Priority

— EDF, LST
— Slack

— RMS

— Multiple costs
MILP

Force-directed

Scheduling methods

56

Clock-driven scheduling

- - il — —

Clock-driven: Pre-schedule, repeat schedule
Music box:

e Periodic

Multi-rate

Heterogeneous

Off-line

Clock-driven

57

Welighted round robbin

Time

Weighted round-robbin: Time-sliced with variable time slots

58

List scheduling

Pseudo-code:

— Keep a list of ready jobs
— Order by priority metric
— Schedule

— Repeat

Simple to implement
Can be made very fast

Difficult to beat quality

99

Priority-driven

* Impose linear order based on priority metric

* Possible metrics
— Earliest start time (EST)

— Latest start time

«» Danger! LST also stands for least slack time.
— Shortest execution time first (SETF)
— Longest execution time first (LETF)

— Slack (LFT - EFT)

60

List scheduling
Assigns priorities to nodes
Sequentially schedules them in order of priority
Usually very fast

Can be high-quality

Prioritization metric is important

61

Prioritization
As soon as possible (ASAP)
As late as possible (ALAP)
Slack-based

Dynamic slack-based

Multiple considerations

62

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

63

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

64

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

65

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

66

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

67

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

68

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

69

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

70

As soon as possible (ASAP)

max(7, 11)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

71

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

72

As soon as possible (ASAP)

* From root, topological sort on the precedence graph
* Propagate execution times, taking the max at reconverging paths

* Schedule in order of increasing earliest start time (EST)

73

As late as possible (ALAP)

2
/

~ 2
0

\
0-0-0

* From deadlines, topological sort on the precedence graph

* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

74

As late as possible (ALAP)

2
/

deadline = 20

\
0-0-0

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

75

As late as possible (ALAP)

2
/

deadline = 20

\e/’fse

\
0-0-0

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

76

As late as possible (ALAP)

deadline = 20

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

77

As late as possible (ALAP)

deadline = 20

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

78

As late as possible (ALAP)
/9\6/789

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

78

As late as possible (ALAP)

- -

deadline = 20
e\m:(1 2, 23) e
/ e/’f 8

0-0 =

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

80

As late as possible (ALAP)
/0\6/789

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

81

As late as possible (ALAP)

‘/"9\6/789

0-0 =

deadline = 37

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

82

As late as possible (ALAP)

‘/"9\6/789

20
\e 34

deadline = 37

- -

— \25
min(7, 22)

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

83

As late as possible (ALAP)

‘/"9\6/789

20
\e 34

deadline = 37

- -

\Ei

7

* From deadlines, topological sort on the precedence graph
* Propagate execution times, taking the min at reconverging paths

* Consider precedence-constraint satisfied tasks
— Schedule in order of increasing latest start time (LST)

84

Slack-based

Compute EFT, LFT
For all tasks, find the difference, LFT — EFT
This Is the slack

Schedule precedence-constraint satisfied tasks in order of
Increasing slack

Can recompute slack each step, expensive but higher-quality
result

— Dynamic critical path scheduling

85

Multiple considerations

- - —

* Nothing prevents multiple prioritization methods from being used

* Try one method, if it fails to produce an acceptable schedule,
reschedule with another method

86

Effective release times

- - il — —

* Ignore the book on this

— Considers simplified, uniprocessor, case
 Use EFT, LFT computation

* Example?

87

EDF, LST optimality

* EDF optimal if zero-cost preemption, uniprocessor assumed
— Why?

— What happens when preemption has cost?

* Same is true for slack-based list scheduling in absence of
preemption cost

88

Breaking EDF, LST optimality
. No;l-ze_ro preempti;n cost | . |

* Multiprocessor

* Why?

89

Rate mononotic scheduling (RMS)

- — s ——

Single processor

Independent tasks

Differing arrival periods

Schedule in order of increasing periods

No fixed-priority schedule will do better than RMS
Guaranteed valid for loading < In2 = 0.69

For loading > In2 and < 1, correctness unknown
Usually works up to a loading of 0.88

More detail in later lectures

90

Reading assignment

Skim and refer to K. Ramamritham and J. Stankovic, “Scheduling
algorithms and operating systems support for real-time systems,’
Proc. IEEE, vol. 82, pp. 55—67, Jan. 1994

Skim and refer to Y.-K. Kwok and |. Ahmad, “Static scheduling
algorithms for allocating directed task graphs to multiprocessors,”
ACM Computing Surveys, vol. 31, no. 4, pp. 406—471, 1999

J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,
NJ, 2000

Finish Chapter 5, read Chapter 6 by Thursday

91

