
ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 1 of 11

Windows CE Programming For Pocket PC
In A Nutshell

This document tries to explain in a small number of pages the essentials of the Windows
application model on Windows, particularly Windows CE on the Pocket PC platform.
More specifically, the course uses Windows Mobile 2003 as running on the HP IPAQ
4150, 4350, and 5550 Pocket PCs.

What the heck is Windows CE?
The core Windows API at this point in time is called Win32. A 64 bit version of the
Windows API is in the works. There are currently three extant Windows operating
systems and one dead version

• Dead 16 bit versions. These include Windows 1.0 (1985) through Windows 3.1
(1992). These support a version of the Windows API called Win16. In many
ways, the core Windows application model has not changed much since those
days.

• Dying 32 bit versions. These include Windows 95, 98, and ME. They support
Win32, but are largely transitional at this point in time.

• Extant 32 bit versions. These include NT (1992-2000), 2000, XP, and the next
version of NT, whatever it will be called. Note that Embedded Windows XP is
basically just XP but can be custom-configured for specific uses.

• Windows CE. A version of windows designed for use in embedded systems that
are very small and require real-time behavior. CE is wildly customizable and
targets several different processors. There is a tool called Platform Builder which
lets you create a custom CE build for a specific device. The Pocket PC system
(aka Windows Mobile) is a custom CE build combined with device drivers for the
relatively standardized Pocket PC hardware and other services.

Unlike the others, Windows CE is a real-time operating system, giving the following
properties:

• Bounded interrupt service time. We can, at least in principle, determine the
worst-case running time of any event or combination of events in the system.

• Fixed priority scheduler. Each thread, including in-kernel threads, runs at
particular priority level, and the highest priority runnable thread is always the one
that is run.

• Priority inheritance to defeat priority inversion.

Note that because CE has these properties, it is possible to build a hard real-time system
on top of it. However, it does not mean it is easy. For example, since the device drivers
created for Pocket PC are proprietary, we do not know the bounds.

It is important to note that CE does not implement the full Win32 API, only about half of
it in terms of API functions. Various API functions have parameters that are ignored.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 2 of 11

It’s generally pretty easy to take a C or C++ Windows CE program and recompile it (with
some changes) for use on, say, XP. This makes for a convenient debugging approach. If
there is something you don’t understand and the CE debugger is not helping, you might
want to move it to XP and use the more power facilities there. Moving programs that
exploit the full Win32 API to CE is much harder.

What is “dot net” ?
You may have heard a lot of news about “.NET” and in particular the “.NET Compact
Framework” for Pocket PC, Windows CE, SPOT, and others. On a small device, it’s
easiest to think of .NET as language level virtual machine with a just-in-time (JIT)
compiler combined with a large library and a run-time system that resembles an operating
system. What this means is that you can write a program in any language, compile it
down to the .NET stack machine architecture. That program can then be run on any
system, including a pocket pc, as long as the program only uses run-time system services
and the library functions that are implemented on the system. The JIT compiler will
translate frequently used code paths into native code on the underlying machine,
eventually resulting in the program running at near-native speeds. The “.NET Compact
Framework” implements a subset of the full services and library functions.

Although the .NET Compact Framework runs on top of Windows CE and is installed on
your Pocket PCs, we will not be using it for our projects because it does not provide the
core properties shown above to applications. In other words, although it runs on top of
this real-time operating system, it itself does not provide real-time properties to its
applications. This may change, particularly as .NET is being pushed into smaller and
smaller devices (look for “SPOT” if you’re interested), more and more languages are
ported to it, and non-Microsoft implementations such as Mono become common.

What about QNX/Linux/etc?
Although QNX, Linux, and others have been ported, particularly to early Pocket PCs, and
there is no reason to believe that they could not be ported to modern Pocket PCs, we are
unaware of any modern ports. We investigated QNX pretty thoroughly, for example.
Linux is not currently a real-time operating system, and extensions that do provide the
properties noted above require that programmers essentially develop at the kernel module
level, which erases much of the allure of Linux.

What about uC/OS-II, eCos, Fusion, etc.?
These presently don’t support Pocket PCs and their peripherals as well as Windows CE.
You’ll have the opportunity to work with a light-weight real-time embedded systems in
the Motes lab assignments.

What’s in a Pocket PC?
Pocket PCs are based on the ARM series of 32 bit low power processors, lately called
Intel XScale. Although they typically run at 400 MHz, these processors are really only
about as fast as a mid ‘90s Pentium (Pentium “one”). The typical Pocket PC has 64 MB
of RAM, of which a program typically can use about 32 MB. Again, this is quite
constrained compared to a modern PC. The Pocket PCs you will use in this class have

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 3 of 11

802.11b and Bluetooth wireless radio network interfaces as well as infrared optical
network interfaces. They also have stereo sound out output (speaker and headphone
jack) and monophonic sound input (microphone only). The display screen is a touch-
sensitive 240x320 LCD, about 1/25 as many pixels as a modern desktop display.

To install new programs or debug a program on pocket pc, it must be docked with a
desktop PC running ActiveSync.

Compiler toolchain
To program a Windows CE application, one can use either Embedded Visual C++ or
Visual Studio .NET. EVC++ lets us create native code that directly uses the Win32 API
as implemented by Windows CE. VS.N creates .NET stack machine code that uses the
.NET API. We will be using EVC++ in this course. The two toolchains look very
similar, having a friendly, project-oriented graphical interface that is built on top of
command-line tools.

At the lowest level that we will use, a windows application is a C or C++ program that
directly calls the Win32 C API. Microsoft also has a venerable C++ class library called
MFC that can be used to ease development. We will not be using more recent extensions
such as ATL or COM components.

An important feature of EVC++ is that it can write code for you. When programming
Win32 directly or via MFC, EVC++ can automatically generate an initial skeleton for
your application and then create new code for you as you add dialog boxes or new
windows messages. This is also a wonderful learning aid.

Win32’s philosophy
The Win32 API is massive, but a typical program will only use a few dozen functions
and most of those involve drawing. If you’re familiar with Unix programming, you
should be aware that Win32 has a few philosophical differences

• Windows was designed for graphical (GUI or WIMP as you like) programs from
the ground up.

• The GUI features and basic OS features are intertwined in Windows, while on
Unix, X is quite separate from the kernel.

• Everything is not a file in Windows.
• A Windows HANDLE is not really a file descriptor despite what it looks like.
• Creating a process is very expensive. There is no fork and emulating one has an

exorbitant cost. Threads are relatively cheap and work in only one way.
• Where the Unix way is to have a simple orthogonal API (e.g., the near-

universality of open/read/write/seek/close) with all the infrequently used stuff
hidden (e.g., the horror that is ioctl), the Windows way is to have clearly visible
(and different!) function call for each operation on each kind of object. While
people can argue about this forever, the upshot is that some things that are
straightforward in one OS become extremely painful in the other and vice versa.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 4 of 11

High-level application model
A single-threaded Windows application makes progress by receiving and processing
messages sent to it by the operating system, other applications, or itself. Each message is
typically bound for a window the application has open. The whole system’s windows are
arranged in a tree that reflects their containment relationship. Even controls are
windows. For example, the OK button in a dialog box is a window. You may want to
play with the spy++ application to see your window tree.

Each window has associated with it a window procedure1, which is typically a giant
switch statement that processes the messages the window cares about and passes the
remainder back to the system for default processing. A message bound for a particular
window may either be delivered directly to the window procedure (i.e., the system can
call the window procedure) or indirectly by queuing it for the application which then will
dequeue the message and invoke the window procedure. The queue is sorted by priority.

In a single-threaded application, or one in which only a single thread handles the GUI
(which is what you want to do) no windows procedure need be reentrant. However, it
should process its message quickly and queue a new message for itself to continue work
later if necessary.

In many ways, a single-threaded application is similar in flavor to a select-based server
on Unix. The server is single threaded and calls select to get events to respond to. The
Windows application processes queued messages. In both cases, it is the programmer’s
responsibility to respond quickly to events/messages and to avoid blocking system calls.
If processing a message takes too long or blocks, the program appears sluggish.

A single-threaded application is also very similar to an event-driven simulator.

A common response to a message is to redraw the window or parts of it. Drawing is
done using an API called GDI. For the most part, GDI is straightforward, but one
confusing thing is that one does not draw on a window but rather on a “device context”
which can acquired from a window or created in memory.

For the first 8 years of its life, Windows only supported single threaded applications.
Win32 allows straightforward creation of threads and they are commonly used. Although
threads can interact with windows directly and even draw on them, you want to avoid
this. Instead, use semaphores and shared memory to exchange data between threads and
have background threads post messages to the application to signal conditions.

Looking at messages
A windows message consists of:

• A handle to the targeted window
• The message type (a number)

1 Strictly speaking, the window procedure is associated with a window class. All windows of a particular
class have the same window procedure.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 5 of 11

• A 32 bit message parameter
• A second 32 bit message parameter

Based on the type of the message and the targeted window, the window procedure or the
application can cast the parameters to appropriate types. For example, the parameters are
often used to send a pointer to something. You can use the spy++ application to see
what messages are being delivered to an application or a window. You will be surprised
at the rate and diversity of message arrivals.

Here is the prototype of a window procedure:

LRESULT CALLBACK WndProc(HWND hWnd, // window handle
 UINT message, // message type
 WPARAM wParam, // 32 bit parameter
 LPARAM lParam) // 32 bit parameter

There are hundreds of message types. Some important ones are:

• WM_CREATE – the very first message a window receives (see CreateWindow())
• WM_DESTROY – the very last message a window receives (see

DestroyWindow())
• WM_INITDIALOG – first message
• WM_ACTIVATE – the window has come to the foreground or gone to the

background (see ShowWindow())
• WM_PAINT – the system has erased some part of the window and wants the

window to redraw that part. (See InvalidateRect())
• WM_TIMER – a timer (see SetTimer()) has expired
• WM_LBUTTONDOWN, WM_LBUTTONUP, WM_MOUSEMOVE, etc –

mouse/stylus related events
• WM_CHAR, WM_KEYDOWN, WM_KEYUP, etc – keyboard related events
• WM_COMMAND – menu selection (or dialog box action)
• WM_USER (and WM_USER+1, etc) – a user-created message type.

Here is a very short window procedure:

{
 HDC hdc;
 int wmId, wmEvent;
 PAINTSTRUCT ps;

 switch (message)
 case WM_COMMAND: // it’s a menu command
 wmId = LOWORD(wParam); // get the menu item
 wmEvent = HIWORD(wParam); // get what happened to
 // we’ll just assume it’s been selected
 switch (wmId) {
 case IDM_HELP_ABOUT:

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 6 of 11

 // display the about box
 // more about this later
 DialogBox(g_hInst, // this thread
 (LPCTSTR)IDD_ABOUTBOX, // resource
 hWnd, // parent window
 (DLGPROC)About); // window proc
 return 0; // success
 break;
 …
 …
 case WM_PAINT: // Need to redraw the window
 // We could look in the message to figure out what
 // region we need to redraw, but we’ll just redraw
 // it all
 RECT rt;
 // Get a device context to draw on
 hdc = BeginPaint(hWnd, &ps);
 // Get a rectangle giving us the whole client
 // area of the window (ie, no borders, titles, etc
 GetClientRect(hWnd, &rt);
 // Draw “hello” right in the middle of everything
 // _T() means “make this Unicode”
 // Windows CE does not support ASCII
 DrawText(hdc,
 _T(“Hello”),
 _tcslen(_T(“Hello”)),
 &rt,
 DT_SINGLELINE | DT_VCENTER | DT_CENTER);
 // Finish
 EndPaint(hWnd, &ps);
 return 0; // success
 break;

Dialog boxes and resources
A dialog box is basically just a window. Like any other window, it needs to have a
window procedure. Unlike most windows, however, we usually don’t draw it in
WM_PAINT or handle all the controls. Instead, we lay it out using an editor and have
Windows draw it for us and operate the controls.

The dialog box is a resource that is linked into the executable and loaded from it when
needed. For example, in the above window procedure, when we receive the
IDM_HELP_ABOUT, we call the windows DialogBox function to create and run the
dialog box for us. We give this function an identifier for the dialog box resource we want
to use, IDD_ABOUTBOX. Using the resource editor (ResourceView tab in EVC++) we
can draw the dialog box, add controls to it, and name every element (typically using the
IDD_* (dialog box) and IDC_* (dialog box control) convention.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 7 of 11

Menus and their elements (IDM_*) are also resources that are created and named using
the resource editor.

Other common types of resources are accelerators (short cut keys for menu items or
controls), icons, and strings (for internationalization). We won’t use any of these.

You may wonder why it is that we need to have a window procedure for a dialog box at
all. There are basically two reasons. First, we often want to copy data out of controls in
the dialog box into variables in our program, or vice versa. Windows does not do this
automatically for us. If we catch the dialog box creation and destruction messages, we
can copy in and out at these points. The second reason is that we may want to run the
dialog box non-modally. DialogBox() runs the dialog box modally. In other words, it
runs to the exclusion of every other part of the program’s user interface. It is not until we
close the dialog box that we can use anything outside of it. This is not usually an issue
with a small screen device, but it is definitely an issue on desktops.

Instances and posted versus sent messages
Windows are registered by an application instance. A good way to think about this is an
application instance is the thread of the application that will be responsible for handling
the user interface and the windows message pump. The application may have many other
threads, and there be multiple copies of the application running, each with its own
instance thread.

One reason you want to have all of the GUI handled by one thread is that it is the thread
that creates a window that must be its message pump. But you usually want a new thread
to do something more interesting than that.

What the instance thread usually does is register the different window classes the
application will use, create the first window of the application, and then settle down to a
life of being the message pump, running this code:

while (GetMessage(&msg, NULL, 0, 0)) {
 if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
}

What this does is repeatedly dequeue the highest priority message (GetMessage),
translate a low level message into one or more high level messages that get put back in to
the queue (TranslateMessage), and then call the right window procedure
(DispatchMessage) with the message. TranslateAccelerator deals with keyboard
shortcuts and is just a detail from our point of view.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 8 of 11

Message translation is interesting. The windows model is to send all messages to the
application, even very low level things like “someone just moved the mouse in your title
bar” and “the user has pressed the ctrl key down but nothing else so far”. Most of the
time, your windows procedure just ignores them and passes them to DefWndProc().
However, if you do ever want to get at this low level info, all you have to do is add a case
statement and you’re there.

You can send your own messages, from any thread using the SendMessage and
PostMessage calls:

LRESULT SendMessage/PostMessage(HWND hWnd,
 UINT Msg,
 WPARAM wParam,
 LPARAM lParam)

SendMessage basically finds the appropriate window procedure based on the window
handle and immediately calls it. It blocks until the window procedure returns.
PostMessage finds the instance thread (the thread that created the window), queues the
message to it if possible, and then immediately returns.

Why should you care? If you have only a single thread, the issue with SendMessage is
reentrancy. Suppose you SendMessage from a window procedure on some window that
is also associated with the same window procedure. This is like your window procedure
calling itself. It better be designed to handle this or bad juju will happen.

If you are calling SendMessage in thread1 and thread2 can also execute in the same
window procedure, the window procedure needs to be able to handle concurrent
execution. If it doesn’t, well, you’re probably in race condition city.

Our general advice is to use PostMessage whenever possible. Why would you ever want
to use SendMessage? One reason is priority. Recall that the message queue is a priority
queue. The windows message have careful priorities associated with them. However, the
user messages (WM_USER+) do not. SendMessage is a way to jump ahead of the queue.
Another situation in which SendMessage makes some sense is when you know for other
reasons that reentrancy or concurrency is not a concern (say, you and your child windows
were created by the same thread) and you want to force an order of operations (update
your child windows in right-to-left order, for example). Of course, SendMessage is also
much, much cheaper than PostMessage since it’s basically a virtual function call, so it
might make sense when resource constrained.

Threads and real-time
Any thread in Windows CE can create a thread at any time using CreateThread():

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 9 of 11

 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

This function looks terrifying, but it’s actually pretty simple in most cases, particularly on
CE, which ignores most of the parameters. Here’s a create thread call that’s used in
example_bluetooth to create a Bluetooth handler thread:

DWORD WINAPI BTHandlerThread(LPVOID) { does something }

CreateThread(NULL,0,BTHandlerThread,0,0,0);

This creates a new thread and starts it executing in the BTHandlerThread function. When
the function returns, the thread terminates. Here’s why this is so simple:

• lpThreadAttributes: Windows CE has no real security model, so the thread
security attributes are ignored even if given.

• dwStackSize: Windows CE decides how big the stack will be at compile time, so
the stack size parameter is ignored2

• lpParameter: It’s not usually helpful to pass a single 32 bit value to the thread,
hence it’s zeroed out here.

• dwCreationFlags: I want to create the thread in a runnable state, hence the zero
for creation flags

• lpThreadID: I don’t need the thread id since I assume it will terminate by itself
and I can always join with it through a message anyway. For most thread-related
calls I can use the handle instead of the thread id anyway.

As mentioned earlier, CE has a fixed priority scheduler. The highest priority runnable
thread in the system is always run. If there is more than one thread at that priority level,
they are run round-robin.

Here is how you change the priority of a thread:

BOOL SetThreadPriority(HANDLE hThread, int nPriority)

2 There are a several gotchas here, btw. First, if the stack size limit (set with the /STACK flag to the linker
with a default of 1 MB) is too small, you lose. Second, if an individual stack frame is larger than a page (2
KB, usually), you lose. Third, if you blow past the guard page (2 KB), you lose. Basically, it appears as if
CE gives you a tiny stack to begin with and will grow it by one page when you hit the guard page. CE
does not do optimistic allocation. If you set the stack size limit to 1 MB and you have 32 MB of memory,
you can have only 32 threads.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 10 of 11

In the beginning, CE had 8 priority levels (THREAD_PRIORITY_IDLE to
THREAD_PRIORITY_TIME_CRITICAL). It now has 256 levels, with the lower the
number, the higher the priority. The convention is:

• 0..96 – higher priority than default CE device drivers. This is where your time
critical sensor device drivers go.

• 97..152 - default device driver range
• 153..247 – real-time application threads, but not a device driver
• 248..255 – none real-time, application threads (the UI, for example)

The previous 8 priority levels are mapped to 248..255. Threads begin their lives at
THREAD_PRIORITY_NORMAL (251).

Notice that the fixed priority scheduler is very strict and does not care about fairness or
other concerns that are integrated in to dynamic priority scheduler of a modern general
purpose operating system. If you have a thread that does not thing but computation and
you set it to, say 153, leaving your UI thread at 251, your UI thread will starve. You’ll
also starve out every thread above 153 in the whole system. There is also nothing
stopping you from setting priority to whatever you want. If you want your UI thread to
run at higher priority than the raster driver, by all means go ahead. To get a sense of
what runs at what level, check out
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wceddk40/html/cxconReal-TimePrioritySystemLevels.asp.

Waiting for events, semaphores, and non-blocking I/O
The Win32 mechanisms for waiting for events is somewhat convoluted compared to
Unix. There are signals, windows messages, events, and probably more. In large part,
these things are not orthogonal. For example, the WaitForSingleObject() and
WaitForMultipleObjects() functions look superficially similar to the Unix select()
function, but there are many kinds of handles you can’t wait for with them, and it can be
difficult to disambiguate which event actually occurred on a handle.

One problem with this is how to determine whether an I/O will block or not. Although
Win32 supports non-blocking I/O (called “overlapped I/O”), the CE implementation
currently does not. It is still a bit unclear to your instructors how exactly to determine
whether an I/O on a handle for a single byte will block or not in CE. The obvious work
around is to create a thread to do the dirty work and not worry about whether it will block
or not, but this is less than satisfying.

Win32 has lots of IPC mechanisms. Counting semaphores are available both for process
synchronization and thread synchronization.

CE implements priority inheritance. This means, for example, that if you’re holding a
resource like a semaphore and some higher priority thread is blocked waiting for it, CE
will temporarily increase your priority to that of the blocked thread to encourage you to
release the semaphore sooner.

ECE 397 Windows CE Programming For Pocket PC In A Nutshell Dinda

 Page 11 of 11

Communication
Win32 includes “winsock” and so does Windows CE. Winsock is a relatively
straightforward implementation of the familiar Berkeley sockets API with some
extensions that you don’t really have to worry about. For IP communication over 802.11
networks, the Pocket PC just works as expected for typical unicast UDP and TCP. We
provide you with a wrapper library to simplify things even further.

Our Pocket PCs also support Bluetooth radio communication, and we will need to use it
since the Motes do not speak 802.11 and the Pocket PCs don’t (yet) speak Zigbee. So,
we are jury-rigging Bluetooth adaptors on the serial ports of some motes and gatewaying
the two networks through Bluetooth.

Bluetooth is an absolute and horrific disaster both in terms of protocol and
implementation on all three platforms we have looked at. It’s hard to believe that
someone would build a connection-oriented network layer protocol in this day an age,
much less one that requires seconds to establish a connection over a whole foot of empty
space. If you’re interested in our gripes about Bluetooth and several particular
implementations, we’d be (un)happy to talk offline. In the meantime, we have found an
acceptable SDK and created a wrapper library that at least makes it tolerable. We can’t
fix its insane slowness when establishing connections, however.

